Исследование составляющих энергобаланса при облучении плоской мишени пикосекундным лазерным импульсом

В.Г.Бородин, В.В.Ильин, В.М.Комаров, В.А.Малинов, В.М.Мигель, Н.В.Никитин, А.В.Чарухчев, В.Н.Чернов

На лазерной установке «Прогресс-П» на Nd-стекле (λ = 1053 нм, τ = 1.4 nc) экспериментально исследовано рассеяние и поглощение мощного пикосекундного лазерного импульса в твердотельной мишени при интенсивности излучения на ее поверхности I = 10¹⁶ − 10¹⁹ Bm/см². Обнаружено, что при I ≤ 10¹⁷ Bm/см² свыше 30 % интенсивности рассеянного света содержится в зеркальной компоненте. Показано, что коэффициент поглощения лазерного излучения при интенсивности 10¹⁸ − 10¹⁹ Bm/см² выше для мишеней из материалов с большим атомным номером.

Ключевые слова: пикосекундный лазер, отражение, поглощение, лазерная плазма.

Введение

Лазерная плазма, созданная пикосекундным лазерным импульсом с интенсивностью $I \approx 10^{16} - 10^{19} \text{ Br/см}^2$, является уникальным источником рентгеновского излучения и заряженных частиц, параметры которых непосредственно зависят от процессов поглощения этого импульса в мишени. При рассмотрении теоретических основ взаимодействия УКИ с твердотельной мишенью процессам поглощения такого импульса было уделено особое внимание [1-9], а для объяснения экспериментально измеренных коэффициентов поглощения (отражения) [10-14] использовались как уже хорошо известный из экспериментов с нано- и субнаносекундными импульсами резонансный механизм, заключающийся в линейной трансформации поляризованной в плоскости падения (р-поляризация) световой волны накачки в плазменные волны [3], так и новые механизмы поглощения, такие как вакуумный нагрев (поглощение Брюнеля) [4], аномальный скин-эффект [5] и *j* – В-нагрев [6]. Использование этих новых механизмов в теоретических моделях вызвано тем, что при интенсивности на поверхности мишени $I \geqslant 10^{17} \; \mathrm{Bt/cm^2}$ из-за сильного светового давления лазерного импульса происходит резкое изменение профиля плотности плазмы и резонансное поглощение становится неэффективным.

Анализ экспериментальных данных [10-14], полученных на разных установках и, в основном, в сравнительно узких диапазонах интенсивности (см. также обзор [15]), показывает, что даже при близких значениях $I\lambda^2$ (λ – длина волны лазерного импульса) коэффициенты поглощения в опытах на разных установках сильно различаются (в 2–3 раза). В связи с этим измерение составляющих энергобаланса в широком диапазоне интенсивностей ла-

НИИ комплексных испытаний оптико-электронных приборов и систем ВНЦ «ГОИ им. С.И.Вавилова», Россия, 188537 Сосновый Бор Ленингр. обл.

Поступила в редакцию 23 июля 1999 г.

зерного излучения на мишени, проведенных при фиксированных параметрах лазерного импульса (длина волны, поляризация, контраст по мощности и энергии, длительность импульса) позволяет дать более корректное описание механизмов поглощения лазерной энергии.

1. Схема эксперимента и методики измерения

Эксперименты проводились на пикосекундном лазере «Прогресс-П» на Nd-стекле ($\lambda = 1053$ нм) [16, 17]. Лазерное излучение, энергия которого в камере взаимодействия достигала 16 Дж при длительности импульса ~1.4 пс, фокусировалось на мишень осевым параболическим зеркалом со светосилой 1:1.1 (диаметр лазерного пучка 190 мм) в фокальное пятно (50 % лазерной энергии) диаметром не более 7 мкм. Для лазерной энергии до 1 Дж при диаметре пучка 35 мм фокусировка осуществлялась линзой со светосилой 1:4 с кружком рассеяния (не менее 50 % энергии импульса) диаметром не более 15 мкм. Основному импульсу предшествовал предымпульс усиленной люминесценции длительностью ~ 5 нс с интенсивностью не более $10^{-8}I$. Интенсивность предымпульса в интервале 10-100 пс до появления основного импульса составляла не более $10^{-3}I$, что является верхним пределом, определяемым методикой измерения. Эксперименты (рис.1) проводились как с р-, так и с s-поляризованным излучением с мишенями из различных материалов при угле падения на мишень относительно ее нормали 33 и 45° .

Энергобаланс взаимодействия при облучении плоских мишеней лазерным импульсом определяется соотношением

$$E = E_{\rm m} + E_{\rm d} + E_{\rm ap} + E_{\rm ab}$$

где $E, E_{\rm m}, E_{\rm d}$ и $E_{\rm ap}$ – попавшая на мишень, отраженная зеркально, диффузно и в апертуру фокусирующей системы энергии соответственно; $E_{\rm ab}$ – энергия, поглощенная мишенью.

Измерения коэффициента поглощения при интенсивности на мишени до 10¹⁷ Вт/см² осуществлялись путем

Рис.1. Схема измерения составляющих энергобаланса:

I – вакуумная камера; 2 – входное окно; 3 – фокусирующее зеркало; калориметры для измерения падающей на мишень энергии (D_0), энергии диффузно рассеянного мишенью света ($D_1, ..., D_n$), энергии зеркальной компоненты рассеянного света (D_m) и энергии излучения, отраженного назад в апертуру фокусирующего зеркала (D_{ap}).

сбора и измерения энергии рассеянного мишенью света с помощью сферы Ульбрихта. При этом свет, рассеянный мишенью в зеркальном направлении и обратно, в апертуру фокусирующей линзы, собирался и регистрировался отдельно. Падающая и отраженная назад доли лазерного излучения измерялись за поворотным зеркалом. Фокусирующая линза одновременно служила входным окном вакуумной камеры.

Зеркальная составляющая отраженного излучения выводилась из сферы через отверстие с той же светосилой (1:4), что и у входного отверстия, предназначенного для фокусируемого лазерного пучка. Для устранения нелинейных искажений с ростом мощности лазерного пучка вместо фокусирующей линзы было использовано осевое параболическое зеркало со светосилой 1:1.1. Для исследования энергобаланса применялся набор калориметрических датчиков, один из которых полностью перехватывал излучение, отраженное от мишени в зеркальном направлении, а остальные размещались вокруг мишени как в плоскости падения, так и перпендикулярно ей (рис.1). Отдельно измерялась также энергия, рассеянная назад, в апертуру фокусирующего зеркала (линзы). Все компоненты рассеянного и падающего излучения регистрировались многоканальной измерительной системой на основе АЦП, встроенной в компьютер [18].

2. Экспериментальные результаты и их обсуждение

На рис.2 представлены измеренные коэффициенты отражения для зеркальной компоненты ($R_{\rm m}$) и компоненты излучения, рассеянного в апертуру фокусирующей системы ($R_{\rm ap}$), а также полный коэффициент отражения R для мишеней из различных элементов (Al, Sn и Au) при интенсивности $I \approx 10^{16} - 10^{19}$ BT/см².

Рис.2. Зависимости коэффициентов отражения лазерного импульса в зеркальном направлении $(R_m)(a)$ и назад в апертуру фокусирующей системы $(R_{ap})(\delta)$, а также полного коэффициента отражения R(a) от интенсивности на поверхности мишени.

Поглощенная энергия определялась разностью между энергией излучения, попавшего на мишень, и суммой энергий компонент, рассеянных мишенью. Зависимость результирующего коэффициента поглощения A = 1 - Rот интенсивности на мишени показана на рис.3.

Из рис.2,6 видно, что отраженная назад в апертуру фокусирующей оптики энергия составляет не более 1 % от полной энергии и не играет существенной роли в балансе энергии. В то же время $R_{\rm m}$ (рис.2,*a*) быстро уменьшается от 30–35 % при $I \approx 2 \cdot 10^{16}$ Вт/см² до 10–12 % при $I \approx 10^{17}$ Вт/см², а затем вплоть до $I \approx 10^{18}$ Вт/см² меняется мало. При этом $R_{\rm m}$ для р-поляризованного света остается несколько меньше, чем для s-поляризованного. Увеличение интенсивности до ~ 10^{18} Вт/см² приводит к росту $R_{\rm m}$ до 18–25 %, и в дальнейшем $R_{\rm m}$ мало меняетя с ростом I.

Для количественного объяснения характера зависимостей на рис.2 и 3 необходим детальный численный рас-

Рис.3. Зависимости коэффициента поглощения энергии лазерного излучения от интенсивности на поверхности плоской мишени из разных материалов.

чет с использованием всех известных механизмов поглощения энергии и с учетом реальных пространственновременных параметров лазерного излучения на мишени, что в настоящее время является весьма трудной задачей. В то же время качественное объяснение может быть дано на основании следующих простых соображений. Как было показано в работах [1, 2], при $10^{15} < I \le 10^{17}$ Вт/см² рост электронной температуры в зоне поглощения приводит к тому, что столкновительное поглощение становится малоэффективным и основным механизмом, ответственным за поглощение света в плазме, является резонансный механизм [3].

При $I \le 10^{17}$ Вт/см² различие в отражении s- и p- поляризованного света хотя и заметно (рис.2,a и b), но не так велико, как это предсказывают расчеты [1,2]. Учитывая результаты работы [12], полученные при сходных $(I \le 10^{17} \text{ Bt/cm}^2, \tau = 1.5 \text{ пс}, \lambda = 1053 \text{ нм})$ экспериментальных условиях, можно считать, что причиной этого является неоднородное пространственное распределение лазерной энергии по пятну фокусировки, которое из-за светового давления вызывает искажение («рифление») [9] поверхности вблизи зоны поглощения. Это приводит к появлению заметной доли s-компоненты в первоначально р-поляризованном (и, наоборот, р-компоненты в первоначально s-поляризованном) лазерном пучке. Такая ситуация, в зависимости от исходной поляризации, ведет либо к росту, либо к уменьшению поглощения света. Отметим, что данный подход позволил авторам работы [12] получить хорошее согласие расчетов с эксперимен-TOM

При интенсивности $I \ge 10^{17}$ Вт/см² неоднородность засветки мишени, по-видимому, начинает еще сильнее сказываться на распределении светового давления по поверхности плазмы, в результате чего различие коэффициентов отражения для обеих поляризаций становится еще меньше. Кроме того, сильным искажением отражающей поверхности можно объяснить и резкое уменьшение R_m при практически постоянном R.

Следует отметить, что обнаруженная в отраженном свете довольно значительная (не менее 30 %) доля зеркальной компоненты при $I \leq 10^{17}$ BT/cm² заметно отличается от полученной в [19], где она не превышала 10 % (при $I \approx 10^{16} - 10^{18}$ BT/cm²) и менялась незначительно, что, возможно, было следствием исходной неоднородности (шероховатости) поверхности мишени (это было отмечено и авторами [19]). Анализ зависимостей A(I) (рис.3) показывает, что если при $I \leq 10^{18}$ BT/см² еще заметно различие коэффициентов поглощения для s- и р-поляризованного света, то далее с ростом интенсивности это различие исчезает и зависимости A от I ослабевают. Аналогичные результаты при $I \leq 10^{18}$ BT/см² ($\lambda = 1053$ нм) были получены и в [14], где для обеих поляризаций коэффициент поглощения составил около 40 %.

В то же время для мишеней с большим атомным номером (Sn, Au) коэффициент поглощения выше, чем для мишеней из Al. Этот результат качественно можно интерпретировать следующим образом. Для интенсивностей $I \ge 10^{18}$ Вт/см² можно считать, что передача энергии электронам плазмы осуществляется непосредственно лазерной волной накачки за счет нелинейных бесстолкновительных механизмов [15, 20]. По этой причине поток электронов, ускоренных световой волной, должен быть пропорционален электронной плотности в области поглощения, которая, в свою очередь, определяется степенью ионизации вещества мишени *z*.

Согласно оценкам, приведенным в [21], температура электронов плазмы мишени $T_{\rm e}$ при $I \approx 5 \cdot 10^{18}$ Вт/см² достигает 1 кэВ. В соответствии с соотношением $z \approx (2/3)(AT_{\rm e})^{1/3}$, взятым из [22], эта температура достаточна для полной ионизации ато-ма Al, а для Sn и Au она обеспечивает эффективную степень ионизации $z \approx 25 - 35$. В нашем эксперименте (рис.3) коэффициент поглощения для Sn и Au в 1.5-2 раза выше, чем для Al, что удовлетворительно согласуется со степенями ионизации Sn и Au.

Заключение

Таким образом, проведено экспериментальное исследование составляющих энергобаланса при взаимодействии пикосекундного лазерного импульса с твердотельной мишенью из материалов с разным атомным номером при интенсивности на поверхности мишени $I \approx 10^{16} - 10^{19}$ Вт/см². При $I \leq 10^{17}$ Вт/см² обнаружено, что в зеркальной компоненте отраженного от мишени лазерного излучения, содержится около 30% энергии излучения, попавшего на мишень. Показано, что для мишеней из тяжелых элементов (Sn, Au) коэффициент поглощения при $I \approx 10^{18} - 10^{19}$ Вт/см² в 1.5–2 раза выше, чем для мишени из Al.

Авторы благодарят А.А.Андреева за полезные обсуждения, а также Международный научно-технический центр за финансовую поддержку работ по данной проблематике.

- 1. Rozmus W., Tikhonchuk V.T. Phys. Rev. A, 42, 7401 (1990).
- 2. Pert G. Phys. Rev. E, 51, 4778 (1995).
- 3. Forslund D.W., Kindel J.M., Lee K. et al. Phys. Rev. A, 11, 670 (1975).
- 4. Brunel F. Phys. Rev. Letts, 59, 52 (1987).
- 5. Андреев А.А. и др. ЖЭТФ, **101**, 1808 (1992).
- 6. Kruer W.L., Estabrook K. Phys. Fluids, 28, 430 (1985).
- Andreev A.A., Platonov K.Yu. *Techn.Digest Joint Symp. XV ICONO* and Laser Optics (St.-Petersburg, Russia, 1995, p.14).
- 8. Wilks S.C. et al. Phys. Rev. Letts, 69, 1383 (1992).
- 9. Estabrook K. et al. Phys. Rev. Letts, 50, 2082 (1983).
- 10. Meyerhofer D.D. et al. Phys. Fluids B, 5, 2584 (1993).
- 11. Bastiani S. et al. Phys. Rev. E, 56, 7179 (1997).
- 12. Андреев А.А. и др. Квантовая электроника, 23, 907 (1997).
- Komarov V.M. et al. AIP Conf. Proc. «Laser Interaction and Related Plasma Phenomena». XIII Intern.Conf. (Monterey, USA, 1997, v.406) (Woodbury, N.Y., 1997, p.443).

- 14. Tabak M. et al. Phys. Plasmas, 1, 1626 (1994).
- Андреев А.А., Мак А.А., Яшин В.Е. Квантовая электроника, 24, 99 (1997).
- 16. Бородин В.Г. и др. Квантовая электроника, 25, 115 (1998).
- Borodin V.G. et al. AIP Conf. Proc. «Laser Interaction and Related Plasma Phenomena». XIII Intern.Conf. (Monterey, USA, 1997, v.406) (Woodbury, N.Y., 1997, p.389).
- 18. Ильин В.В. и др. *ПТЭ*, **4**, 113 (1997).
- 19. Klem D.E. et al. Proc.SPIE, 1860, 98 (1993).
- 20. Ruhl H. et al. Phys. Rev. Letts, 82, 743 (1999).
- 21. Андреев А.А. и др. Изв.АН. Сер.физич., **63**, 1239 (1999).
- 22. Murname M. et al. Science, 251, 531 (1991).

V.G.Borodin, VV.II'in, V.M.Komarov, V.A.Malinov, V.M.Migel', NV. Nikitin, A.V.Charukhchev, V.N.Chernov. Analysis of energy balance components for a plane target irradiated with a picosecond laser pulse.

Scattering and absorption of high-power picosecond laser pulses in a solid target are experimentally investigated with the use of the 'Progress-P' Nd:glass laser facility ($\lambda = 1053 \text{ nm}$, $\tau = 1.4 \text{ ps}$) for radiation intensities on the target surface $I = 10^{16} - 10^{19} \text{ W/cm}^2$ It is demonstrated that, with $I \leq 10^{17} \text{ W/cm}^2$, more than 30% of the intensity of scattered light is contained in the mirror-reflected component. The absorption coefficient of laser radiation with intensities ranging from $10^{18} - 10^{19} \text{ W/cm}^2$ is shown to increase for targets made of materials with higher atomic numbers.