Перенос энергии возбуждения между редкоземельными ионами Pr³⁺ и Nd³⁺ в силикатном стекле

Г.Ф.Чантурия, Ю.М.Благидзе, Ш.Ш.Гватуа, Г.А.Накашидзе, Р.А.Татарашвили, Х.И.Гаприндашвили

Обнаружен безызлучательный перенос возбуждения (БПВ) между трехвалентными ионами Pr^{3+} и Nd^{3+} в силикатном стекле. В результате БПВ наблюдается кооперативная сенсибилизация люминесценции иона Nd^{3+} ионами Pr^{3+} на переходе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$, возбуждаемая непрерывным излучением ИАГ: Nd^{3+} -лазера мощностью ~800 мВт ($\lambda = 1.064$ мкм) в полосе поглощения иона Pr^{3+} на переходе ${}^{3}H_4 \rightarrow {}^{1}G_4$. Обсуждается механизм БПВ, ответственный за люминесценцию иона Nd^{3+} в полосе с максимумом на $\lambda = 1.34$ мкм.

Ключевые слова: безызлучательный перенос возбуждения, кооперативная сенсибилизация люминесценции, оптическое волокно.

В связи с тем, что большинство современных оптических коммуникационных систем работают в диапазоне длин волн ~ 1.3 мкм, значительный научный и практический интерес представляют поиск и исследование новых лазерных сред для волоконных лазеров и усилителей, работающих в этом диапазоне.

В настоящее время наиболее перспективными считаются оптические волокна на основе активированных ионами Pr^{3+} флюоридных [1] и сульфидных [2] стекол, люминесцирующих на $\lambda = 1.3$ мкм (переход ${}^{1}G_{4} \rightarrow {}^{3}H_{5}$). Волокна на основе оксидных стекол, например силикатных, для этой цели непригодны, т. к. эффективность люминесценции иона Pr^{3+} в них на $\lambda = 1.3$ мкм исключительно мала [3]. Однако силикатные волокна обладают лучшими оптико-механическими характеристиками и легко стыкуются (методом сплавления) со стандартными световодами. Кроме того, силикатное стекло является хорошей лазерной матрицей для иона Nd^{3+} , обладающего тремя излучательными переходами в спектральных областях с $\lambda = 0.88, 1.06$ и 1.35 мкм.

Интенсивности оптических переходов в спектрах поглощения и люминесценции Nd³⁺ в стеклах исследованы в [4]. Интересующая нас полоса с максимумом на длине волны $\lambda \sim 1.35$ мкм является малоинтенсивной в неодимовых лазерных средах. В этой полосе излучается менее 20 % общей энергии, накопленной на метастабильном уровне ${}^{4}F_{3/2}$. Для того чтобы использовать силикатные стекла и активированные ионами Nd³⁺ оптические волокна на их основе в качестве лазерной среды в диапазоне ~ 1.3 мкм, необходимо «подавить» люминесценцию с λ = 1.06 мкм на основном лазерном переходе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{1/2}$ и повысить эффективность люминесценции с $\lambda = 1.35$ мкм на дополнительном переходе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$.

В настоящей работе исследуется безызлучательный перенос возбуждения (БПВ) от возбужденных ионов Pr^{3+} к невозбужденным ионам Nd^{3+} в силикатном стекле, ак-

Поступила в редакцию 23 июня 1999 г.

Рис.1. Спектр кооперативной сенсибилизированной люминесценции ионов Nd^{3+} в силикатном стекле, активированном парой ионов $Pr^{3+} - Nd^{3+}$.

тивированном донорно-акцепторной парой $Pr^{3+}-Nd^{3+}$, который сопровождается кооперативной сенсибилизацией люминесценции [5]. Ранее БПВ исследовался в силикатных стеклах, активированных парами $Pr^{3+}-Nd^{3+}$, $Tb^{3+}-Yb^{3+},$ Eu^{3+}-Yb^{3+} [6-8], и совсем недавно – в силикатных волокнах, активированных парой $Tm^{3+}-Ho^{3+}$ [9].

Наши исследования проводились на образцах силикатного стекла, активированного окислами Pr_2O_3 и Nd_2O_3 с весовыми концентрациями 4 и 2 % соответственно, и на образцах, содержащих только Pr_2O_3 с весовой концентрацией 4 %.

Спектры поглощения регистрировались на спектрофотометрах Specord UV VIS и СФ-26, а спектры люминесценции – на установке, состоящей из источника возбуждения (непрерывного ИАГ:Nd³⁺-лазера мощностью ~800 мВт с $\lambda = 1.064$ мкм), монохроматора МДР-23, а также фоторегистратора с германиевым фотоприемником и фотоэлектрической приставкой ФЭП-4. Эксперименты проводились при комнатной температуре.

Институт кибернетики АН Грузии, 380086 Тбилиси, ул. Сандро Эули, 5

Рис.2. Упрощенная диаграмма энергетических уровней ионов Pr^{3+} и Nd³⁺ и схема БПВ в силикатном стекле. Сплошные линии – поглощение и излучение, штриховые – БПВ, волнистые – многофононная релаксация.

В образцах стекол, активированных парой ионов $\Pr^{3+} - Nd^{3+}$, мы наблюдали ИК люминесценцию в полосе с максимумом на $\lambda = 1.34$ мкм (рис.1). Люминесценция возбуждалась лазерным излучением с $\lambda = 1.064$ мкм из основного состояния иона \Pr^{3+} на поглощательном переходе ${}^{3}H_{4} \rightarrow {}^{1}G_{4}$ (рис.2). Энергетический уровень ${}^{1}G_{4}$ представляет собой широкую полосу поглощения с максимумом на $\lambda \sim 1.02$ мкм и малой оптической плотностью (~0.03). Длина волны 1.064 мкм не является точно резонансной. При тех же условиях возбуждения в образцах стекол, содержащих раздельно только ионы \Pr^{3+} или только ионы Nd^{3+} , эта полоса люминесценции полностью отсутствует.

Наблюдаемая полоса люминесценции идентифицируется нами как полоса кооперативной сенсибилизированной люминесценции иона Nd³⁺ на переходе ⁴ $F_{3/2} \rightarrow$ ⁴ $I_{13/2}$. Ответственным за возникновение этой полосы является БПВ между возбужденными ионами Pr³⁺ (доноры) и невозбужденными ионами Nd³⁺ (акцепторы). В нашем случае из всех разновидностей БПВ наиболее вероятной является кооперативный БПВ [5]. Это утверждение основывается на том, что энергетическая схема уровней ионов Pr³⁺ и Nd³⁺ позволяет нам провести такой же анализ механизма БПВ, как и в работе [5] для пары Yb³⁺ – Tu³⁺.

Следуя [5], можно утверждать, что имеет место одновременный перенос энергии возбуждения с двух ионов Pr^{3+} , находящихся на уровне ${}^{1}G_{4}$, на один невозбужденный ион Nd³⁺ (${}^{4}I_{9/2}$) с суммированием квантов энергии и последующим переходом на уровень ${}^{4}G_{7/2}$. Этому способствует выполнение условия $2E_{1} \approx E_{2}$, где E_{1} – энергия уровня ${}^{1}G_{4}$ иона Pr^{3+} , а E_{2} – энергия уровня ${}^{4}G_{7/2}$ иона Nd³⁺ (рис.2). В пользу данного БПВ свидетельствует также квадратичная зависимость интенсивности люминесценции от интенсивности возбуждения.

Другой тип БПВ – последовательное суммирование энергии двух квантов возбуждения на одном ионе Pr^{3+} в состоянии ${}^{1}G_{4}$ с последующей передачей этой энергии невозбужденному иону Nd^{3+} для перевода его в состояние ${}^{4}G_{7/2}$, является маловероятным, т. к. у иона Pr^{3+} отсутствуют реальные состояния с энергией, примерно равной удвоенной энергии состояния ${}^{1}G_{4}$. Однако этот механизм может реализоваться при больших лазерных мощностях возбуждения [7].

Точно так же БПВ при нерезонансной сенсибилизации люминесценции является маловероятным, т.к. в этом случае должна реализоваться нерезонансная передача энергии возбуждения от иона Pr^{3+} иону Nd³⁺ с дефицитом энергии $\Delta E \sim 2000$ см⁻¹, соответствующим разности энергий уровней взаимодействующих переходов, т.е. уровней ${}^{4}F_{3/2}$ и ${}^{1}G_{4}$. Этот дефицит можно покрыть только за счет энергии фонона матрицы, для чего необходимо выполнение условия $\Delta E \leq v_{\rm m}$, где $v_{\rm m}$ – максимальная граничная частота спектра основных колебаний матрицы [10]. Для силикатных, фосфатных и боратных стекол оно не выполняется, поскольку $v \approx 1000 - 1400$ см⁻¹. Кроме того, обычной сенсибилизации люминесценции соответствует линейная зависимость интенсивности люминесценции от интенсивности возбуждения.

Абсолютно исключается БПВ при нелинейном двухфотонном поглощении из-за малости мощности накачки. В силикатных стеклах исключительно мала эффективность люминесцентных переходов из высокоэнергетических состояний иона Nd³⁺ на основной уровень. Подавляющая часть энергии, аккумулированная в этих состояниях, релаксирует на метастабильный уровень ⁴ $F_{3/2}$. Энергия, излучаемая с уровня ⁴ $F_{3/2} \rightarrow {}^4I_{9/2}$, составляет ~ 80%.

Механизмы безызлучательных потерь при переходах с уровня ${}^{4}F_{3/2}$, связанные с мультипольным взаимодействием ионов Nd³⁺ в кристаллах и стеклах, исследованы в [11]. Кроме того, известно [6, 12], что ион Pr³⁺ является сильным тушителем люминесценции иона Nd³⁺ на $\lambda = 1.06$ мкм. В связи с этим часть энергии, соответствующая переходу ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$, безызлучательно передается невозбужденным ионам Pr³⁺, переводя их на уровень ${}^{1}G_4$ (рис.2). Это приводит к обратному БПВ от возбужденных ионов Nd³⁺ к невозбужденным ионам Pr³⁺. Обратная связь, т. е. возвращение части энергии в систему, способствует оптимизации условий накачки на $\lambda = 1.06$ мкм и увеличению эффективности люминесценции на интересующем нас переходе ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ с $\lambda \approx 1.34$ мкм.

Таким образом, в настоящей работе продемонстрирована принципиальная возможность наблюдения кооперативной сенсибилизированной люминесценции в диапазоне ~1.34 мкм в силикатном стекле, активированном парой Pr^{3+} – Nd^{3+} , при облучении образцов стекол лазерным излучением с $\lambda = 1.06$ мкм и установлен механизм БПВ, ответственный за люминесценцию. Полученный результат стимулирует дальнейшие исследования этого явления в оптических волокнах с целью создания лазерной среды в области ~1.3 мкм. Перспективным представляется применение в качестве источника возбуждения мощных полупроводниковых лазерных диодов, генерирующих в области $\lambda \approx 1$ мкм.

Работа выполнена по гранту № 2.2 АН Грузии.

- Nishida Y., Yamida M., Kanamori T., Kobayashi K., Temmyo J., Sudo S., Ohishi Y. *IEEE J.Quantum Electron.*, 34, 1332 (1998).
- Machewirth D., Wei K., Kansteva V., Datta R., Snitzer E. Sigel G. J.Non-Cryst.Solids, 213 – 214, 295 (1997).
- 3. Мокеева Г.А., Лунькин С.П., Феофилов П.П. *ЖПС*, **4**, 245 (1966).
- 4. Брачковская Н.Б., Грубин А.А., Лунтер С.П., Пржевуский А.К.,
- Раабен Э.Л., Толстой М.Н. *Квантовая электроника*, **3**, 998 (1976). 5. Овсянкин В.В., Феофилов П.П. *Письма в ЖТФ*, **4**, 471 (1966).

- 6. Мокеева Г.А., Рейшахрит А.А., Лунькин С.П. ЖПС, 5, 730 (1966).
- Билак В.И., Зверев Г.М., Карапетян Г.О., Онищенко А.М. Письма в ЖЭТФ, 14, 301 (1971).
- Антипенко Б.М., Дмитрюк А.В., Зубкова В.С., Карапетян Г.О., Мак А.А. Изв. АН. Сер. физич., 37, 466 (1973).
- Jacson S.D., King T.A. *IEEE J.Quantum Electron.*, **34**, 1578 (1998).
 Алексеев Н.Е., Гапонцев В.П., Жаботинский М.Е., Кравченко
- В.Б., Рудницкий Ю.П. Лазерные фосфатные стекла (М., Наука, 1980, с.135).
- Денкер Б.И., Осико В.В., Прохоров А.М., Щербаков И.А. Квантовая электроника, 5, 847 (1978).
- Арбузов В.И., Галант Е.И., Лунтер С.Г., Миронов А.Н., Федоров Ю.К. Физика и химия стекла, 4, 439 (1978).

G.F.Chanturiya, Yu.M.Blagidze, Sh.Sh.Gvatua, G.A.Nakashidze, R.A. Tatarashvili, Kh.I.Gaprindashvili. Excitation energy transfer between Pr^{3+} and Nd^{3+} rare-earth ions in silicate glass.

Nonradiative excitation transfer (NET) was observed between trivalent Pr^{3+} and Nd^{3+} ions in silicate glass. Cooperative sensitisation of luminescence of Pr^{3+} ions by Nd^{3+} ions in the ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ transition was observed as a result of NET. The luminescence was excited by the cw radiation of an Nd^{3+} :YAG laser with a power of ~800 mW ($\lambda = 1.064 \mu m$) operating on the basis of the ${}^3H_4 \rightarrow {}^1G_4$ transition at the wavelength corresponding to the Pr^{3+} absorption band. The NET mechanism, responsible for the luminescence of the Nd^{3+} ion at the wavelength corresponding to the band with a maximum at $\lambda = 1.34 \mu m$, is discussed.