Статистические особенности деградации гетеролазеров при старении и облучении

А.А.Кочетков

Исследованы особенности деградации GaAlAs- и InGaAsP-гетеролазеров при старении ($T = 60^{\circ}C$) и в процессе облучения. Определены аналитические выражения, характеризующие увеличение дисперсии распределения порогового тока в зависимости от времени ресурсных испытаний и от дозы облучения потоками быстрых частиц.

Ключевые слова: статистика деградации гетеролазеров, дисперсия порогового тока.

Статистический анализ деградации гетеролазеров при различных температурных режимах накачки и потоках быстрых частиц позволил получить достаточно удобную модель надежности, учитывающую режимы испытаний, начальные условия и критерии отказа. Эта модель была получена в предположении, что приращение параметров обусловлено действием превалирующего механизма кинетики данных процессов [1-3]. При таком условии, часто наблюдаемом на практике, дисперсия σ^2 распределения порогового тока реально не зависит от времени ресурсных испытаний или от дозы облучения:

$$\bar{I}_{t} = \bar{I}_{t0} + c_0(\ln t - \ln \tau), \quad c_0 = \frac{\sigma_1}{\sigma_0} = \text{const}, \quad (1)$$

$$\bar{I}'_{t} = \bar{I}'_{t0} + c'_{0}(\ln y - \ln y_{0}), \quad c'_{0} = \frac{\sigma'_{1}}{\sigma'_{0}} = \text{const},$$
(2)

где τ – время ресурсных испытаний, соответствующее началу старения; σ_1^2 – дисперсия распределения порогового тока в начальный момент; σ_0^2 – дисперсия распределения отказов; t – время испытаний; y_0 – доза облучения, при которой наблюдается деградация; y – доза радиационного облучения; \bar{I}_{t0} – средний пороговый ток в начальный момент.

Тем не менее в случае недостаточной предварительной отбраковки гетеролазеров (большая дисперсия распределения по параметру годности), а также при увеличенных продолжительности испытаний на долговечность и дозе облучения не исключена возможность существования нескольких равнозначных по действию механизмов деградации или переходов от одного основного механизма кинетики этого процесса к другому. В этом случае условие постоянства дисперсии не соблюдается, дисперсия будет возрастать, что в свою очередь должно естественным образом повлиять на вид выражений для расчета изменения порогового тока в процессе деградации при старении и облучении потоками быстрых частиц.

Центральный научно-исследовательский испытательный институт (ЦНИИ-22), Россия

Поступила в редакцию 24 ноября 1999 г.

В случае старения эти выражения имеют вид

$$\sigma = \sigma_{1} + \sigma_{2}(t), \quad \sigma_{1} = \text{const},$$

$$I_{t}(z) = I_{t0} + c_{z}(\ln t - \ln a),$$

$$\overline{I}_{t} = \overline{I}_{t0} + c_{x}(\ln t - \ln a), \quad c_{x} = \sigma/\sigma_{0},$$

$$c_{z} = \begin{cases} c_{0}, \ \tau \leq t \leq t_{0}, \ a = \tau, \\ c_{1}, \ t_{0} < t, \ a = t_{0}, \end{cases}$$

$$c_{x} = \begin{cases} c_{0}, \ \tau \leq t \leq t_{0}, \ a = \tau, \\ c_{2}, \ t_{0} < t, \ a = t_{0}, \end{cases}$$
(3)

где $I_t(z)$ – распределение порогового тока для совокупности гетеролазеров в процессе деградации; $z = [I_t(z) - \bar{I}_t]/\sigma = [I_{t0}(z) - \bar{I}_{t0}]/\sigma_1$ – аргумент нормальной функции распределения $\Phi^*(z)$; t_0 – время ресурсных испытаний, при котором наблюдается увеличение дисперсии. Увеличение дисперсии при облучении гетеролазеров потоками быстрых частиц описывается формулами, аналогичными выражениям (3).

Из выражений (3) следует, что $I_t(z) - \bar{I}_t = I_{t0}(z) - \bar{I}_{t0} + (c_z - c_z)(\ln t - \ln a)$. Нормируя это соотношение на *z*, получаем

$$\sigma = \sigma_1 + (c_z - c_x)z^{-1}(\ln t - \ln a).$$
(4)

Аналогичное выражение получается в случае облучения потоками быстрых частиц: $\sigma' = \sigma'_1 + (c'_z - c'_x) z^{-1} (\ln y - \ln a)$. Поскольку величины σ и σ' не зависят от z, введем обозначения $(c_z - c_x) z^{-1} = B, (c'_z - c'_x) z^{-1} = B'$; тогда для этих величин будут определены искомые выражения:

$$\sigma = \sigma_1 + B(\ln t - \ln a), \tag{5}$$

$$\sigma' = \sigma'_1 + B'(\ln y - \ln a). \tag{6}$$

Для случаев $\sigma = \sigma_1$, $\sigma' = \sigma'_1$ имеем B = B' = 0. Величины *B* и *B'* в общем виде могут зависеть от времени испытаний и условий облучения: режимы ресурсных испытаний или воздействия потоков быстрых частиц близки к условиям начала катастрофической деградации; в процессе деградации сформировалась достаточно неод-

Рис.1. Увеличение σ в зависимости от времени ресурсных испытаний GaAlAs- (*a*) и InGaAsP-гетеролазеров (δ) при $T = 60^{\circ}$ C.

нородная совокупность гетеролазеров (большие σ , σ'); время ресурсных испытаний $t \gg t_0$ или $y \gg y_1 (y_1 - доза облучения, при которой дисперсия увеличивается).$

Проведенные ресурсные исследования GaAlAs- и InGaAsP-гетеролазеров при $T = 60^{\circ}$ С показали, что в течение достаточно длительного времени испытаний величина *В* остается практически постоянной (рис.1). Экспериментальные наблюдения деградации гетеролазеров данных типов при воздействии потоков нейтронов, протонов, гамма-квантов и электронов позволили сделать аналогичный вывод о том, что B' остается постоянной величиной при значительных у.

На рис.2 приведены типичные зависимости от *у* дисперсии порогового тока GaAlAs- и InGaAsP-гетеролазеров при облучении потоком нейтронов. Опытные данные были получены по результатам исследований 10 образцов гетеролазеров для каждого вида испытаний. При этом средний пороговый ток до начала испытаний был равен ~25 мА для GaAlAs-гетеролазеров и ~50 мА для InGaAsP-гетеролазеров. В связи с этим расчеты изменения порогового тока гетеролазеров в процессе деградации должны учитывать вклад от увеличения $\sigma(t)$ или $\sigma'(y)$, т. к. влияние увеличения дисперсии на приращение I_t может быть значительным при определенных условиях:

$$\Delta \bar{I}_{\rm t} = B(\ln t - \ln a)^2 / \sigma_0, \ \Delta \bar{I}_{\rm t}' = B'(\ln y - \ln a)^2 / \sigma_0'.$$

Рис.2. Увеличение σ' в зависимости от потока нейтронов для GaAlAs- (*a*) и InGaAsP-гетеролазеров (δ).

Полученные результаты исследований свидетельствуют о практической целесообразности использования в реальных расчетах надежности гетеролазеров особенности изменения параметров при деградации дисперсии распределения порогового тока. При этом с помощью статистического анализа кинетики деградации гетеролазеров в процессе старения и облучения потоками быстрых частиц оказалось возможным аналитически рассчитать изменения дисперсии в зависимости от времени ресурсных испытаний и дозы облучения.

- 1. Елисеев П.Г., Кочетков А.А. *Квантовая электроника*, **10**, 2118 (1983).
- 2. Кочетков А.А. Квантовая электроника, 16, 1595 (1989).
- 3. Кочетков А.А. Квантовая электроника, 21, 422 (1994).

A.A.Kochetkov. Statistical features of degradation of heterojunction lasers upon aging and irradiation.

Specific features of degradation of the GaAlAs and InGaAsP heterojunction lasers are studied during aging at 60°C and upon irradiation by fast particles. Analytic expressions are obtained that describe an increase in the dispersion of the threshold current distribution with the time of the operating-life test and the dose of irradiation by fast particles.