
Abstract. The spatial and temporal dynamics of two short
pulses propagating in an optically dense medium of resonant
three-level K-atoms is investigated numerically and ana-
lytically. The maximum coherence for the Raman transition
due to coherent population trapping. It is shown that, at the
initial stage of propagation, the waveforms of such pulses
only slightly change along the length of the medium, which
may considerably exceed the length of linear absorption for
a single weak pulse. As the length of the absorbing medium
increases, the energy of the probe (first) pulse is completely
transferred into the second (control) pulse.

1. Introduction
The interaction of two optical light beams with a three-level
L-system when conditions of one- and two-photon resonan-
ces are simultaneously satisfied is one of the `hot' topics of
modern laser and optical physics. The interest of researchers
in this problem is mainly due to the fact that the character of
light ^matter interaction under resonant conditions is deter-
mined to a considerable extent by atomic coherence and
quantum interference, which may radically change the opti-
cal characteristics of a medium, allowing one to control these
characteristics. Such phenomena include the nonlinear inter-
ference effect [1, 2], electromagnetically induced
transparency (EIT) [3, 4], coherent population trapping
(CPT) [5, 6], amplification without inversion and generation
of coherent radiation [3, 7]. These effects are of fundamental
importance for understanding the nature of resonant light ^
matter interactions and for various applications of quantum
and nonlinear optics and laser physics in resonant laser photo-
chemistry (for example, in isotope separation).

These effects have already been employed for controlling
the absorption coefficient [1 ^ 3] and the refractive index
[8], for ultrasensitive phase measurements and optical inter-
ferometry [9], in the measurement of weak magnetic fields
[10], in laser frequency stabilisation [5], in isotope separation
[11], and for the enhancement of the efficiency of resonant
nonlinear frequency mixing [3, 12 ^14, 30, 31].

Quantum interference effects also give rise to several
unusual phenomena accompanying the propagation of light
pulses in resonant three-level media. In particular, under def-
inite conditions, EIT and CPT effects are observed in the
temporal and spatial evolution of interacting light pulses.
A pair of light pulses under these conditions may propagate
in space over distances substantially exceeding the length of
linear absorption for a single weak (probe) pulse without con-
siderable changes in pulse waveforms. Such pulses are
referred to as matched pulses [3], pulses dressed with a field
[15], adiabatons [16], simultons, and solitons [17, 18]. When
such pulses partially overlap in time and the `Raman' pulse
is switched on and off earlier than the probe pulse (a counter-
intuitive sequence [19]), the relevant population can be
virtually completely transferred to the two-photon-excited
state [19, 20]. Radiation may propagate over large distances
in an absorbing medium under these conditions [21].

Coherent population trapping leads to efficient popula-
tion of certain states of coherently phased atoms and
induces a considerable atomic coherence (large off-diagonal
elements of the density matrix) for a Raman transition. The
modulus of the atomic coherence in such a situation may
reach the maximum possible value of 1/2. Absorption of radi-
ation involved in resonant interaction with allowed
transitions decreases under these conditions. This effect
can be observed for both cw radiation and light pulses,
and may considerably enhance the efficiency of one- and
two-photon-resonant laser frequency mixing and optical
parametric oscillation [12, 13, 22, 30]. For pulsed lasers,
this effect was experimentally observed by Jane et al. [13],
who achieved an efficiency of four-wave mixing of about
40%. In this context it is of considerable importance and
interest to investigate the coherent dynamics of an atomic sys-
tem interacting with resonant pulsed laser fields and the
specific features of the propagation of laser pulses under con-
ditions when the medium has a noticeable influence on laser
radiation.

Some aspects of the propagation of light pulses in reso-
nant three-level media were investigated, for example, by
the authors of Refs [15, 16, 23 ^ 27]. This problem is usually
analysed for the cases when either both pulses have identical
waveforms (identical pulses) and equal durations, exceeding
the relaxation time of the intermediate resonant state, or
the duration of one of the pulses (the control pulse) is
much greater than the duration of the second (the probe
pulse). In the majority of cases, the problem under study
was simplified because of the adiabatic exclusion of the inter-
mediate level.

In this paper we investigate the spatial and temporal evo-
lution of two short laser pulses overlapping in time and
resonantly interacting with an optically dense medium con-
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sisting of three-levelL-atoms.The pulses are assumed to have
identical waveforms but different durations (see Fig. 1). We
also assume that the pulse envelopes satisfy the adiabaticity
criterion (e.g., see Ref. [19]):

jG1;2jT1;2 4 1 , (1)

where G1;2 are the Rabi frequencies corresponding to the
interacting pulses, and T1;2 are the pulse durations.

As can be seen from expression (1), the adiabaticity con-
dition can be satisfied for short (but sufficiently powerful)
pulses that meet the requirement Gi jT1 5 1 (Gi j are the relax-
ation rates of the atomic subsystem). For the second pulse,
this condition is satisfied automatically, since the duration
of this pulse satisfies the inequality T2 > T1. Physically, the
adiabaticity criterion implies that the envelopes of interacting
light pulses should vary slowly within a time interval on the
order of the reciprocal of the Rabi frequency. When these
conditions are satisfied, an effect similar to CPT occurs in
the stationary regime. This effect considerably lowers the
absorption of propagating resonant pulses. Under these con-
ditions, a large coherence is induced for the Raman
transition. As demonstrated below, the length inside the
medium where this coherence remains large substantially
exceeds the linear absorption length of a single probe pulse.

The theoretical model employed in our study involves a
set of equations for the amplitudes of the probabilities to
find the system under consideration in the `relevant' levels
and the wave equations for slowly varying pulse envelopes.
These equations govern the self-consistent spatial and tempo-
ral dynamics of the atomic subsystem and radiation.

2. The basic equations and numerical results
Let us consider the propagation of two pulses in a medium
consisting of three-level L-atoms (Fig. 1). We assume that
the light pulses are characterised by the same linear polar-
isation and propagate along the z axis. Atomic energy levels
0 and 1, 1 and 2 have opposite parities, the 0 ^ 2 transition is
dipole-forbidden, and level 0 is the ground state. The inter-
mediate state j1i is coupled by one-photon resonances with
each of the fields, which interact only with the relevant tran-
sitions. In what follows, the pulse with frequency o1 is
considered as a probe pulse, and the pulse with frequency
o2 is considered as the Raman, or control, pulse. The dura-
tion of the control pulse is assumed to be larger than the
duration of the probe pulse. The durations of both pulses are
assumed to be much less than all the relaxation times of the
atomic subsystem.

The interaction of radiation with the atomic system will
be described in terms of the SchrÎdinger equations for prob-
ability amplitudes in the resonant approximation. The spatial
and temporal evolution of light pulses will be described with
the use of a set of wave equations for slowly varying ampli-
tudes [28]. The self-consistent set of equations for the
probability amplitudes and the Rabi frequencies of interact-
ing pulses in the moving frame of reference with a local time
t � tÿ z=c are written in a standard form:

qb0
qt
� iG �1 b1 exp�ÿik1z� ,

qb2
qt
� iG �2 b1 exp�ÿik2z� ,

(2)qb1
qt
� iG1b0 exp�ik1z� � iG2b2 exp�ik2z� ,

qG1

qz
� iK1b1b

�
0 exp�ik1z� ,

qG2

qz
� iK2b1b

�
2 exp�ik2z� :(3)

In writing this set of equations,we have assumed that each
carrier frequency of a pulse is resonant to the relevant tran-
sition, and the wave equations for slowly varying amplitudes
are written for the frequencies G1 � d10E1(t)=2�h and G2 �
d21E2(t)=2�h. Here, b0;1;2 are the probability amplitudes for
the states 0, 1, and 2; K1 � po1jd10j2N=2�h � a1G10=4 and
K2 � po2jd21j2N=2�h � a2G12=4 are the propagation
coefficients; a1;2 are the linear absorption coefficients for
the probe and control light beams when all the atoms reside
in states 0 or 2, respectively; Gi j are the half-widths of tran-
sitions; N is the concentration of atoms; di j are the dipole
matrix elements of transitions; and k1;2 is the modulus of
the wave vector of the interacting waves in a vacuum. We
assume that, at the moment of time when the fields are
switched on (t � 1), all the atoms reside in the ground
state 0, and both pulses have Gaussian envelopes at the input
of the medium z � 0, E1(t) � E 0

1 exp (ÿ t 2=2T 2
1 � and

E2(t)� E 0
2 exp�ÿt 2(2T 2

2 )ÿ1�, where the times T2 > T1 are
much less than all the relaxation times of the atomic subsys-
tem.The amplitudes of the pulses E 0

1;2 are assumed to be real.
Parameters of the pulses are chosen in such a way as to satisfy
the adiabaticity condition (1) at the input of the medium
z � 0.

It is now convenient to introduce new variables: a0 �
b0 exp (ik1z), a1 � ib1, and a2 � b2 exp (ik2z). Using these var-
iables, we can rewrite the set of equations (2) and (3) in the
following form:

qa0
qt
� G �1 a1 ,

qa1
qt
� ÿG1a0 ÿG2a2;

qa2
qt
� G �2 a1 , (4)

qG1

qz
� ÿK1a1a

�
0 ,

qG2

qz
� ÿK2a1a

�
2 : (5)

The set of equations (4) and (5) was solved numerically.
For time-domain equations, we employed the Adams
method, whereas the spatial equations were solved by using
the Euler method. Simulations were performed for the
following parameters of the system: T2=T1 � 3, G 0

1T1 � 10,
G 0

2T1 � 10 (G 0
1;2 are the maximum values of the Rabi

frequencies G1;2), G10T1 � 0:1, G12T1 � 0:1, and a2=a1 � 1
(K1 � K2).

We investigated the populations of atomic levels and the
Rabi frequencies as functions of time at different points of the
medium. Fig. 2 displays the time dependences of populations
r0;2 � ja0;2j2 at different points of the medium, and Fig. 3
shows the modulus of the off-diagonal element of the density
matrix jr20j � ja2a �0 j as a function of time and the spatial

j0i

j2i
o1

o2

j1i

G2 G1

a b

0 t

Figure 1. Diagram of atomic energy levels (a) and the envelopes of the
Rabi frequencies of light pulses at the input of the medium (b).The arrows
show dipole-allowed transitions.

Adiabatic propagation of short pulses 181



coordinate for pulse parameters satisfying the adiabaticity
criterion (1). As can be seen from these dependences, the
atomic coherence jr20j may reach its maximum equal to
1=2. Under these conditions, the populations r0;2 in atomic
levels become virtually equal to each other when the field
amplitudes reach their maxima, and the population r1 of
the intermediate state remains close to zero as the pulses
propagate through the medium. The latter effect implies
the absence of absorption for 0 ^1 and 1 ^ 2 transitions, which
can be considered as an analogue of CPT in the case of cw
radiation. As can be seen from Figs 2 and 3, this effect man-
ifests itself within the length of a medium considerably
exceeding the linear absorption length for a single probe
pulse.

Fig. 4 shows the time dependences of the Rabi frequencies
for propagating pulses at different points inside the medium.
The results presented in these figures demonstrate that, under
the CPT conditions, light pulses may propagate in an opti-
cally dense medium over distances substantially exceeding
the linear absorption length for the probe pulse without
noticeable changes in their waveforms.

Fig. 5 presents the time dependences of the envelopes of
the Rabi frequencies squared and the sum of these quantities
for the interacting pulses at different points inside the
medium. As can be seen from these dependences, the sum
of the envelopes of the Rabi frequencies squared is independ-
ent of the coordinate and is determined by the time
dependence of its components at the input of the medium.
Fig. 6 displays the time integrals of the quantities shown in
Fig. 5 as functions of the coordinate. As can be seen from
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Figure 2. Temporal evolution of the populations r0;2 � ja0;2j2 at different
points of the medium for x � 0 (1 ), 5� 102 ( 2 ), and 103 ( 3 ). The time t
here and in all the other figures is measured in units of the pulse duration
T1, and the propagation length x of pulses in the medium (from the input
plane z � 0) is measured in units of the length of linear absorption of
radiation with the frequency o1 determined in accordance with the
Bouguer law.
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Figure 3. Atomic coherence jr20j � ja2a �0 j as a function of time and the
propagation length x of light pulses in the medium.
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Figure 4. Time dependences of the normalised Rabi frequencies
p1;2 � G1;2=G

0
1;2 of the interacting light pulses at different points inside

the medium along the z axis for x � 0 (1 ), 5� 102 ( 2 ), and 103 ( 3 ).
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Figure 5. Time dependences of the envelopes of the Rabi frequencies squa-
red, g 21;2 � �G1;2(t)T1�2 (a) , and the sum of these quantities,W � g 21 � g 22
(b), for the interacting pulses at different points inside the medium and
x � 0 (1 ), 5� 103 ( 2 ), and 104 ( 3 ).
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this figure, the integral of the sum of the Rabi frequencies
squared remains constant, which is a manifestation of the
self-consistent behaviour of the envelopes. Such a behaviour
of the dependences studied is observed only when the prop-
agation constants are equal to each other (K1 � K2).

3. Analysis of the results
The results presented above agree well with predictions of
the analytical consideration in approximation (1). In the
adiabatic approximation, derivatives in expressions (4) can
be set equal to zero [29]. Hence we derive the following
expressions for the probability amplitudes (see also [16]):

a0 �
G2

G
, a1 �

1
G1

q�G2=G�
qt

� ÿ 1
G2

q�G1=G�
qt

,

(6)
a2 � ÿ

G1

G
,

where G � (G 2
1 �G 2

2 )
1=2.

The expression for a1 can be reduced to the following
form:

a1 �
G2

_G1 ÿG1
_G2

G 3 : (7)

In the adiabatic approximation, the inequality ja1j5 1 is
more precise adiabaticity condition than that given by expres-
sion (1) (e.g., see Ref. [19]). Under these conditions, the
population of the intermediate state 1 is close to zero within
the entire period of time corresponding to the interaction
with laser pulses, as ja1�t�j2 5 1. Physically, this effect implies
that the resonant absorption of light pulses is weak and that
the population of levels in the process of interaction with the
fields is distributed mainly between the initial state 0 and the
final state 2. Thus we arrive at the approximate equality

ja0j2 � ja2j2 � 1 : (8)

The solutions for the probability amplitudes a0;2 can be
written as

a0 � cos y , a2 � ÿ sin y: (9)

Here y is understood as some angle whose meaning will
become clear later.

The results obtained above can be interpreted in terms of
the vector model where the vector variables a � fa0; a1; a2g
and G � fG2; 0;ÿG1g are introduced. Using these variables,
we can rewrite the set of expressions (4) as:

_a � G � a: (10)

The vector a � fG2=G, 0,ÿG1=Gg defined as the solu-
tion to equation (10) lies in the plane ik. Vector G lies in
the same plane and makes an angle y with the i axis, where
cos y � G2=G (Fig. 7). Components of vector a virtually
coincide with the adiabatic solution (6), since ja1j5 1 and
we can neglect this quantity. Consequently, vector a corre-
sponding to adiabatic solution (6) is virtually parallel to
vector G and precesses around this vector with the frequency
G � (G 2

1 �G 2
2 )

1=2, adiabatically following the vector. Thus
we deal with a complete analogy with adiabatic following
observed in the case of interaction of a light pulse with a
two-level atom. Since light pulses propagate in the medium,
the angle y is a function of the time and the coordinate.
Note that the results obtained above are independent of

the waveform of light pulses if the adiabaticity condition
ja1j5 1 is satisfied.

Equality (8) also reflects the fact that atoms are trapped in
the CPT state: aÿ � (G2=G)a0 ÿ (G1=G)a2 � cos �y�a0ÿ
sin (y)a2 � const. This effect is responsible for the decrease
in the resonant absorption of the propagating pulses.

Substituting solution (6) into field equations (5), we derive
a set of coupled nonlinear equations:

qG1

qz
� ÿK1

G

q�G1=G�
qt

,
qG2

qz
� ÿK2

G

q�G2=G�
qt

: (11)

Equations (11) can be conveniently reduced to

qG1

qz
� ÿK1G1

G
a1 ,

qG2

qz
� ÿK2G2

G
a1 : (12)

As can be easily shown with the use of expressions (12), the
quantity G 2

1 (t, z)�G 2
2 (t, z) with K1 � K2 is independent of

coordinate z and is equal to G 2(t, 0) � G 2
1 (t, 0)�G 2

2 (t, 0),
and�1

ÿ1

�
G 2

1 �t, 0� �G 2
2 �t, 0�� dt � const

(cf. the results of numerical simulations presented in Figs 5
and 6).

In general, the solution to the set of expressions (11) can-
not be written in quadratures. However, with K1 � K2 � K,
this solution can be found with the use of the method of char-
acteristics (see also Ref. [16]), which yields

G1 � G�0, t�
G1
�
0, Zÿ1�x��

G
�
0, Zÿ1�x�� ,

(13)

G2 � G�0, t�
G2
�
0, Zÿ1�x��

G
�
0, Zÿ1�x�� ,

where Z�t) � K ÿ1 � tÿ1G 2(0; t 0) dt 0; x � Z�t� ÿ z; and
Z ÿ1(x) is the inverse of Z(x).

The results of numerical simulations agree very well with
the results obtained with the use of formulas (6) and (13).
Figs 8 and 9 present the populations r0;2 � ja0;2j2 and the
envelopes of propagating pulses as functions of time and
the penetration depth of radiation for the conditions of
Figs 2 ^ 4. As can be seen from Figs. 8 and 9, light pulses
can propagate in the medium over distances considerably
exceeding the length of linear absorption for a single probe
pulse. At the initial stage, the waveform of light pulses dis-
plays only small changes. However, at later stages, the

i

G2

G

a G1

ÿja2j

ja0j
y

k

j

Figure 7. The vector model of the adiabatic interaction of two short pulses
with a three-level L-system.
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energy of the probe pulse is completely transferred into
the second pulse. As the light pulses propagate through the
medium, the populations of levels 0 and 2 become nonmono-
tonic functions of the coordinate (Fig. 8). The angle y under
these conditions reaches the value of p=4 and then decreases
down to zero as the envelope of the probe field tends to zero
owing to the transfer of the energy of this pulse into the second
field.
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