
Abstract. A theoretical study was made of the differential
and integral scattering of light by high-precision optical
dielectric surfaces. The technique of modified curvilinear
transformation was employed to derive the expressions
that correspond to the effect of irregularity slope fluctua-
tions, which is not considered in the conventional vector
theory of differential scattering. It is shown that it is possible
to neglect the effect of irregularity slope to a high degree of
accuracy and thereby resort to conventional vector theory to
determine the roughness parameters. Expressions were
derived for the total integral scattering for different ratios
between the correlation length and the wavelength of the
scattered radiation.

1. Introduction
Optical reflectometry is used extensively for metrological
studies of rough optical surfaces (the rms roughness and
the correlation length). This method involves measurements
of the power of the scattered radiation normalised to the
power of the incident or specularly reflected radiation: inte-
gral power PTIS in the method of total integral scattering
(TIS) or the angular power PARS in the method of differ-
ential scattering [angular resolved scattering (ARS)] (see, e.g.
Refs [1 ^ 7]).

The interpretation of the results of measurements by the
TIS and ARS methods calls for development of an adequate
physico-mathematical model of light scattering by a rough
optical surface. At present, the development of this model
is still far from completion, and our work is an attempt to
improve it.

To calculate the scattering by a rough optical surface, it is
standard practice to invoke the model based on the so-called
vector theory [3], which uses a curvilinear transformation of
coordinates [2]. This approach permits the use of perturba-
tion theory. The statistical properties of surface irregularities
are described in this case by the function of spectral power
density. In doing this, it is usual to restrict the consideration
to the Gaussian or the exponential statistics to describe the
surface roughness. However, the experimental data are in sat-

isfactory agreement with the vector-theory calculations only
in a narrow range of scattering angles. This theory fails to
explain large scattering at angles remote from the specular
angle; i.e. the vector theory cannot describe the experiment
over the entire range of scattering angles.

It is likely that the primary reason for the discrepancy
between the vector-theory calculations and the experimental
data is the complex nature of the irregularity statistics, which
depends on the range of scattering by angles. In this case it is
impossible to describe scattering BYusing a correlation func-
tion with unique values of the rms roughness and the
correlation length.

In optical reflectometry, the rms surface roughness s at a
wavelength l is commonly measured by the TIS method, by
using the expression [1]

PTIS �
�
4ps
l

�2
. (1)

Formula (1) is widely used in the literature. However, we will
show here (also, see Ref. [8]) that it is appropriate only for
those surfaces for which the correlation length l satisfies the
relationship l5l. A different formula holds for short corre-
lation lengths ( l5 l ) (see below). This means that the
experimental data obtained by the TIS method cannot be
interpreted without prior measurment of the correlation
length l (e.g. by atomic-force microscopy) and determining
the relation between l and l (otherwise only some `effective'
rms roughness should be considered).

2. Formulation of the problem and basic
equations
Consider a plane monochromatic wave

E�r� � E0 exp�ÿiot� ik0r� , (2)

incident at an angle y0 from vacuum on a rough surface of a
dielectric with the real permittivity e (o). The surface micro-
profile is described by the random function z � f ( x, y ) (the
z axis is directed normal to the surface). On average, the
surface is plane, h f (x, y )i � 0, and the rms deviation of
the profile height s is small compared with the wavelength
of the optical radiation and the correlation length:

s5 l , s5 l cos y0 : (3)

The stationary problem of light scattering by a rough sur-
face involves solving the wave equation

DE�r� � e�r�o
2

c 2
E�r� � 0 ,

(4)

e�r� � 1, z > f�x, y� ,
e , z < f�x, y�
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with the boundary conditions at the surface

En1 � eEn2 , E t1 � E t2�5�
where the subscripts 1 and 2 refer to vacuum and the dielec-
tric, whereas the subscripts n and t correspond to the normal
and tangential components of the field vector.

Following vector theory [3], we pass from the orthogonal
coordinate system xyz to the curvilinear system u1 � x,
u2 � y, u3 � zÿ f ( x, y ) [2], in which the boundary condi-
tions are now specified at the surface u3 � 0. The existence
of a microprofile may be treated as a perturbation for the
ideal problem (i.e. the problem with an ideal plane surface,
or the Fresnel problem). Vector theory uses a perturbation
linear in the microprofile function f(x, y ) and its derivatives.
In the general case, the random function f( x, y ) and its
derivatives can be expanded in spatial Fourier harmonics,
so that a rough surface can be regarded as a superposition
of two-dimensional diffraction gratings. For an individual
partial Fourier harmonic, vector theory is in essence a regular
theory of the interaction of light with a diffraction grating
(with the subsequent synthesis of the scattered partial fields
over the entire ensemble of these partial gratings).

Conventional vector theory does not take into account the
fluctuations of the surface slope, which change the boundary
conditions and thereby affect the scattering, because the cor-
responding perturbations are quadratic in f( x, y ) and its
derivatives. Furthermore, the solution of the scattering prob-
lem in vector theory is sought in the curvilinear coordinate
system, which is not equivalent to the orthogonal one over
the entire space. After deriving the solution in the curvilinear
system,we require an inverse passage to the orthogonal coor-
dinate system to attain a rigorous solution of the problem.
Otherwise, the solution associated with a change in the boun-
dary conditions may be lost.

Consider the modified curvilinear transformation

u1 � x , u2 � y , u3 � zÿ f�x, y� exp
�
ÿ u 2

3

2a 2

�
, (6)

where a is the width (in z ) of the domain of scattering for-
mation. We assume below that only the boundary dipoles
make a contribution to scattering, and therefore the passage
to the limit a! 0 is used in estimates. (In reality, different
physical approaches to the interpretation of scattering sour-
ces yield different expressions for a. These issues will be
considered in detail in our next paper.)

The existence of a `cut-off factor' in one of expressions (6)
has the effect that the coordinate systems will be equivalent in
the domain z4 a and, hence, in the region z4 l in which the
scattered field resides. This modification allows us to find a
more rigorous (in comparison with the vector theory) solu-
tion that is adequate for the experimental situation.

After passage to the curvilinear coordinate system (6),
equation (4) with the boundary conditions (5) can be written as

D0E�U� � e0
o 2

c 2
E�U� � Ĥ�U�E�U� ,

e0 � 1, u3 > 0 ,
e , u3 < 0 ,

�
(7)

D0 �
q2

qu 2
1
� q2

qu 2
2
� q2

qu 2
3
,

where U is the radius vector in the curvilinear coordinate
system and Ĥ(U )E(U ) are the terms that appear in passing
to the curvilinear coordinate system. As shown in Appen-
dix 1, the perturbation operator Ĥ(U ) can be represented as
a sum of two perturbation operators Ĥ1 and Ĥ2:

Ĥ�U� � Ĥ1�U� � Ĥ2�U� . (8)

The first perturbation, linear in f(x, y), corresponds to
the scattering from microstructures without considering their
slope. A calculation with this perturbation corresponds to a
calculation within the framework of the vector scattering
theory [3].The secondperturbation,which comprises the prod-
ucts of f( x, y ), its derivative, and the square of its derivative,
takes into account the irregularity of slope fluctuations.

Therefore, the passage to the curvilinear coordinate sys-
tem reduces the initial wave equation (4) to an inhomoge-
neous wave equation whose solution may be sought by the
perturbation theory techniques in the small-roughness appro-
ximation.

We adopt the Fresnel problem as the zero-order approx-
imation:

D0E�U� � e0
o 2

c 2
E�U� � 0; u3 � 0: (9)

We will use well-developed methods of the Green function
and expansion in spatial Fourier integrals to find the inten-
sity of the scattered field in the first order of the perturbation
theory (for more details, see Refs [4, 5]).

3. Results of calculations
Let R�1;2� be the scattering coefficients corresponding to the
first and second perturbations in expression (8) and equal to
the normalised intensities of the radiation scattered in a unit
solid angle in the direction of an angle y (Fig. 1). It is obvious
that these coefficients describe the differential scat-tering.
The normalisation was performed to the incident radiation
intensity. Calculations give the expressions

R
�1�
i k �

o4�eÿ 1�2
p 2c 4

g�jk? ÿ k?0j�F �1�i k �y, j, y0, e� , (10)

R
�2�
i k �

o4�eÿ 1�2
p 2c 4

h�jk? ÿ k?0j�F �2�i k �y, j, y0, e� , (11)

y
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Figure 1. Schematic diagram showing themutual arrangement of the wave
vectors of the incident and scattered waves.
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where the first ( i ) and the second ( k ) subscripts denote
polarisations of the scattered and incident fields, respectively
( i, k � s, p );

h�jk? ÿ k?0j� �
1
4
jk? ÿ k?0j4g 2�jk? ÿ k?0j� ;

(12)

g�jk? ÿ k?0j� �
�
exp�ÿi�k? ÿ k?0�r�C�r� dS

is the function of spectral power density of the surface irreg-
ularities, which is a spatial two-dimensional Fourier
transform of the correlation function C( r ) � C(jr 0 ÿ r 00j)
� h f (r 0) f (r 00 )i (the averaging is performed over the area
of the scattering surface);

k? � fkx, ky, 0g �
2p
l
fsin y cosj, sin y sinj, 0g ,

(13)

k?0 � fkx0, 0, 0g �
2p
l
fsin y0, 0, 0g

are the wave-vector components of the scattered and incident
waves, respectively, perpendicular to the normal to the sur-
face. The expressions for the angular functions are given in
Appendix 2.

In the derivation of relations (10) and (11), we took
advantage of the fact that the cross correlator of a random
function and its derivative is zero whereas the correlator of
the derivative of a random function is equal to the second
derivative of the correlation function (see, e.g. Ref. [7]).

The angular intensity of the field scattered by a rough
surface at angles y, j is found as the sum of intensities
(10) and (11), which correspond to the chosen polarisations
of the incident and scattered fields. Expressions (10) repre-
sent the result of vector theory [3] and expressions (11)
describe the additional scattering associated with the irregu-
larity slope fluctuations.

The power of integral scattering of the radiation with the
ith polarisation, i.e., of the total radiation scattered into the
upper half-space, is found by integrating the corresponding
expressions for the power of differential scattering over all
possible scattering and azimuth angles:

P
�i�
TIS�y0� �

� p=2

0
sin y dy

� 2p

0
�Rsi�y, j, y0�

� Rpi�y, j, y0�� dj : (14)

The correlation function of irregularities is assumed to be
Gaussian:

CG�r� � s 2 exp
�
ÿ r

2

l 2

�
, (15)

gG�k? ÿ k?0� � ps2l 2 exp
�
ÿ jk? ÿ k?0j2l 2

4

�
: (16)

For the two limiting ratios of the correlation length to the
wavelength, we obtain the following expressions for the
power of the total integral scattering normalised to the inten-
sity of radiation incident normally on the surface:

PTIS �
�
4ps
l

�2� 1ÿ ��
e
p

1� ��
e
p
�2

, l5l , (17)

PTIS �
1
6

�
4ps
l

�2� pl
l

�2 ÿ
1ÿ ��

e
p �2 , l5 l . (18)

One can see that expression (17) commonly used in the
literature is valid only for a certain relation between the
correlation length and the wavelength.

4. Discussion
A calculation made by using expressions (10) and (11), which
describe the differential scattering related to the effect of fluc-
tuations of irregularity height and slope, suggests that the
irregularity height fluctuations exert a dominant effect on
the scattering. This case is adequately described by conven-
tional vector theory [3]. The error arising from neglecting the
irregularity slope fluctuations is small. For the s-polarised
radiation, the error is maximum for small angles of incidence
and large scattering angles and does not exceed 10ÿ4. For
p-polarised radiation, the error is maximum for angles of
incidence �508 and large scattering angles and does not
exceed 10ÿ3. As an example Fig. 2 shows the theoretical
differential pp-scattering indicatrixes, which correspond to
expressions (10) and (11), for the surface of amorphous silica.

The primary implication is as follows. The vector scatter-
ing theory, which disregards the effect of irregularity slope
fluctuations, can be used to evaluate very precisely the rough-
ness parameters of optical surfaces for l5 l.

Because the expressions for the total integral scattering
for different ratios of l to l are different, the rms roughness
s cannot be determined reliably without a preliminary meas-
urement of the correlation length by other techniques, e.g., by
atomic-force microscopy. In other words, the measurement of
s by the method of integral scattering of optical radiation
yields a value averaged over the spatial structures with the
lateral dimension exceeding l. For instance, for a total inte-
gral scattering of 10ÿ5 (l � 0:63 mm) by a rough quartz
surface with l � 0:1 mm, the rms roughness calculated by
using formula (17) would be �10 Ð, whereas the real rms
roughness calculated by formula (18) is �20 Ð.

The exact expression for the power of integral scattering
(14) can be calculated by numerically employing relations
(10) and (11) for differential scattering. The results of calcula-
tions foraquartz substrate arepresented inFig. 3,which shows
the relative error in determining the rms roughness for differ-
ent l by formulas (17) and (18). One can see, in particular, that

10ÿ12

10ÿ11

10ÿ10

ÿ90 ÿ60 ÿ30 0 30 60 y
�
8

10ÿ9

10ÿ8

10ÿ7

10ÿ6

10ÿ5

lgRpp

Figure 2. Indicatrixes of differential scattering calculated by formulas (10)
(solid line) and (11) (dashed line), for a polished quartz substrate for
e � 2:12, l � 0:63 mm, s � 10

�
A, l � 1:0 mm, angle of incidence of 508,

and the Lorentzian statistics.
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the range where formula (17) yields accurate results is limited
by the condition l > l. For l < l=2p, expression (18) can be
used, and in the other cases the numerical integration should
be used.

5. Conclusions
We have developed the theory of differential and integral
scattering of optical radiation by rough dielectric surfaces
in the case of small (in comparison with l) irregularities. It
was shown that the use of a modified curvilinear transfor-
mation allows us simultaneously to include the effect of the
fluctuations of both irregularity height and slope on the
differential (angular-resolved) scattering. The dominant
mechanism governing the differential scattering by optical
surfaces is the irregularity height fluctuation, whose effect is
described by conventional vector theory. The neglect of the
effect of irregular slope fluctuations results in an error that
does not exceed 10ÿ4 for the s-polarised and 10ÿ3 for the p-
polarised radiation.

Different expressions for the power of total integral scat-
tering were derived in our work for two different ratios of
correlation length to wavelength. This difference does not
permit us to obtain reliable values of the rms roughness with-
out prior determination of the correlation length by other
techniques, e.g., by atomic-force microscopy. The theory ela-
borated in this work permits a more adequate interpretation
of experimental results in the metrology of high-precision
optical surfaces.

Appendix 1
Wave equation in curvilinear coordinates
The curvilinear transformation has the form:

u1 � x ,
u2 � y ,
u3 � zÿ f�x, y� exp

ÿÿ u 2
3 =2a

2� :
(

(A1.1)

The metric tensor of the curvilinear coordinate system is

gi k �

1� j 2f 0 2u1 f 0u1 f
0
u2j

2 jf 0u1
c

f 0u1 f
0
u2j

2 1� j 2f 0 2u2
jf 0u2
c

jf 0u1
c

jf 0u2
c

1
c 2

0BBBBBBB@

1CCCCCCCA . (A1.2)

Here, the subscript in the derivatives denotes the variable
with respect to which the partial derivative is taken, and
the following notations are adopted:

j � exp
�
ÿ u 2

3

2a 2

�
, c �

�
1ÿ

�
u3
a 2

�
fj
�ÿ1

, (A1.3)

the Jacobian of the transformation (A1.1) being

g1=2 � jgikj1=2 � cÿ1 : (A1.4)

The Laplacian in the new coordinate system has the form

D � gÿ1=2 q
qui

�
g i kg1=2

q
quk

�
, (A1.5)

where g i k is the fundamental tensor of the curvilinear coor-
dinate system (A1.1) related to the metric tensor by the
expression

g i lgl k � di k ; (A1.6)

where di k is the Kronecker delta. The Laplacian can be
represented as

D � D0 ÿ Ĥ , (A1.7)

where

D0 �
q2

qu 2
1
� q2

qu 2
2
� q2

qu 2
3
. (A1.8)

The expression for the perturbation operator in its com-
plete form is rather cumbersome. We restrict our
consideration to the perturbation terms linear and quadratic
in f(x, y ) and its derivatives. It is assumed that the xz plane
is the plane of incidence, with the consequence that the zero-
order approximation field E0 is independent of u2 � y. We
use the following expansion of the function c:

c � 1� u3
a 2 fj : (A1.9)

In the calculation of scattering, the perturbation operator
Ĥ is integrated with respect to u3. Rearranging the perturba-
tion with integration by parts with respect to u3 and taking
advantage of the slowness of the variation of the zero-order
approximation field, we obtain expressions which are omitted
here owing to their awkwardness. In these expressions, the
perturbation comprises terms which either do or do not con-
tain the factor u3=a

2. Integrating the former terms gives
expressions that are independent of a, and integrating the lat-
ter terms gives expressions that depend on a. For this reason,
in view of the passage to the limit a! 0, the perturbation
terms not containing the factor u3=a

2 can be disregarded.
(This passage to the limit corresponds to the scattering sour-
ces concentrated at the interface.) Since the correlator of a
random function and its derivative h f f 0i � 0, the corre-
sponding terms may be omitted. Then the perturbation
operator is expressed as

Ĥ � Ĥ1 � Ĥ2 ,

Ĥ1 � ÿ2
u3
a 2 j f

q2

qu 2
3
, (A1.10)

Ĥ2 �
u3
a 2 j

2ÿ2 f 0 2u1 � 2 f 0 2u2 � f 00u1 f � f 00u2 f
� q
qu3

.

Therefore we have obtained the perturbation associated
with the representation of the wave equation in the curvilin-
ear coordinate system, correct to the quadratic terms.

0.1 1 10 lg (l=l)

40

80

120

160

A (%)

D= 88 4 2 1

0

Figure 3. Relative error A of calculating the rms roughness by using the
limiting formulas (17) (solid lines) and (18) (dashed line) versus l=l for dif-
ferent angular widthsD of the entrance opening (the position of the dashed
line is independent of D).
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Appendix 2

Expressions for the angular functions
The expressions for the angular functions that appear in the
relation for the scattering coefficients (10) and (11) have the
form

F
�1�
ss � cos y0 cos

2 y cos2 j�
cos y0 � �eÿ sin2 y0�1=2

�2� cos y� �eÿ sin2 y0�1=2
�2 ,

F
�1�
sp � cos y0 cos

2 y sin2 j�eÿ sin2 y0��
e cos y0 � �eÿsin2 y0�1=2

�2� cos y� �eÿ sin2 y0�1=2
�2 ,

(A2.1)

F
�1�
ps � cos y0 cos

2 y sin2 j�eÿ sin2 y0��
cos y0 � �eÿ sin2 y0�1=2

�2�e cos y� �eÿ sin2 y0�1=2
�2 ,

F
�1�
pp � cos y0 cos

2 y�
e cos y0 � �eÿ sin2 y0�1=2

�2
�
�
cosj�eÿ sin2 y0�1=2�eÿ sin2 y�1=2 ÿ e sin2 y0 sin y

�2�
e cos y� �eÿ sin2 y�1=2�2 ,

F
�2�
ss � cos y0 cos

2 y cos2 j
�eÿ sin2 y0�

� 1�
cos y0 � �eÿ sin2 y0�1=2

�2� cos y� �eÿ sin2 y0�1=2
�2 ,

F
�2�
sp � cos y0 cos

2 y sin2 j�eÿ sin2 y��
e cos y0 � �eÿ sin2 y0�1=2

�2� cos y� �eÿ sin2 y�1=2�2 ,
F
�2�
ps � cos y0 cos

2 y sin2 j
�eÿ sin2 y0�

(A2.2)

� 1�
cos y0 � �eÿ sin2 y0�1=2

�2�e cos y� �eÿ sin2 y�1=2�2 ,
F
�2�
pp � cos y0 cos

2 y�
e cos y0 � �eÿ sin2 y0�1=2

�2
�
�
cosj sin y0�eÿ sin2 y�1=2 ÿ sin y�eÿ sin2 y0�1=2

�2�
e cos y� �eÿ sin2 y�1=2�2 .
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