
Abstract. It is shown theoretically that diffraction leads to a
difference between the losses and phase velocities of coun-
terpropagating waves in ring gas lasers. This is the cause of
the appearance of the amplitude and frequency nonreci-
procity of these waves.

1. Introduction
The diffractive frequency instability of a ring gas laser is one
of the causes of the drift of the zero point (i.e. of the existence
of an initial difference between the frequencies of counter-
propagating waves in a laser at rest in the absence of
nonreciprocal devices) in a laser gyroscope. Although the
splitting of the counterpropagating wave frequencies on
stopping down of the laser beam by a razor's edge or a needle
was first observed by Cheo and Cooper [1], the study of this
phenomenon and of its causes has continued up to the
present time [2 ^ 7].

It has been suggested [7] that the appearance of the ampli-
tude and frequency nonreciprocity is associated with the
difference between the losses of the counterpropagating
waves, which in the author's view arises owing to the cavity
misalignment when the aperture is shifted at right angles
to the beam. The hypothesis of the inequality of the fre-
quency-dependent losses of counterpropagating waves was
put forward by Garside [8], who made an experimental
attempt to achieve unidirectional lasing in a ring laser. The
possibility of implementing a unidirectional regime in a laser
with an unstable cavity was pointed out also in a theoretical
study [9], where it was demonstrated that the spatial config-
urations of counterpropagating waves are significantly
different in such cavities.

The frequency and amplitude nonreciprocities were
studied experimentally in a ring He ^Ne laser operating at
the wavelength l � 3:39 mm, both on the basis of the pure
20Ne isotope and on the basis of a mixture of isotopes
[4, 7]. Lasers with three-mirror cavities having approximately
equal values of the parameter g and generating a single lon-
gitudinal-mode were used in these investigations. A shift of
the aperture placed in the cavity perpendicularly to the
beam was accompanied by the appearance of a counterpro-
pagating-wave frequency splitting: 2Do � or ÿ ol. The
authors [4, 7] studied the dependence of the intensity Ij

( j � r, l ) and of the frequency nonreciprocity Do on the
detuning of the cavity frequency from the centre oab of the
atomic-transition line. It was established that the frequency
and amplitude nonreciprocities are maximal near the line
centre and vanish at the limits of the lasing range, where
the behaviour of the intensities of these studies proved to
be somewhat different.

It was demonstrated in Ref. [4] that, for a symmetrical
disposition of the intensity curves relative to oab, the coun-
terpropagating wave frequencies were equal and the
appearance of asymmetry was accompanied by the appear-
ance of beats of Do. Under these conditions, a change in
the sign of oÿ oab was always accompanied by a change
in the sign of 2DI � Ir ÿ Il. In Ref. [7], the dependences of
the counterpropagating wave intensities on the detuning
were asymmetric for Do � 0, but they had the same profile.
After introduction of an aperture, the dependences acquired a
different asymmetry (without a change in the sign of Dl ) and
the wave with the greater asymmetry had the higher fre-
quency.

It is striking that the curves presented in Ref. [7] are in
many respects similar to those obtained in Ref. [10], where
a device giving rise to nonidentical losses (amplitude nonreci-
procity) was used. The dependences presented in Ref. [4]
repeat the formof the curvesobtained inRef. [11] for nonident-
ical gains (phase nonreciprocity) of the counterpropagating
waves.

The results of studies reported in Refs [10, 11] can in the
main be described quite satisfactorily in terms of the plane-
wave model [12, 13], where the dependences of the intensities
Ij and of the frequencies oj of the counterpropagating waves
on the frequency detuning relative to the central transition
frequency oab are described by the equations
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The equations for the lth wave are obtained by replacing the
subscript r by l. Here, O is the cavity frequency; L is the cavity
length; H is the length of the cell with the active medium;
aj � KHZ 00(zj) is the linear gain; ej represents the linear
losses of the jth wave. The function Z � Z 0 � iZ 00, the
gains K, and the self-saturation (b � b 0 � ib 00 ) and cross-
saturation (y � y 0 � iy 00 ) coefficients are listed in Appen-
dix 1. Fig. 1 illustrates such functions for the following
parameters occurring in these functions: l � 3:39 mm,
ga � 16 MHz, gb � 24 MHz, gab � 100 MHz, and Doppler
broadening ku � 300 MHz. These values will also be used in
all subsequent calculations.
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In the absence of the nonreciprocity, we have Ir � Il �
Z=(b 00 � y 00 ). In the presence of the amplitude and/or phase
nonreciprocity in the cavity, an instability region is observed
near the lasing line centre.This can easily be shown, for exam-
ple, in the case where the counterpropagating wave losses are
different.

After introducing the notation Z � (Zr � Zl)=2, DZ �
(Zr ÿ Zl)=2 and putting br � bl and yr � yl, we obtain the
following equation from Eqn (2):

Ir;l � Z
1

b 00 � y 00
� DZ

1
b 00 ÿ y 00

� I � DI , (3)

showing that the functions Ij(oÿ oab) have a discontinuity
at the frequencies characterised by b 00 � y 00 (Fig. 1), but the
sum of the intensities remains a smooth function. This has
been confirmed experimentally in many studies. Depending
on the losses, either both waves or (by virtue of the strong
cross-saturation) a wave with the greater losses may be gen-
erated within this region.

As a result of elimination of the nonreciprocity, both
waves exist in the entire lasing region [10, 11], i.e. the presence
of a region of instability indicates the amplitude or phase non-
reciprocity. Figs 2 and 3 give the results of a numerical
calculation of the normalised intensities i and of the differ-
ences Do between the frequencies of the counterpropagating
waves [the systems of Eqns (1) and (2)] (Fig. 2 represents the
experiment reported in Ref. [10] and Fig. 3 that described in
Ref. [11]).

Similarity of the dependences of i and Do on the detun-
ing from the resonance frequency, reported in Refs [4] and
[11] as well as in Refs [7] and [10], may indicate operation
of the samemechanism of the appearance of nonreciprocities,

but in the absence of nonreciprocal elements it cannot be
accounted for in terms of the language of the Lamb equa-
tions. In Ref. [7], it is simply postulated that the difference
between the losses arises on misalignment of the cavity
and manifests itself solely through the real part of the
cross-saturation. The asymmetry of the Lamb dip, observed
in the dependence of 2I � Ir � Il on oÿ oab, also cannot be
described by the plane-wave model.

We shall show that, in a laser cavity containing at least
one spherical mirror and an aperture, the losses and the phase
velocities of the counterpropagating waves are indeed differ-
ent.We shall use an approach, different from that adopted in
Refs [14] ^ [16], in order to find the natural oscillations of a
cavity containing a transversely inhomogeneous nonlinear
active medium and an aperture. This approach is based on
the standard asymptotic expansion procedure [17, 18]. How-
ever, in contrast to Ref. [14], we shall take into account the
multiplicative effect of the diffraction and saturation on
the natural oscillations of the cavity.

We shall show that the radial distribution of the saturated
gain forms an extended amplitude ^ phase corrector, the opti-
cal power and the stopping down properties of which are
proportional to the induced transverse inhomogeneity
parameter Wj � 2L=kw 2

j , where k � o=c ; wj are the half-
widths of the transverse wave distributions. Since they are
different in an inhomogeneous cavity, the effective optical
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Figure 1. Dependences of the real (a) and imaginary (b) parts of the coef-
ficients Z, b, and y on the detuning.
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Figure 2. Dependences of the intensities of the counterpropagating waves
( 1, 2 ) (a) and of the frequency nonreciprocity (b) on the detuning, obtai-
ned in the plane-wave model for a cavity containing a device generating
different counterpropagating wave losses; er � 1, el � 1:002, KH � 1,
L � 1 n.
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power and the size of the induced-corrector aperture are also
different for the opposite directions. This gives rise to a non-
reciprocal frequency-dependent change in the parameter g for
counterpropagating waves, so that one can in fact explain the
frequency-dependent inequality of their losses and phase
velocities, and hence the inequality of the frequencies and
intensities. The inequality of the counterpropagating wave
losses leads to the possibility of existence of a region of uni-
directional lasing. We shall also demonstrate that the losses
may decrease abruptly at the lasing threshold.

An allowance for the multiplicative effect of the active
medium and of the aperture explains the asymmetric nature
of the losses and hence also of the intensities, relative to the
central transition frequency.

2. Principal equations. Numerical calculations
We shall follow the formulation of the problem in Ref. [14]
and consider a stable ring optical cavity with a perimeter L
formed by an arbitrary number of mirrors (Fig. 4). The cavity
contains an aperture with a Gaussian transmission coeffi-
cient. There is no retroreflection from the cavity components.

If a monochromatic wave propagates in each direction,
we have a field of counterpropagating waves in the quasi-
optical approximation:

Ej�x, y, z� � E0jcj�x, y, z�

� exp
�
ikj

� z
0
nzj�~z� d~z

�
� c:c: , (4)

where kj � oj=c ; E0j are the constant amplitudes of the

counterpropagating waves; cj(x, y, z) are the functions
which depend slightly on the coordinates. Following the
standard asymptotic expansion procedure [14], we obtain
for each wave a system of equations for nonlinear refractive
indices of the active medium

nzr�z� � 1� 1
k
K�ÿZ � brir�z� � ylil�z�� (5)

and for slow amplitudes of the counterpropagating waves�
q2

qx2
� q2

qy2
� 2inzj�z�

q
qz
� nxj�z�x2 � nyj�z�y2

�
cj�r� � 0 (6)

with the coefficients nzj [Eqn (5)] and

npr�z� � ÿ2KH�brWpr�z�ir�z� � ylWpl�z�il�z�� (7)

(p � x, y). The dimensionless intensities along the cavity axis
to be determined

ij � Ij fj�z� , fj�z� � jmxjmyjjÿ1exp
�
ÿ 2kj

� z
0
n00zj�t� dt

�
(8)

are slow functions of the longitudinal coordinate z. The
expression for Ij is given by formula (A1.1).

Eqn (4) is supplemented by the conditions for the trans-
formation of the field of a counterpropagting wave when
the latter passes through the corresponding cavity compo-
nents and also by the conditions for the reproducibility of
the fields after a round trip through the cavity.

The distribution of the fields of the zeroth-mode counter-
propagating waves is sought in the following form:

cj�x, y, z� � cxj�x, z�cyj�y, z� ,

cxj�x, z� � exp
�
� Pxj �

ix2

2qxj

�
� 1��������

mxj
p exp

ix2

2qxj
: (9)

A similar formula can be written also in the coordinate plane
yz. The parameters qÿ1 and mpj are transformed in accord-
ance with the law

qÿ1pj �z� �
cpj�z� � dpj�z�qÿ1pj �0�
apj�z� � bpj�z�qÿ1pj �0�

,

mpj � apj � bpjqÿ1pj �0� � p � x, y� :
(10)

Here, qpj(0) is the parameter qpj in the z � 0 section.
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Figure 3. Dependences of the intensities of the counterpropagating waves
( 1, 2 ) (a) and of the additional frequency nonreciprocity (b) on the detu-
ning, obtained in the plane-wave model for a cavity containing a device
ensuring different frequencies of the counterpropagating waves;
do � 0:5 MHz, L � 1 m,KH � 1.
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Figure 4. Schematic diagram of a ring cavity in the form of an equivalent
periodic waveguide [zd is the position of the aperture, zm is the position of
the mirrors (m � 1, 2, . . . , M ), H is the length of the cell with the active
medium, and L is the perimeter of the cavity].
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The matrix for the transformation of the beam param-
eters on passage through a longitudinally and transversely
inhomogeneous medium has been published [16]. In view
of its complexity, the `short tube' approximation is used to
elucidate the physical cause of the nonreciprocity. Physi-
cally, this approximation means that in the interval
h � H=L the changes in nzj(z) and npj(z) along the z
axis are negligible and these functions may be replaced
by their values at the point z0 when the familiar matrix
[19, 20] for a transversely inhomogeneous medium may
be used (see Appendix 2). The question of the influence
of the extent of the active medium will be discussed in a
separate communication.

Having determined the elements Apj, Bpj, Cpj, Dpj of the
matrix representing a round trip of the counterpropagating
waves through the cavity (here, the ABCD matrix represents
the product of the abcd matrices describing the individual
components in the cavity), we find Gpj � 1

2 (Apj �Dpj) and
then, by using the periodicity conditions, we find the param-
eters

qÿ1pr; l � �
Dpj ÿApj

2Bpj

� i
�1ÿGpj�1=2

Bpj

� Spr;l � iWpr;l , (11)

characterising the curvature spj (Spj � spjL) of the wave-
fronts and their half-width wpj (Wpj � 2L=kw 2

pj). Having
calculated the complex magnification of the beam mpj

[expression (10)] along the cavity length, taking into account
expression (11), we can determine the propagation constants
for the counterpropagating waves:

Gj �
X
p�x;y

Gpj � G 0j � iG 00j , Gpj � i ln�Gpj � �G 2
pj ÿ 1�1=2� :

(12)

The field periodicity conditions [Eqn (4)], which we shall
formulate as [14]

Gj � kjL
�1
0
n
�3�
zj dz � 0 , nzj � 1� �dn 0zj � idn 0zj�=kj ,

(13)

lead to the phase and amplitude balance equations

G 0j � kjL�1� dn 0zj h� � 0 , G 00j � dn 00zj h � 0 , (14)

which define the lasing intensities and frequencies; here, G 0j
are the phase shifts additional to the geometrical-optical
shift and G 00j are the counterpropagating wave losses in a
cavity containing a nonlinear active medium.

Fig. 5 presents the results of a numerical calculation of
the lasing intensities. Evidently, the total dimensionless
intensity 2i � ir �il has a dip near the line centre, typical
of the intensity of radiation from a linear laser. The asym-
metry of the curve is clearly seen and i is greater in the
low-frequency range (for o < oab), which agrees well with
the results of measurements reported in Ref. [7]. The depend-
ence of each intensityir;l on the detuning is also asymmetric.
This asymmetry is different for a counterpropagating wave,
which also agrees with Ref. [7]. The appearance of the
amplitude nonreciprocity is accompanied by the frequency
nonreciprocity.

An asymmetry of the region of instability is also observed.
The mode with the lower intensity is preferred within this

region. On increase in the losses, unidirectional generation
of a weak mode may occur, as is in fact noted in Ref. [21].
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Figure 5. Dependences of the intensitiesir (1 ) andil ( 2 ) of the counter-
propagating waves and of their sum ( 3 ) on the detuning, obtained in the
Gaussian-beam model for a three-mirror cavity with one spherical mirror
having the radius R � 1:2 m and a Gaussian aperture with the half-width
ax � ay � 0:4 mm; zd � 0:5 m, L � 1 m, andKH � 1:5.
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3.Weak perturbation approximation
We shall demonstrate analytically that the difference
between the frequencies and intensities of the counterpropa-
gating waves results from the difference between their losses
and phase velocities. The calculations will be made for a ring
laser, the cavity of which has an arbitrary number of mirrors
and is illustrated schematically in Fig. 4. The centre of the
active medium layer is chosen as the initial section, which
makes it possible to select an explicit form of the matrix
A0pB0pC0pD0p corresponding to the empty cavity (without
the medium and aperture). In the weak cavity-perturbation
approximation (npj < Np < 1), we shall describe Gj [expres-
sion (13)] by

Gpj � Gp0 � dGpj , Gp0 � i ln
�
gp � �g 2p ÿ 1�1=2�

ÿ �arccos gp � 2pq� , dGpj � dG 0pj � iG 00pj ,

where gp is the parameter g of the unperturbed cavity; q is
the longitudinal mode index; dG 0pj and G 00pj are defined in
Appendix 2.

Having substituted npj [expression (8)] in expression
(A2.5), we easily find that in the case of a weak cavity pertur-
bation the counterpropagating wave losses are given by the
following expression which takes into account the terms
due to the transverse inhomogeneity of a nonlinear medium:

er � G 00r � ed ÿKH
�ÿ
b 00rirWr � y 00l ilWl�Wÿ1

0p m1p

� ÿb 0rirWr � y 0lilWl

�
Wÿ1

0p Npm2p
�
, (15)

where

ed �
X
p�x; y

�
w0p

ap

�2
m3p

are the cavity losses introduced by a Gaussian aperture; w0p is
the beamhalf-width in the reference section, deduced ignoring
the perturbation. The parameters mip (i � 1, 2, 3) are deter-
mined by the cavity geometry [see expression (A2.6)].

Zr � ir�b 00r u1r ÿ b 0ru2r� �il�y 00l u1l ÿ y 0l u2l� , (16)

or � Oÿ c

L
KH

�
ir�b 0ru1r � b 00r u2r� �il�y 0l u1l � y 00l u2l�

�
: (17)

Here, Zj is the relative excess of the unsaturated gain over the
linear losses defined by Eqn (1);

O � c

2L

X
p�x;y

Gp0

is the frequency for the unperturbed cavity;

u1r; l � u1 �
X
p�x;y

m1pDWp

W0p
;

(18)

u1 � 1ÿ
X
p�x;y

m1p

�
1� dWp

W0p

�
;

u2r; l � u2 �
X
p�x;y

m2pNpDWp

W0p
;

(19)

u2 �
X
p�x;y

m2pNp

�
1� dWp

W0p

�
:

We expressed the parameters Wpj [expression (11)] in the
formWpr;l �W 0p� dWp � DWp,where dW is responsible for

the reciprocal and DW for the nonreciprocal deformation of
the fields of the counterpropagating waves by the transverse
inhomogeneity of the medium and by the aperture. In the case
of a weak perturbation of the cavity, dW is determined
mainly by the real part of the refractive index, i.e. it exhibits
an odd dependence on the detuning. On the other hand, DW
is determined by the position and dimensions of the aperture
and also by the imaginary part of the refractive index, and its
frequency-dependent component exhibits an even depend-
ence on the detuning.

The intensities of the counterpropagating waves can be
found from system of equations (16) and they can be repre-
sented in the following form, taking into account
relationships (18) and (19):

ir � i� Di , il � iÿ Di ,

where

i � Z
1

�b 00� y 00�u1 ÿ �b 0 � y 0�u2
; (20)

Di � Z
X
p�x;y

DWp

W0p

�b 00 ÿ y 00�m1p � �b 0 ÿ y 0�m2pNp

�b 00u1 ÿ b 0u2�2 ÿ �y 00u1 ÿ y 0u2�2
: (21)

After substitution of these relationships in formula (15),
we find that the counterpropagating wave losses in a cavity
with a nonlinear medium are different:

er; l � e� De ,

where

De � ÿKHi
X
p�x;y

DWp

W0p

�
1�WpDi

iDWp

�
���b 00 ÿ y 00�m1p � �b 0 ÿ y 0�m2pNp

�
, (22)

WpDi
iDWp

� Wp

W0p

�b 00 ÿ y 00�m1p � �b 0 ÿ y 0�m2pNp

�b 00 ÿ y 00�u1p ÿ �b 0 ÿ y 0�u2p
: (23)

It follows from these relationships that De is proportional to
the lasing intensity and is determined by the nonreciprocal
deformation of the distributions of the counterpropagating-
wave fields. The reciprocal part of the losses is given by

e � ed ÿKHi
X
p�x;y

Wp

W0p
��b 00 � y 00�m1p

� �b 0 � y 0�m2pNp� : (24)

Taking into account expressions (20) and (21), it is easy to
deduce from Eqn (17) that

or ÿ ol � ÿ�aÿ e� c
2L

�
X
p�x;y

DWp

W0p
Npm2pu1p

�b 0 ÿ y 0�2 � �b 00 ÿ y 00�2
�b 00u1 ÿ b 0u2�2 ÿ �y 00u1 ÿ y 0ul�2

:

(25)

We have thus established that an inequality of the trans-
verse counterpropagating-wave field distributions, resulting
from diffraction by the aperture and by the active medium,
leads to an inequality of the saturation of the transverse com-
ponents of the complex refractive indices [expression (7)] for
the counterpropagating waves. These indices are responsible
for the lens-like and stopping-down properties of the active
medium. In a cavity with spherical mirrors, this leads to
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an inequality of the nonlinear losses and phase velocities of
the counterpropagating waves, which induces the frequency
[expression (25)] and amplitude [expression (21)] nonreci-
procities. These nonreciprocities are complex functions of
the parameters which determine the cavity geometry and
the properties of the active medium. The amplitude nonreci-
procity [expression (21)] is an even (although asymmetric)
function of the detuning, whereas the frequency nonreciproc-
ity [expression (25)]may exhibit an even or anodd dependence
on oÿ oab. The nature of the dependence is determined by
the cavity geometry and by the parameter n1 [set of expres-
sions (18)].

The difference between the experimental curves presented
in Refs [4] and [7] is associated, in our view, with the differ-
ence between the diameters of the discharge tubes (3 mm in
Ref. [4] and 6 mm in Ref. [7]). Indeed, the linear effect of the
gas lens, arising owing to the transversely inhomogeneous
distribution of the perturbation density (the effect of this
mechanism has been investigated in Ref. [16]) and because
of the influence of the misalignment of the cavity, manifests
itself more strongly in tubes of small diameter. Three-mirror
cavities were used in the investigations described in Refs [4]
and [7].

A cavity with an odd number of mirrors is known to be
immune to misalignment [19]. A shift of the aperture at right
angles to the plane of a cavity with a wide tube is equivalent to
the use of a smaller symmetrical aperture. However, for a
small diameter of the discharge tube, even slight
misalignments may necessitate allowance for the Langmuir
flow [22], the existence of which creates an additional phase
nonreciprocity.The predominance of the phase mechanism of
the nonreciprocity has in fact been observed earlier [4],
although it is the difference between the counterpropagating
wave losses that plays the main role, as reported in Ref. [7].

Expression (20) describes the Lamb dip profile and shows
that thedepthof thedipof the total-intensity curve 2i (Fig. 5),
observed near the line centre, depends on the degree of satu-
ration of the losses. A `saturation aperture' diminishes the
losses defined by expression (24) and thereby influences the
depth of the dip in the intensity curve [expression (20)] (via
n1p). The term proportional to n2p [set of expressions (19)]
describes the dip asymmetry associated with the asymmetric
nature of the total losses [expression (24)]: the `saturation
lens' alters the transverse distributions of the counterpropa-
gating wave fields in accordance with the dispersion law, by
virtue of which the losses on the aperture acquire an addi-
tional component which is odd in terms of the detuning.
The influence of the nonlinear lens on the losses manifests
itself solely when account is taken of the multiplicative effect
of the aperture and of the transverse inhomogeneity of the
medium on the natural cavity oscillations.

Appendix 1
Calculations of the polarisation of a medium consisting of
two-level atoms, made adopting the standard approxima-
tions [12] of the third-order perturbation theory in terms
of the small parameter

Ij �
�ga � gb�d2jE0jj2

gagbgab�h
2 , (A1.1)

are reported above. Here, d is the dipole moment; gab is the
half-width of the homogeneous line of the a. b transition;
ga and gb are the half-widths of the levels a and b; j � r, l are

the counterpropagating wave indices; Pr(r) � (K� w)Er(r) is
the polarisation.

The linear part of the polarisability K of the medium is
defined by the following relationships:

2pK � ÿKZ�z�kÿ1 , K � 2pd 2N��hu�ÿ1 , (A1.2)

where

Z�z� � 2i
�1
0
exp �ÿr2 � 2irz� dr

is the plasma function;

z � oÿ oab

ku
� igab
ku

;

ku is the half-width of the Doppler profile, k is the wave
number.

The nonlinear part of the wave polarisability r is given by

2pw�3� � K 2id 2

k�h2ga

4

�ku�2

�
�1
0

dr1

�1
0

dr2

�1
0
dr3 exp

�
ÿ 2�r1 � r3��gab

ku
ÿ 2r2ga

ku

�
�
 
jE0rj2jcrj2 exp

�
ÿ 2k

�
n00zr dz

�
exp�ÿ�r1 ÿ r3�2
n

� 2ixr�r1ÿr3�� � exp�ÿ�r1 � r3�2 � 2ixr�r1 � r3��
o

� jE0lj2jclj2 exp
�
ÿ 2k

�
n 00zl dz

�n
exp

�ÿ �r1 ÿ r3�2

� 2ixrr1 � 2ixlr3
�� exp�ÿ�r1 � r3�2 � 2ixrr1 ÿ 2ixlr3�

� exp�ÿ�r1 � 2r2 � r3�2 � 2ixrr1 � 2ixrlr2 ÿ 2ixlr3�

� exp�ÿ�r1 � 2r2 � r3�2 � 2ixr�r1 � r3� � 2ixrlr2�
o!

�M�a!b� � 1
k
K

�
brIrjcrj2 exp

�
ÿ 2k

�
n00zr dz

�
� ylIljclj2 exp

�
ÿ 2k

�
n00zldz

��
: (A1.3)

Here M(a! b) is the previous expression in which ga has
been replaced by gb;

br � iZ
00 �zr� � 2i

gab
ku
�1� zrZ�zr�� ; (A1.4)

yr �
X4
t�1

yrt ; yr1 �
1� iD

2�1� D2� �Z�zr� � Z�zl�� ;

yr2 � ÿ
i
2D
�Z�zr� � Z��zl�� , (A1.5)

yr3 �
g
gab

p

4

X
n� a;b

jnnjÿ2
�
Z�z�n�rl �

ÿ 1
2
�
Z�zr� ÿ Z��zl�

�ÿ anyr2

�
;

(A1.6)

yr4 �
g
gab

p

4

X
n� a;b

jnnjÿ2
�
Z�zr�

�
1ÿ 2g2ab
�ku�2 nnn

�

ÿ Z�z�n�rl � �
2nngab
ku

�
;

(±1.7)
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zj � xj �
igab
ku
�j � r, l � ; z�a;b�rl � xrl �

iga;b
2ku

; (A1.8)

xj �
oj ÿ oab

ku
; xrl �

xr ÿ xl
2

; x � xr � xl
2
� Dgab

ku
;

n � D� i ; na;b � D� iaa;b ; aa;b � 1ÿ ga;b
2gab

; (A1.9)

p � gagb
g2

; g � ga � gb
2

:

Appendix 2
The matrix for a cavity with a Gaussian aperture and a
plane-parallel layer of a quadratically inhomogeneous active
medium of length h � H=L is given by

Apr Bpr

Cpr Dpr

� �
�

cosh
�������
npj
p h

2
1�������
npj
p sinh

�������
npj
p h

2�������
npj
p sinh �������

npj
p h

2
cosh �������

npj
p h

2

0BB@
1CCA

� 1 zd ÿ h
2

0 1

� �
1 0

2iNp 1

� �
1 ÿzd
0 1

� �
A0p B0p
C0p D0p

� �
(A2.1)

� 1 ÿ h
2

0 1

� � cosh
�������
npj
p h

2
1�������
npj
p sinh

�������
npj
p h

2�������
npj
p sinh �������

npj
p h

2
cosh �������

npj
p h

2

0BB@
1CCA :

The first matrix corresponds to a layer of the active medium
[19] of length h=2, the second to a free gap, the third to a
Gaussian aperture [Np � L=(ka 2

p )] (ap are the half-widths of
the aperture in the directions of the corresponding axes), etc.
The coefficients npj are defined by formula (7).

If the cavity-perturbing parameters are small
(npj<Np< 1), we can determine the parameter g of a cavity
by calculating the elements of the matrix (A2.1) to within
terms linear in npjh and quadratic in Np, taking into account
terms of the order npjhNp:

Gpj �
Apj �Dpj

2
� gp � dgp , gp �

A0p �B0p

2
,

dgp � iNp f5 � nphf3 � iNpnphf4 ,
(A2.2)

f1 � A0p ÿ C0pzd ,

f2 � B0p ÿD0pzd ,

f3 � 0:5�B0p ÿ 1
12C0ph

2� , (A2.3)

f4 � f2zd ÿ 1
12 f1h

2 ,

f5 � B0p�1� 2ztS0p ÿ z2dC0p=B0p� ,

S0p �
1

2B0p
�D0 ÿA0� :

Assuming that dgpgp=(1ÿ g 2p ) is small, we find the parameter
dGp � dG 0p � iG 00p which occurs in expression (22):

dG0pj � �2W0p�ÿ1
�
n0pjhm1p ÿ n00phNpm2p

ÿ jgpj
�1ÿ g2p�1=2

N2
pW

ÿ1
0p

~f5p

�
, (A2.4)

G00pj � �2W0p�ÿ1�Npm3p � n00pjhm1p � n0pjhNpm2p� , (A2.5)
where

m1p � ~f3p�1� 2Wÿ1
0p

~f5p� ; m2p � ~f4p � 2Wÿ1
0p jgpj ~f3p ~f5p ;

m3p � ~f5p�1�NpW
ÿ1
0p

~f5p� ; W0p � �g2p ÿ 1�1=2=B0p ;
~fi � fi=B0p �i � 1, . . . , 5� : (A2.6)
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