Excitation energy transfer between Pr^{3+} and Nd³⁺ rare-earth ions in silicate glass

G F Chanturiya, Yu M Blagidze, Sh Sh Gvatua, G A Nakashidze, R A Tatarashvili, Kh I Gaprindashvili

DOI: 10.1070/QE2000v030n01ABEH001650

Abstract. Nonradiative excitation transfer (NET) was observed between trivalent Pr^{3+} and Nd^{3+} ions in silicate glass. Cooperative sensitisation of the luminescence of $Nd³⁺$ ions by Pr^{3+} ions in the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ transition was observed as a result of NET. The luminescence was excited by the cw radiation of an Nd^{3+} : YAG laser with a power of ~ 800 W ($\lambda = 1.064$ µm) operating on the basis of the ${}^{3}H_{4} \rightarrow {}^{1}G_{4}$ transition at the wavelength corresponding to the $Pr³⁺$ absorption band. The NET mechanism, responsible for the luminescence of the Nd^{3+} ion at the wavelength corresponding to the band with a maximum at $\lambda = 1.34$ µm, is discussed.

Since the majority of modern optical communication systems operate in the wavelength range of about 1.3 μ m, the search for and study of new laser media for fibre-optic lasers and amplifiers operating in this range are of considerable scientific and practical interest.

At present, optical fibres based on $Pr³⁺$ -ion-activated flu-oride [\[1\]](#page-1-0) and sulfide [\[2\]](#page-1-0) glasses, luminescing at $\lambda = 1.3 \text{ }\mu\text{m}$ (the ${}^1G_4 \rightarrow {}^3H_5$ transition), are believed to be the most promising. Fibres made of oxide glasses, for example silicate glasses, are suitable for this purpose, since the luminescence efficiency of the Pr^{3+} ion in such fibres is exceptionally low at $\lambda = 1.3$ µm [\[3\].](#page-1-0) However, silicate fibres have the best optomechanical characteristics and can be easily joined (by welding) to standard optical fibres. Furthermore, silicate glass is a good laser matrix for the Nd^{3+} ion and undergoes three radiative transitions in the spectral ranges with $\lambda = 0.88$, 1.06, and 1.35 µm.

The intensities of the optical transitions in the absorption and luminescence spectra of Nd^{3+} in glass have been investigated before [\[4\].](#page-1-0) The band in which we are interested, with a maximum at the wavelength $\lambda \sim 1.35$ µm, is of low intensity in neodymium-doped laser media. Less than 20% of the total energy accumulated at the ${}^{4}F_{3/2}$ metastable level is emitted in this band. Silicate glasses and Nd^{3+} -ion-activated optical fibres based on them can be used as laser media in the range of about $1.3 \mu m$ if the luminescence with $\lambda = 1.06$ µm in the main laser transition ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$

G F Chanturiya, Yu M Blagidze, Sh Sh Gvatua, G A Nakashidze, R A Tatarashvili, Kh I Gaprindashvili Institute of Cybernetics of the Academy of Sciences of Georgia, u. Sandro Éuli 5, 380086 Tbilisi, Georgia

Received 23 June 1999 Kvantovaya Elektronika 30 (1) $20 - 22$ (2000) Translated by A K Grzybowski

is 'suppressed' and the efficiency of the luminescence at $\lambda = 1.35$ µm, resulting from the additional transition ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$, is increased.

This communication describes a study of nonradiative excitation transfer (NET) from excited $Pr³⁺$ ions to unexcited Nd^{3+} ions in silicate glass activated by the $Pr^{3+} - Nd^{3+}$ $donor - acceptor pair$, which is accompanied by the cooperative sensitisation of the luminescence [\[5\].](#page-1-0) The NET process had been investigated earlier in silicate glasses activated by the $Pr^{3+} - Nd^{3+}$, $Tb^{3+} - Yb^{3+}$, $Eu^{3+} - Yb^{3+}$ pairs $[6 - 8]$ and quite recently in silicate fibres activated by the $\text{Tm}^{3+} - \text{Ho}^{3+}$ pair [\[9\].](#page-2-0)

Our study was made on samples of silicate glass activated by the oxides Pr_2O_3 and Nd_2O_3 with mass concentrations of 4% and 2%, respectively, and on samples containing only Pr_2O_3 with a mass concentration of 4%.

The absorption spectra were recorded on Specord UV VIS and SF-26 spectrophotometers, whereas the luminescence spectra were in a setup consisting of an excitation source in the form of a cw Nd^{3+} : YAG laser with an output power of ~ 800 mW ($\lambda = 1.064$ µm) and MDR-23 monochromator, and a recording photodetection system comprising a germanium photodetector and an FEP-4 photoelectric attachment. The experiments were carried out at room temperature.

In glass samples activated by the $Pr^{3+} - Nd^{3+}$ ion pair, we observed IR luminescence at wavelengths of the band having

Figure 1. Cooperative sensitised luminescence spectrum of Nd^{3+} ions in a silicate glass activated by the $Pr^{3+} - Nd^{3+}$ ion pair.

Figure 2. Simplified energy level diagrams of the Pr^{3+} and Nd^{3+} ions and the NET scheme of silicate glass. Continuous lines — absorption and emission; dashed lines — NET; wavy lines — multiphoton relaxation.

a maximum at $\lambda = 1.34$ µm (Fig. 1). The luminescence was excited by laser radiation with $\lambda = 1.064$ µm making use of the absorptive transition ${}^{3}H_{4} \rightarrow {}^{1}G_{4}$ from the ground state of the Pr^{3+} ion (Fig. 2). The ${}^{1}G_4$ energy level is represented by a broad absorption band with a maximum at $\lambda \approx 1.02$ µm and a low optical density of ~ 0.03 . The wavelength 1.064 μ m does not correspond exactly to resonance. This luminescence band is entirely absent under the same excitation conditions in glass samples containing separately only Pr^{3+} or only Nd^{3+} ions.

We identified the observed luminescence band as the cooperative sensitised luminescence of the Nd^{3+} ion corresponding to the ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ transition. The NET process between the excited $Pr³⁺$ ions (donors) and the unexcited Nd^{3+} ions (acceptors) is responsible for the appearance of this band. In our case, cooperative NET appears the most probable among all the varieties of NET [\[5\].](#page-1-0) This claim is based on the fact that the energy-level schemes of the Pr^{3+} and Nd^{3+} ions enable us to carry out the same analysis of the NET mechanism as in Ref. [\[5\]](#page-1-0) for the $Yb^{3+} - Tm^{3+}$ pair.

Following Ovsyankin and Feofilov [\[5\],](#page-1-0) one may claim that simultaneous excitation energy transfer takes place from two Pr^{3+} ions at the ¹G₄ level to one unexcited Nd^{3+} ion $({}^4I_{9/2})$ with summation of the energy quanta and subsequent transition to the ${}^4G_{7/2}$ level. This is promoted by the $2E_1 \approx E_2$ condition, where E_1 is the energy of the ¹G₄ level of the Pr^{3+} ion and E_2 is the energy of the ${}^4G_{7/2}$ level of the Nd^{3+} ion (Fig. 2). This NET process is supported also by the quadratic dependence of the luminescence intensity on the excitation intensity.

Another type of NET-consecutive summation of the energies of two excitation quanta on a single $Pr³⁺$ ion in the ${}^{1}G_4$ level with subsequent transfer of this energy to an unexcited Nd^{3+} ion in order to effect its transition to the ${}^4G_{7/2}$ level — is unlikely, since the Pr³⁺ ion has no real levels with an energy approximately equal to twice the energy of the ${}^{1}G_{4}$ level. However, this mechanism may operate at higher laser excitation powers [\[7\].](#page-2-0)

NET in nonresonant sensitisation of the luminescence is just as unlikely, since in this case nonresonant excitation energy transfer should take place from the Pr^{3+} to the Nd^{3+} ion with an energy deficit $\Delta E \approx 2000 \text{ cm}^{-1}$ corresponding to the energy difference between the levels of the interacting transitions, i.e. the ${}^4F_{3/2}$ and 1G_4 levels. This deficit may be made good only by the energy of a matrix phonon, which requires the fulfillment of the condition $\Delta E \le v_m$, where v_m is the maximum limiting frequency of the fundamental vibration spectrum of the matrix [\[10\].](#page-2-0) This condition does not hold for silicate, phosphate, and borate glasses, because $v \approx 1000 - 1400 \text{ cm}^{-1}$. Furthermore, a linear dependence of the luminescence intensity on the excitation intensity corresponds to the usual sensitisation of the luminescence.

NET is absolutely ruled out in nonlinear two-photon absorption owing to the smallness of the pump power. The efficiency of the luminescence transitions from the highenergy levels of the Nd^{3+} ion to the ground level is exceptionally low in silicate glasses. Most of the energy accumulated at these levels relaxes to the metastable level ${}^{4}F_{3/2}$. The energy emitted from the level ${}^{4}F_{3/2}$ by the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$, and ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ luminescent transitions is $\sim 80\%$.

The mechanisms of the nonradiative losses in the transitions from the level ${}^{4}F_{3/2}$, associated with the multipolar interaction of Nd^{3+} ions in crystals and glasses, have been investigated [\[11\].](#page-2-0) Furthermore, it is known [6, [12\]](#page-2-1) that the $Pr³⁺$ ion quenches strongly the luminescence of the Nd³⁺ ion at $\lambda = 1.06$ µm. Part of the energy corresponding to the ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$ transition is therefore transferred nonradiatively to unexcited Pr^{3+} ions, effecting their transition to the ${}^{1}G_{4}$ level (Fig. 2). This leads to the inverse NET process from the excited Nd^{3+} ions to the unexcited Pr^{3+} ions. Feedback, i.e. return of part of the energy to the system, promotes optimisation of the pump conditions at $\lambda = 1.06 \mu m$ and an increase in the luminescence efficiency in the ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ transition at $\lambda \approx 1.34$ µm, in which we are interested.

The present study thus demonstrates the possibility, in principle, of observing cooperative sensitised luminescence in the range of about $1.34 \mu m$ in silicate glass activated by the $Pr^{3+} - Nd^{3+}$ pair on irradiation of glass samples by $\lambda = 1.06$ um laser radiation and establishes the NET mechanism responsible for the luminescence. The results obtained have stimulated further investigations of this phenomenon in optical fibres in order to devise a laser medium for the \sim 1.3 µm range. Powerful semiconductor laser diodes, emitting in the region of $\lambda \approx 1$ µm, may find a future application as excitation sources.

The study was carried out with support by Grant No. 2.2 from the Academy of Sciences of Georgia.

References

- 1. Nishida Y, Yamada M, Kanamori T, Kobayashi K, Temmyo J, Sudo S, Ohishi Y IEEE Quantum Electron. 34 1332 (1998)
- 2. Machewirth D P, Wei K, Krasteva V, Datta R, Snitzer E, Siegel G H Jr J. Non-Cryst. Solids 213-214 295 (1997)
- 3. Mokeeva G A, Lun'kin S P, Feofilov P P Zh. Prikl. Spektrosk. 4 245 (1966)
- 4. Brachkovskaya N B, Grubin A A, Lunter S G, Przhevuskii A K, Raaben É L, Tolstoĭ M N Kvantovaya Elektron. (Moscow) 3 998 (1976) [Sov. J. Quantum Electron. 6 534 (1976)]
- 5. Ovsyankin V V, Feofilov P P Pis'ma Zh. Tekh. Fiz. 4 471 (1966) [Sov. Tech. Phys. Lett. 4 190 (1966)]
- 6. Mokeeva G A, Reishakhrit A A, Lun'kin S P Zh. Prikl. Spektrosk. 5 730 (1966)
- 7. Bilak V I, Zverev G M, Karapetyan G O, Onishchenko A M Pis'ma Zh. Eksp. Teor. Fiz. 14 301 (1971) [JETP Lett. 14 199 (1971)]
- 8. Antipenko B M, Dmitryuk A V, Zubkova V S, Karapetyan G O, Mak A A Izv. Akad. Nauk SSSR Ser. Fiz. 37 466 (1973)
- 9. Jackson S D, King T A IEEE J. Quantum Electron. 34 1578 (1998)
- 10. Alekseev N E, Gapontsev V P, Zhabotinskii M E, Kravchenko V B, Rudnitskii Yu P Lazernye Fosfatnye Stekla (Laser Phosphate Glasses) (Moscow: Nauka, 1980) p. 135
- 11. Denker B I, Osiko V V, Prokhorov A M, Shcherbakov I A Kvantovaya Elektron. (Moscow) 5 847 (1978) [Sov. J. Quantum Electron. 8 485 (1978)]
- 12. Arbuzov V I, Galant E I, Lunter S G, Mironov A N, Fedorov Yu K Fiz. Khim. Stekla 4 439 (1978)