
Abstract. The mechanism of the appearance of the dif-
fraction nonreciprocity of counterpropagating waves in a
ring gas laser is examined. Formulas were obtained for
the difference between their frequencies and intensities, the
dependences of which on the detuning agree with those
obtained earlier and with experiment. Explicit dependences
of the differences between the frequencies and intensities of
the counterpropagating waves on the cross sections of the
aperture and of the Gaussian beams incident on the latter
were found.

1. Introduction
The aimof the present study is the discovery of themechanism
of the diffraction nonreciprocity [1, 2] of counterpropagating
waves in a single-mode ring gas laser. It follows from the
experiments that there is a relationship between the splitting
of the lasing frequencies of the counterpropagating waves and
the inequality of their intensities [3 ^ 5]. Thus the frequency
nonreciprocity of the cavity is in essence of energy nature and
is associated with the nonreciprocal energy transfer between
counterpropagating waves. The relationship between the
amplitude and frequency characteristics of the lasing field is
described by nonlinear dynamic equations, by virtue of
which the saturation effects (the nonlinearity of the active
medium caused by the `self-interaction' of the field) should
play an active role in the establishment of the amplitude ^
frequency nonreciprocity.The experimentally observed direct
dependence of the splitting of the counterpropagating-wave
frequencyon the average continuous-lasing intensity indicates
directly the nonlinearity of the amplitude ^ frequency nonre-
ciprocity.

A theory of the diffraction nonreciprocity of the counter-
propagating waves of a ring laser has been developed [1, 2].
The diffraction splitting of the transverse structure of coun-
terpropagating waves was used as the cornerstone of the
theory. Such splitting leads to a nonreciprocity of the non-
linear polarisability of the medium for counterpropagating
waves, which in fact induces the amplitude ^ frequency split-
ting of the continuous single-mode lasing field. Analytical
studies, carried out for the lowest transverse mode TEM00q
yielded the following expression for the splitting of counter-
propagating-wave frequencies in a ring gas laser:

o1 ÿ o2 � ÿ
c

L

NdI
��b 00 ÿ y 00�2 � �b 0 ÿ y 0 �2�

b 00 ÿ y 00

� ÿ c

L

NdIjbÿ yj2
b 00 ÿ y 00

, (1)

where b � b 0 � ib 00; y � y 0 � iy 00 are complex self- and cross-
saturation coefficients (here and in Sections 6 and 7 the
primes are used to denote the real and imaginary parts of
complex parameters, whereas elsewhere in the text the primes
imply differentiation with respect to a spatial coordinate); I
is the average oscillator intensity; L is the cavity perimeter;
c is the velocity of light in a vacuum; Nd is a multiplier
determined by the transverse-field inhomogeneity effects.
The complex computational method, based on the expansion
of the diffraction distortions in the transverse modes of a
passive cavity, did not allow the determination of the ana-
lytical dependence of the coefficient Nd on the aperture size,
but numerical calculations yielded a qualitative agreement
with experimental data [3 ^ 5]. The dependence of the split-
ting Do on the difference jbÿ yj2 is a characteristic feature.

The problem in which the amplitude ^ phase continuous
lasing equations are obtained from the condition that the
fields at the `entry' to and `exit' from a ring cavity with a non-
linear active medium are identical in a round trip has been
investigated for the laser field [6]. According to the results
obtained [6], the diffraction splitting of the transverse struc-
ture of counterpropagating waves leads merely to the
inequality of their intensities but not to frequency splitting.
This paradoxical conclusion, essentially decoupling the fre-
quency nonreciprocity from the energy nonreciprocity, is in
our view associated with the incorrect construction of the
round-trip matrix of the active cavity in the above study
[6] and hence the consequent incorrect continuous lasing
equations. Despite this, the above study [6] is interesting
because it makes more acute the question of the mechanism
of the conversion of the spatial nonreciprocity into the ampli-
tude ^ frequency nonreciprocity.

It was shown in the present study that the nature of the
appearance of the spatial nonreciprocity and its relationship
with the energy nonreciprocity of the dynamic system play a
key role in this mechanism. Precisely this kind of relationship
arises in the stopping down of the field both by a slit and by an
induced aperture, i.e. by a transversely inhomogeneous non-
linear active medium. A specific feature of diffraction is that
it functions simultaneously also as a factor establishing the
state of the optical beam (its spatial structure) and an irre-
versible converter (dissipator) of the energy, the operation
of which depends on the transverse field distribution. As a
result of such mutual influence, the spatial structure becomes
incorporated in the energy ^ frequency field characteristics
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and hence in the continuous lasing equations. Since both the
diffraction and the nonlinearity are attributes of the laser,
the nonreciprocity caused by them may be regarded as
`immanent symmetry breaking' of the active cavity.

Like the earlier investigation [1, 2, 6], this study deals
with a single-mode ring gas laser having a Gaussian aperture
and a square-shaped active medium which does not distort
the spatial structure of the TEM00q mode (Fig. 1). The con-
tinuous (cw) lasing is considered in the dynamic aspect as
a fixed point of a discrete dynamic operator M̂ determined
by the ABCD matrix for the conversion of a Gaussian beam
in round trip through the cavity. In this interpretation, the
change in the field per pass (the cavity constant) behaves as
the Floquet index corresponding to the fixed point of the con-
version M̂. By considering a ring laser as a discrete dynamic
system, it is possible to discover the fundamental relationship
between the diffraction nonreciprocity and the energy irrever-
sibility caused by dissipation.

2. Gaussian beam in an active medium
Within the framework of the classical theory, an electric field
is described by the electrical induction vector D � E � 4pP,
where E is the field strength and P is the polarisation of the
medium. Under quasi-neutrality (HD � 0) conditions, the
vectors E and P obey the wave equation

DE � 4pH�HP� ÿ 1
c 2

q2�E � 4pP�
qt 2

� 0 : (2)

For single-mode cw lasing,

E � ~e�x, y, z� exp�ÿiot� � c:c: , (3)
P � ~p�x, y, z� exp�ÿiot� � c:c: .

The polarisation of an inhomogeneously broadened
gaseous medium can be represented in the following form
neglecting the transverse spatial dispersion [2]:

~p � K~e�x, y, z� � c:c: , (4)

where K � Kw=2pk is the polarisability of a nonlinear
medium in the active transition; k � o=c; K is the gain per
unit length of the medium; w � 1 is the dimensionless polar-
isability. For a beam with a diameter w and neglecting
quantities of the order of (kw)ÿ4, Eqn (2) is converted into
the scalar Helmholtz equation in the steady-state case:�

D� k 2�1� 2wKkÿ1��E � 0 , (5)

which assumes the following from in the Eikonal represen-
tation E � E0 exp�iC(x, y, z)�:

iDCÿ jHCj2 � k 2�1� 2wKkÿ1� � 0 : (6)

The diffraction aspects are described by the diffusion
term iDc. According to formula (6), its relative contribution
to the Eikonal is DC=k 2 � (1=kw)2. Having confined the
treatment to the lowest cavity mode, we represent the field
E in the form [7]

E � E�z� exp�iC�x, y, z; z0�� ,
(7)

C�x, y, z; z0� �
x 2Qx�z� � y 2Qy�z�

2
�
� z
z0

f�z� dz ,

where z0 is the position of the reference plane on the z axis;
f(z) is a complex function defined below. The complex func-
tions Qx and Qy are large (in terms of the modulus)
quantities and Qx, Qy ! const when k!1.

We substitute formula (7) in formula (6) and divide the
terms into those which do and do not depend on the trans-
verse coordinates. Having set the separation constant equal
to zero (since we are considering the TEM00q mode), we
obtain

i�Qx �Qy� � i f 0 ÿ f 2 � k 2�1� 2w�z�Kkÿ1�� � 0 , (8)

x 2
�
fQ 0x �Q 2

x ÿ i
Q 00x
2

�
� y 2

�
fQ 0y �Q 2

y ÿ i
Q 00y
2

�

� 1
4
ÿ
x 2Q 0x � y 2Q 0y

�2 ÿ 2w�x, y, z�Kk � 0 , (9)

where w(z), and w(x, y, z) are the corresponding components
of the polarisability

w � w�z� � w�x, y, z� : (10)

We shall seek the solution to formula (8) in the form of an
asymptotic expansion in terms of 1=k :

f�z� � kf0 � f1 �O�1=k� : (11)

On substituting formula (11) in formula (8), we find f0 �
(ÿ 1) j�1;

f1 � Kjwj�z� �
i

2kj
�Qx �Qy�

� Kjwj�z� �
i
2
�xxj � xyj� , j � 1, 2 , (12)

where

Kj � f0jK � �ÿ1� j�1K ; xpj � Qp=kj ; kj � f0jk � �ÿ1� j�1k ;
(13)

the index j is used to number counterpropagating waves.
Taking into account formulas (12) and (13), the expression
for the field (7) assumes the form of an astigmatic Gaussian
beam of the TEM00q mode of a ring cavity:

E �
X2
j�1

E0j�z0j�
exp�ikj

ÿ
xxjx

2 � xyjy
2�=2

�mxjmyj�1=2

� exp
�
i
� z
z0j

Kjwj dz� ikj�zÿ z0j�
�
, mpj �

� z
z0j

xpj dz ;
(14)

the complex parameters xx and xy determine the curvatures
(Sx, Sy) and the diameters (wx, wy) of the beams incident

1

2

3

Figure 1. Schematic illustration of a ring laser with a spherical mirror ( 1 ),
a Gaussian aperture ( 2 ), and a square-shaped active medium ( 3 ).
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on the aperture; xpj � Spj � 2i=(kjw
2
pj). The transition from

the `forward' to the `reverse' wave corresponds to the tran-
sition to the complex-conjugate variable x (x! x�), which
determines the spatial structure of the beam.

On substituting formulas (12) and (13) in formula (8), we
obtain the equation for the phase variables xx and xy, which
assumes the following form in the region x, y5w in which
we are interested:

x 2�x 0xj � x 2
xj �O��kw�ÿ2�	� y 2�x 0yj � x 2

yj �O��kw�ÿ2�	
ÿ2wj�x, y, z�Kjk

ÿ1
j � 0 : (15)

This is the parabolic approximation equation modified for
the case of a medium with a very weak polarisability
[K=k � (kw)ÿ2]. According to formula (14), the saturation
effects have a Gaussian structure with an aperture deter-
mined by the beam diameter w.

The polarisabilities of the medium assume the following
form for counterpropagating waves:

wj � w �1�j �
X2
n�1

bjnjEnj2

and hence lead to the distortion of the Gaussian field
structure [7]. The nonlinear medium is approximately quad-
ratic only for the paraxial part of the beam when
x5wx, y5w:

wj � w �1�j �
X2
n�1

wjn

�
1ÿ 2x 2

w 2
xn

ÿ 2y 2

w 2
yn

�
,

(16)

wjn � bjnjE�z0n�j2 exp
�
ÿ
� z
z0n

Re�xxn � xyn� dz

ÿ2
� z
z0n

KnImw �1�n �z� dz
�
:

When wnj4 (w=r)2 (r is the radius of the gas-discharge tube),
the effects due to the field-induced transverse inhomogeneity
of the medium predominate over effects associated with the
inhomogeneity of a linear medium [8]. In this case where
w5 r, this inequality holds even for fairly small pump
powers. Subsequently, in the calculation of the transverse
inhomogeneity of the medium, we shall indicate only the
nonlinear terms.

On substituting formula (16) in formula (15), we obtain
the equation for the parameters xpj which determine the
transverse structure of each of the counterpropagating beams
( j � 1, 2) in the paraxial region:

x 0pj � x 2
pj � spj�z� � 0 , spj�z� �

X
n�1; 2

4wjnKj

kjw
2
pn�z�

,

p � x, y : (17)

Formally, Eqn (17) has the form of the Riccati equation,
but each coefficient spj depends on xp1 and xp2. The param-
eter spj describes a distributed optical system, Respj playing
the role of a distributed ideal lens [9] and Imspj the role of a
distributed Gaussian aperture. The condition that the pertur-
bation of the beam of such a system is small is expressed by
the inequality���� ��l� spj dz

����5 jxpjj , (18)

where l is the length of the active medium.

3. Construction of a ray matrix for a lens-like
active medium
Substitution of x � q( lnm)=qz transforms Eqn (17) into (the
indices p and j are omitted)

m 00 � sm � 0 , m�z0� � 1 : (19)

Suppose that m1 and m2 are two linearly independent sol-
utions of this equation satisfying the conditions

m1�z0�
m 0

1�z0�

� �
� 1

0

� �
,

m2�z0�
m 0

2�z0�

� �
� 0

1

� �
: (20)

The solutions for m and x then assume the form

m � m1 �m2x0 � a� bx0 ,

(21)
x � m

0
1 �m 0

2x0
m1 �m2x0

� c� dx0
a� bx0

:

Here, x0 � x(z) is the value of x in the reference plane z � z0.
Formally, the solutions (21) are the usual ABCD solution for
a Gaussian beam [7].

We shall seek the functions m1 and m2 by the method of
successive approximations in terms of s. For s � 0, we have
m1 � 1 and m2 � zÿ z0. On substituting these solutions in
Eqn (19), we find

m 0
1 � ÿ

� z
z0

sdz , m 0
2 � 1ÿ

� z
z0

s�zÿ z0� dz 0 ,

m1 � 1ÿ
� z
z0

dz 0
� z 0
z0

s dz 00

� 1ÿ �zÿ z0�
� z
z0

sdz 0 �
� z
z0

s�z 0 ÿ z0� dz 0 , (22)

m2 � �zÿ z0� ÿ
� z
z0

dz 0
� z 0
z0

s�z 00 ÿ z0� dz 00 � �zÿ z0�

ÿ�zÿ z0�
� z
z0

s�z 0 ÿ z0� dz 0 �
� z
z0

s�z 0 ÿ z0�2 dz 0 ,

where the double integrals are converted into single integrals
with the aid of integration by parts. When condition (18)
holds, it is possible to confine the treatment to the approx-
imation (22), linear in terms of the intensity, in which the
beam parameters, entering into s [see formulas (16) and
(17)], are defined for a passive system (s � 0). The unimo-
dularity of the ABCD matrix is then retained in terms of the
same order of precision: D � ADÿ CB � m1m

0
2 ÿm 02m2 �

1�O(s 2). The complex character of matrix (22) indicates
irreversible losses due to light scattering by transverse
inhomogeneities of the medium.

We may draw attention to the fact that the matrices for
the passage of the counterpropagating waves ( j � 1, 2)
through the entire medium have the structure of the forward
and reverse matrices, for which

apj�spj� � dp3ÿj�spj� , dpj�spj� � ap3ÿj�spj� ,
(23)

bpj�spj� � ÿbp3ÿj�spj� , cpj�spj� � ÿcp3ÿj�spj� :

Indeed, assuming that the input (reference) plane of one
wave coincides in formulas (22) with the output plane of
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the counterpropagating wave, we obtain

ap2�sp2� � 1ÿ �z1 ÿ z2�
� z1
z2

sp2 dz�
� z1
z2

�zÿ z2�sp2 dz

� 1ÿ
� z2
z1

�zÿ z1�sp2 dz � dp1�sp2�

etc. At the same time, the difference between the coefficients
sp1 and sp2, caused both by the difference between the self-
and cross-saturation coefficients bnn and bjn , j 6� n, although
bnm � bij, bjn � bnj) and by the spatial nonreciprocity
(wp1 6� wp2), leads to failure by mutual transformations to
reflect the passage of counterpropagating waves through a
nonlinear active medium. As we shall see later, this fact
actually induces the amplitude ^ frequency nonreciprocity
of counerpropagating waves in the laser.

4. Boundary conditions on mirrors and apertures
In the simplest situation, abrupt changes in the Gaussian
beam on mirrors and apertures are determined by the boun-
dary conditions

xpj ! xpj � 2rpj ,
1
r
� kj
k
Rp coscpj � �ÿ1� j�1Rp coscpj ,

xpj ! xpj � 2iNpj ,
1
Npj

� kja 2
p ,

(24)

where Rp are the main radii of curvature of the mirror; cpj is
the angle of incidence of the j th wave on the mirror
(coscpj < 0); ap is the linear size of the aperture. The boun-
dary conditions indicated are described by the matrices

R̂ � 1 0
2r 1

� �
, N̂ � 1 0

2iN 1

� �
: (25)

For counterpropagating waves, the reflection and stopping-
down matrices [expressions (25)] are mutually reciprocal:

R̂2 � R̂ÿ11 , N̂2 � N̂ ÿ11 : (26)

The complex character of the stopping down matrix N̂
reflects the fact that the narrowing of the beam is accom-
panied by irreversible energy losses with a decrement
�w 2=a 2, where a is the maximum aperture size.

5. Discrete field dynamics in a ring laser
According to formula (14), the state of a Gaussian beam
along each transverse coordinate x, y is determined by
the complex phase variable x, which depends on the longi-
tudinal coordinate z as a parameter. Since the points z and
z� L are identical in a ring laser with a perimeter L, the
stationary field has a period L [E(x, y, z� L) � E(x, y, z)],
which is equivalent to the requirement of the L-periodicity
of the transverse structure and of the field on the cavity
axis:

x�z� L� � x�z� , E�0, 0, z� L� � E�0, 0, z� : (27)

Suppose that the transformation M̂ maps the point x(z)
onto the point x(z� L): x(z� L) � M̂x(z). The periodicity
condition (27) then defines x(z� L) as a fixed mapping point
M̂:

x � M̂x , (28)

for which the parameter

m � exp
�
ÿ 1
2

� L
0
x dz

�
� exp�LL� (29)

plays the role of a multiplier, whereas L is the Floquet index
of the fixed point [10].

The steady-state condition (27) for each counterpropagat-
ing beam can be written in the form

�Lxj � Lyj�L� i
� L
0
Kjwj�z� dz� ikL � 2pqi� e , (30)

where e represents the phenomenological losses on the cavity
components (absorption in mirrors and other components).
The complex equation (30) describes the amplitude ^ phase
balance necessary for the establishment of a steady state in
the operation of the laser. The real part of Eqn (30) ensures
the steady-state nature of the laser output intensity, whereas
the imaginary part ensures the steady-state nature of the
laser-field frequency. In essence, Eqn (30) is the expression
of the local dynamic steady-state condition in the `spatial'
representation. We may note that the Floquet indices which
enter into it are not local quantities, but characterise the
operation of the cavity as a whole.

For a cavity which does not distort the Gaussian structure
of the TEM00q mode, the point map M̂ is determined by the
unimodular ABCD transformation of the Gaussian beam [7]:

x � C �Dx
A�Bx , m � A�Bx , (31)

whence we have the following expressions for the fixed point
[formula (28)], its multiplier, and the Floquet index [for-
mula (29)]:

Bx � DÿA
2
� i
ÿ
1ÿG 2�1=2 , m � G� i

ÿ
1ÿG 2�1=2 ,

LL � 1
2i
arccosG , G � A�D

2
:

(32)

The quantity m is the eigenvalue of the ABCD matrix of the
cavity, which thus plays the role of the `monodromy operator'
of the point map M̂.

A limit cycle, a piecewise-continuous closed curve
(Fig. 2), corresponds to the fixed point (31) in the phase plane
of the beam (Rex, Imx). Its continuous sections reflect
changes in the field between the cavity components and are
determined by the matrices (21) and (22) (for the empty sec-

ÿ0.015 ± 0.010 ± 0.005 0 0.005 0.010 Re x

0.015

0.020

0.030

Imx

0.010

1

2

4

5

0.025
3

Figure 2. Phase portrait of the counterpropagating waves in limit cycles
for a passive cavity without an aperture ( 1 ) and with an aperture ( 2, 3 )
and also for an active cavity with an aperture ( 4, 5 ).
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tions, s � 0). The discontinuities in the phase path corre-
spond to abrupt changes in the field on the mirrors
(horizontal jumps) and apertures (vertical jumps). The limit
cycle in Fig. 2 represents a steady-state field in a ring cavity
with one mirror and one Gaussian aperture [formula (25)],
between which the active medium is placed. According to for-
mula (14), the phase variables xj for counterpropagating
waves are complex conjugates: Imx1 � ÿImx2. However, it
is more convenient to plot phase paths on the phase plane
(Rex, jImxj) � (Rex1, Imx1) � (Rex2,ÿImx2).Under these
conditions, the limit cycle for stable cavities is always located
above the abscissa (Rex) and the distance from it charac-
terises the degree of stability of the cavity. The condition
that the nonlinear perturbations in the beam structure
defined by formula (18) are small requires that the point
on the phase plane determined by the left-hand side of
formula (18) should be much closer to the origin of coordi-
nates (x � 0) than to the phase path of the beam.

In the absence of an aperture, the limit cycles jImxj �
f(Rex) corresponding to counterpropagating waves coincide
and only the directions of the round trip through them are
different (curve 1 inFig. 2).The fixedpoints xj [equation (31)]
for counterpropagating fields are then complex-conjugate
quantities for each value of z.

In the presence of an aperture, the phase curves are split.
This corresponds to the splitting of the spatial structure of the
counterpropagating waves at each point in the cavity. The
relative splitting is jDxpj=xpjj � w 2

pj=a
2
pj. However, the ampli-

tude ^ phase balance [formula (30)], which determines the
steady-state lasing parameters, includes not the fixed points
xj themselves but their Floquet indices, determined (by virtue
of unimodularity) solely by the trace of the ABCD matrix of
the cavityö the `monodromy operator'. As in a cavity with
an active medium linear in terms of the field, in a passive
cavity the `monodromy operators' of counterpropagating
waves are mutually reciprocal (M̂2 � M̂ ÿ1

1 ) and hence the
multipliers in the Floquet index are equal. This leads to the
amplitude ^ frequency reciprocity of the ring cavity at the las-
ing threshold [2].

6. Conditions for the appearance of the
amplitude ^ frequency nonreciprocity in the laser
By subtracting the balance equations (30) for counterpropa-
gating waves from one another and taking into account the
reciprocity of the laser at the lasing threshold (I � 0), we
obtain a complex equation for the balance of nonreciproc-
ities:

�bÿ y��I1W1 ÿ I2W2� � �k1 ÿ k2�L � 0 , (33)

where

b � bjj ; y � yji ; Wj �W0j �Wgj ; j, i � 1; h; 2 � j 6� i� ;

W0j � K
� l
0

wx�lj�wy�lj�
wx�z�wy�z�

exp
ÿ
Kz Imw �1�� dz ; (34)

Wgj �Wgj
0 � iWgj

00 � 1
2

X
p�x;y

qGpj=q�bpjIj�
�1ÿG 2�1=2

����
I�0

;

Gpn is half the trace of the corresponding active-cavity
matrix.

We shall examine the conditions under which the frequen-
cies of the counterpropagating waves are identical. For k1 �
k2, we obtain from Eqn (33) (bÿ y )(I1W2 ÿ I2W1) � 0,

which holds either for b � y or for I1=I2 � W2=W. Since
the intensities I1 and I2 are real quantities, the last equation
requires that W 00

1 W
0
2 ÿW 0

1W
00
2 � 0. These conditions ensure

the amplitude ^ frequency reciprocity of a single-mode laser,
so that failure of these conditions leads to the splitting of the
counterpropagating-beam frequencies of a single mode:

jDkLj � jbÿ yjjW 00
1 W

0
2 ÿW 0

1W
00
2 jI

� jbÿ yjjW 00�W 0
1 ÿW 0

2 �jI , (35)

whereW 00 � (W 00
1 �W 00

2 )=2; I is the average lasing intensity.
According to expression (35), for the reciprocal linear gain
the necessary and sufficient conditions ensuring the splitting
of the counterpropagating-wave frequencies of a single mode
are a difference between the self- and cross-saturations
[(bÿ y )I 6� 0], the presence of diffraction losses (W 00 �
W 00

g � w 2=a 2 6� 0), and different changes in the sizes of the
counterpropagating-beam spots along the amplification
direction (W 0

1ÿW 0
2 6� 0). The difference W 0

1 �W 0
2 is deter-

mined both by the asymmetry of the disposition of the
medium relative to the counterpropagating-beam waists
and by the difference between the sizes of the waists caused
by diffraction. If the medium is located asymmetrically rel-
ative to the waist of a beam unperturbed by the aperture
(Fig. 1), then jDkLj � jbÿ yj(w 2aÿ2)I; otherwise jDkLj �
jbÿ yj(w 2aÿ2)2I.

7. The differences between the frequencies and
intensities of counterpropagating waves
Having added together the real parts of Eqns (30) for coun-
terpropagating waves and having separated the real and
imaginary parts in the difference equation (33) from one
another, we obtain

�b 00 ÿ y 00�F1 � �b 0 ÿ y 0�F2 � 0 , (36)
�b 00 ÿ y 00�F2 ÿ �b 0 ÿ y 0�F1 � �k1 ÿ k2�L ,

2a � �b 00 � y 00��I1W 0
1 � I2W 0

2� � �b 0 � y 0��I1W 00
1 � I2W 00

2 � ,
(37)

where

F1 � I1W 0
1 ÿ I2W 0

2 ; F2 � I1W 00
1 ÿ I2W 00

2 ;

a is the excess of the nonlinear gain per pass through the
cavity relative to the lasing threshold. The first equation of
the system (36) establishes the equality of the nonreciprocity
of the relative dissipation in the medium (the first term) and
on the aperture (the second term). This is due to the non-
reciprocal deformation of the spots of the beams incident on
the aperture, arising as a consequence of the nonreciprocal
effect of the induced gas lens (Res1 6� Res2). We emphasise
that the decrement of the field attenuation on the aperture is
not a local characteristic determined exclusively by the aper-
ture parameters. It depends on the state of the incident beam
(its diameter), which is formed by the entire cavity and par-
ticularly by the nonlinear medium.

The quantities entering into the second (phase) equation
of the system (36) are essentially nonlocal because they
characterise the nonreciprocity of the phase velocities of
counterpropagating waves in the cavity. The second term
describes the nonreciprocal curvature of the wavefront under
the influence of the distributed gas lens. The first term has a
diffraction nature, the source of which is the curvature of the
rays and their interference, arising as a result of the stopping
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down of the field by the nonlinear medium and the slit. After
introducing

I � I1 � I2
2

, DI � I1 ÿ I2
2

, (38)

we find from Eqns (36) and (37) expressions for the ampli-
tude ^ frequency splitting of the counterpropagating waves
and for the average laser-radiation intensity:

DI�ÿ a
2
1
A

��b 00 ÿ y 00��W 0
1 ÿW 0

2� � �b 0 ÿ y 0��W 00
1 ÿW 00

2 �
�
,

o1 ÿ o2 �
c

L

1
A

a
��b 0 ÿ y 0�2 � �b 00 ÿ y 00�2�

��W 00
1 W

0
2 ÿW 0

1W
00
2 � , (39)

I � a
2
1
A

��b 00 ÿ y 00��W 0
1 �W 0

2� � �b 0 ÿ y 0��W 00
1 �W 00

2 �
�
,

where

A � �b 00 2 ÿ y 00 2�W 0
1W

0
2 � �b 0 2 ÿ y 0 2�W 00

1 W
00
2

��b 0b 00 ÿ y 0y 00��W 00
1 W

0
2 �W 0

1W
00
2 � :

When the cavity is tuned precisely to the centre of the gain
line (b 0 � y 0 � 0), we obtain

I1 ÿ I2 �
a�W 0

2 ÿW 0
1�

2�b 00 � y 00�W 0
1W

0
2
,

o1 ÿ o2 �
c

L

a�b 00 ÿ y 00��W 00
1 W

0
2 ÿW 0

1W
00
2 �

�b 00 � y 00�W 0
1W

0
2

,

I � a�W 0
2 �W 0

1�
2�b 00 � y 00�W 0

1W
0
2
:

As a consequence of the incorrect calculation of the pass
matrix in a nonlinear active medium, it was postulated in
Ref. [6] that F2 � 0, which leads to F1 � 0 by virtue of for-
mula (36) and hence to full energy ^ frequency reciprocity
of the ring cavity.

Formula (39) for the difference between the frequencies is
in structural agreement with formula (1), provided that one
employs the average intensity I and it is postulated that

Nd � ÿ
2�b 00 ÿ y 00��W 00

1 W
0
2 ÿW 0

1W
00
2 �

�b 0 ÿ y 0��W 0
1 �W 0

2� � �b 00 ÿ y 00��W 00
1 �W 00

2 �
, (40)

For this reason, the conclusions reached in Refs [1, 2] remain
valid.

References

1. Fradkin Eè E Opt. Spektrosk. 31 952 (1971); 32 132 (1972)
2. Klimontovich Yu L (Ed.) Volnovye i Fluktuatsionye Protsessy

v Lazerakh (Wave and Fluctuation Processes in Lasers) (Moscow:
Nauka, 1974)

3. Cheo P K, Heer C V Appl. Opt. 3 788 (1964)
4. Andronova I A, Bershtein I L Zh. Eksp. Teor. Fiz. 57 100 (1969)

[ Sov. Phys. JETP 30 58 (1970)]
5. Valuev A D, Savranskii S A, Savushkin A F, Shokin B A

Opt. Spektrosk. 29 410 (1970) [ Opt. Spectrosc. (USSR) 29 217
(1970)]

6. Radina T V Opt. Spektrosk. 80 862 (1996) [ Opt. Spectrosc. 80
777 (1996)]

7. Goncharenko A M Gaussovy Puchki Sveta (Gaussian Optical
Beams) (Minsk: Nauka i Tekhnika, 1977) p. 142

8. Golant V E, Zhilinskii A P, Sakharov A F Osnovy Fiziki Plazmy
(Foundations of Plasma Physics) (Moscow: Atomizdat, 1974)
p. 432

9. Marcuse D Light Transmission Optics (New York: Van Nostrand
Reinhold, 1972)

10. Butenin N V, Neimark Yu I, Fufaev N A Vvedenie v Teoriyu
Nelineinykh Kolebanii (Introduction to the Theory of Nonlinear
Oscillations) (Moscow: Nauka, 1976) p. 384

140 E B Pelyukhova, Eè E Fradkin


	f1
	f2

