
Abstract. Some cases of model media considered in this
paper allow analytical solutions to nonlinear wave equations
to be found and the time dependence of the electric field
strength to be determined in the explicit form for arbitrarily
short electromagnetic pulses. Our analysis does not employ
any assumptions concerning a harmonic carrier wave or the
variation rate of the field in such pulses. The class of models
considered includes two-level resonance and quasi-reso-
nance systems. Nonresonance media are analysed in terms
of models of anharmonic oscillatorsö the Duffing and
Lorentz models. In most cases, only particular solutions
describing the stationary propagation of a video pulse (a
unipolar transient of the electric field or a pulse including a
small number of oscillations of the electric field around zero)
can be found. These solutions correspond to sufficiently
strong electromagnetic fields when the dispersion inherent
in the medium is suppressed by nonlinear processes.

1. Introduction
The last two decades have seen advances in nonlinear optics
and laser physics to the range of femtosecond pulses of opti-
cal (to be more accurate, electromagnetic) radiation [1 ^12].
One of the methods of producing such pulses is the compres-
sion of an initial pulse with various time-domain compressors
[1, 2, 5, 7], including fibre-grating compressors. This method
permitted pulses with a duration of 6 fs to be obtained [2].
The possibility of compressing a pulse to a duration of 1 fs in
experiments on the scattering of free relativistic electrons in
the field of a high-power short radiation pulse was also
discussed [8]. Methods for producing attosecond electromag-
netic pulses were considered in Ref. [9].

Another method of producing femtosecond pulses is to
generate such pulses directly in laser systems [6, 10]. Specif-
ically, Sartania et al. [6] generated 20 fs pulses of energy
1.5 mJ and a repetition rate of 1 kHz (5 fs pulses with an
energy of 0.5 mJ were obtained with a fibre ^ prism compres-
sor). The authors of Ref. [10] employed aTi: sapphire laser to
generate 6.5 fs pulses with a mean power of 200 mW and a
repetition rate of 86 MHz. Parametric wave mixing, self-
action of laser pulses (self-focusing and self-modulation),

and coherent transient processes in the field of femtosecond
pulses were considered in Ref. [11]. The review by Andreev et
al. [12] was devoted to the generation of high-power short
laser pulses.

In the context of rapid progress in the generation of fem-
tosecond, and even shorter, pulses of electromagnetic
radiation, it is of interest to analyse theoretical models
describing the propagation of very short pulses in nonlinear
dispersive media. Naturally the Maxwell equations supple-
mented with equations governing the evolution of the
polarisation or currents arising in a medium subject to elec-
tromagnetic radiation [13 ^ 25] or with the SchrÎdinger
equation for electrons interacting with an incident electro-
magnetic field [26, 27] provide a background for all the
theories considered. Since it seldom occurs that exact analyt-
ical results can be obtained in such problems, various
approximations simplifying the consideration and allowing
analytical expressions to be derived are often employed.

An important and, at the same time, simple approxima-
tion corresponds to the propagation of electromagnetic
waves in one of many possible directions. The model of uni-
directional waves lowers the order of the wave equation
without imposing limitations on pulse duration. Obviously,
in certain cases this approximation is a priori inapplicable
(e.g., for waves in periodic or scattering media).

Another broad class of approximations is associated with
the properties of a medium. Specifically, gaseous media
(molecular gases and metal vapours) and impurities in glasses
are characterised by discrete absorption spectra. If the fre-
quency of monochromatic radiation coincides with the
frequency of an atomic or molecular transition or is close
to such a frequency, then the interaction has a resonant char-
acter. A radiation pulse is not a monochromatic wave, but it
can be represented as a quasi-monochromatic wave:

E�r, t� � e�r, t� exp�ÿio0t� ik0r� � c:c , (1)

where a plane scalar wave with a wave vector k0 correspond-
ing to the frequency o0 of the carrier monochromatic wave is
considered for simplicity. This representation is adequate if
the pulse envelope e(r; t) is a function slowly varying in
space and time, i.e., the inequalities���� qeqt

����5o0jej and jHej5 jk0kej .

are satisfied.
Such a representation of a pulse of electromagnetic radi-

ation is called the slowly varying envelope approximation.
The resonance condition defined for a monochromatic
wave can be extended to the case of a radiation pulse if
the spectral width of the envelope e(r, t) is much smaller
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than the frequency of the carrier wave and the difference in
the frequencies of transitions between the energy levels adja-
cent to the resonance state (here, we consider dipole-allowed
transitions). Energy levels other than those coupled by the
resonance condition are often neglected when the above con-
ditions are specified, and a resonance medium is represented
as an ensemble of two-level atoms. In a more general situa-
tion, an ensemble of N-level atoms can be employed as a
model of a resonance medium.

If the duration of an electromagnetic pulse is less than all
the relaxation times in the medium under study, then the
propagation of such a pulse is accompanied only by stimu-
lated absorption and re-emission. With N � 2 these
processes may give rise to self-induced transparency when
certain conditions imposed on the pulse amplitude are satis-
fied [28]. Electromagnetic pulses whose duration is shorter
than the polarisation and population relaxation times of res-
onance levels are called ultrashort pulses. Although this term
sometimes has a broader meaning, for definiteness we will
take ultrashort pulses to mean sufficiently short pulses that
can be represented as quasi-monochromatic waves.

In the slowly varying envelope approximation, the
Maxwell equations or the D'Alembert wave equation can
be reduced to first-order equations for e(r, t) and the reso-
nance medium can be described by the Bloch equations. If
an electromagnetic pulse is represented as a superposition
of quasi-monochromatic waves with different carrier fre-
quencies corresponding to different pairs of resonance
transitions, then we should employ a set of reduced wave
equations and a set of Bloch equations generalised to the
case of a multilevel medium. Examples of such situations
are considered in Refs. [19, 29 ^ 32].

Quasi-harmonic signals are employed widely in theoreti-
cal studies devoted to nonlinear coherent phenomena and in
nonlinear fibre optics. However, this is not the only example
of a solitary electromagnetic wave. Since when the phenom-
ena of coherent interaction of electromagnetic radiation with
resonance systems were discovered, much attention has been
focused on the theoretical consideration of the propagation of
short light pulses under conditions when the slowly varying
envelope approximation becomes inapplicable. As is well
known [13, 33, 34] the complete set of Maxwell ^ Bloch equa-
tions has a solution that describes the propagation of a pulse
of electromagnetic radiation without a high-frequency pulse
carrier. Such pulses were later called video pulses [36 ^ 39].
Numerical simulations of the propagation of video pulses
[40] have demonstrated that such pulses are unstable with
respect to collisions with each other.Goldstein [41] has shown
that the complete set of Maxwell ^ Bloch equations does not
possess the Painleve0 property, which indicates the nonsoliton
character of video pulses.

Furthermore the complete set of Maxwell ^ Bloch equa-
tions has solutions corresponding to solitary waves that
contain a few cycles of electric and magnetic fields. Such
waves are referred to as extremely short electromagnetic
pulses. If the number of field cycles in a pulse is large,
then such a pulse can be approximated with a quasi-harmonic
wave (or a superposition of quasi-harmonic waves if there are
several carrier frequencies). In this case, such pulses can be
called ultrashort pulses. The duration of ultrashort pulses
in such a situation is assumed to be much shorter than the
time of irreversible polarisation relaxation.

We should start analyzing the propagation of video pulses
by considering the applicability conditions of the two-level

approximation for this problem. In the case of a quasi-mono-
chromatic wave we reduce our analysis to a resonance
transition if the frequency of the carrier wave is close to
the frequency of an atomic transition and the spectral half-
width of the pulse is substantially less than this frequency.
The spectrum of a video pulse reaches its maximum at
zero frequency, and only the spectral half-width Dop of a
video pulse can be employed to define a criterion that would
allow the consideration to be reduced to a single transition.
Such a criterion will be introduced as the condition that
the spectral half-width of a video pulse should be less than
or of the order of the frequency of transition from the ground
state to the neighbouring (on the energy scale) excited state,
whereas the other excited states should be separated from the
ground state by frequency intervals exceeding several half-
widths Dop.

Spectra with such a structure can be found among ionic or
atomic spectra. (For example, in the case of a potassium
atom, the frequency of transitions from the ground 4S state
to the 4P state is approximately two times lower than the fre-
quency of the 4S ÿ 5P transitions. One arrives at the same
relation for the frequencies of transitions from the ground
4I15=2 state to the lower 4I13=2 excited state and the frequencies
of 4I15=2 !4I9=2 and

4I15=2 !4F9=2 transitions in Er3+ ions.) In
such situations, real atoms or ions can be approximated with
two-level atoms (in the above-specified sense). To include the
degeneracy of energy levels of two-level atoms,we would then
have to generalise the Bloch equations. However, at the first
stage,we can restrict our analysis to the minimum degeneracy
degree.

Let oa be the frequency of transitions from the ground
state to the lowest excited state. This frequency can be
considered to be a natural time scale of the problem. When
the pulse duration tp satisfies the inequality tpoa4 1, the
propagation of ultrashort pulses canbe described in the slowly
varying envelope approximation. Applying this approx-
imation we assume that the relevant conditions are satisfied
for the variation rate of the envelope of ultrashort pulses. Con-
versely, provided that tpoa4 1, this approximation becomes
inapplicable, but we can at least employ the approximation
of unidirectional wave propagation.

The model of a two-level medium provides us with yet
another parameter that defines the time scaleö the Rabi fre-
quency oR. In addition, the ratio e � oR=oa may be small. In
this case, we can try to find the solution to the Bloch equation
as a power series in e. Then, dividing this series, we can find
the polarisation with an accuracy up to some order of small-
ness in e and, thus, derive an approximate wave equation for
the electric field of a pulse without invoking the slowly vary-
ing envelope approximation. The condition e � 1 implies that
the electric field strength in the pulse is comparable with the
strength of the atomic field. Therefore, the parameter e con-
trols the applicability of the notion of the strong field. With
oR 5oa, the condition Dop 5oa is called the quasi-reso-
nance condition.

We should note that the Bloch equations have been men-
tioned above in connection with the use of a resonance
medium as an example of equations governing the behaviour
of the polarisation of a medium. In other cases, equations
related to other models of a nonlinear medium can be
employed, including a model of an anharmonic oscillator,
a model of an electron plasma in a metal, conductivity elec-
trons in semiconductors, excitons in molecular crystals, or
spin waves in magnetic dielectrics.
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In the following sections,we will consider electromagnetic
solitary waves whose durations are so small that the slowly
varying envelope approximation is inapplicable. Some simple
models employed in nonlinear optics will be considered as
examples of nonlinear media where such pulses propagate.
The choice of a specific model of a nonlinear medium makes
it possible to derive equations describing approximately the
evolution of ultrashort pulses. Our analysis employs neither
the assumption that light pulses have slowly varying enve-
lopes nor the quasi-harmonic approximation (which
assumes that a harmonic wave can be selected as a carrier).
Most of the equations presented below cannot be solved
exactly with the use of analytical methods. However, we
can find some particular solutions to these equations. The
main part of this paper will be devoted to the consideration
of such solutions.

2. Approximation of unidirectional waves
The set of Maxwell equations in an isotropic dielectric can be
reduced to a single wave equation for the electric field
strength E � El. For a plane wave with a constant polar-
isation vector l, we derive the wave equation

q2E
qz 2
ÿ 1
c2
q2E
qt 2
� 4p
c 2

q2P
qt 2

, (2)

where the polarisation of the medium P is determined by the
model chosen for the description of the nonlinear medium.

Following Refs [14, 42] we introduce an auxiliary func-
tion B(z; t) satisfying the equation qB=qt � cqE=qz. Then,
equation (2) can be represented in the equivalent form:

qB
qt
ÿ c qE

qz
� 0 ,

qE
qt
ÿ c qB

qz
� ÿ4p qP

qt
.

Performing the relevant transformations, we arrive at�
qB
qt
� c qB

qz

�
ÿ
�
qE
qt
� c qE

qz

�
� 4p

qP
qt

, (3.1)

�
qB
qt
ÿ c qB

qz

�
�
�
qE
qt
ÿ c qE

qz

�
� ÿ4p qP

qt
. (3.2)

Equations determining the characteristics of this set are writ-
ten as x � t� z=c and Z � tÿ z=c. Thus the characteristic
form of Eqns (3) is

qB
qZ
� qE

qZ
� ÿ2p qP

qt
,

qB
qx
ÿ qE

qx
� 2p

qP
qt

. (4)

Now, suppose thatE, B, and P are the waves propagating
predominantly in one direction, which is characterised, for
example, by the parameter Z � tÿ z=c. If the medium under
consideration consisted of atoms or molecules responding lin-
early to the applied field, then all the variables E, B, and P
would depend only on Z. However, a reflected wave exists in
the general case. Let us employ an auxiliary replacement
P ! eP and expand E, B, and P as power series in e assum-
ing that the parameter e is small:

E � E �0��Z� � eE �1��Z, x� � e2E �2��Z, x� � . . . ,

B � B �0��Z� � eB �1��Z, x� � e2B �2��Z, x� � . . . ,

P � P �0��Z� � eP �1��Z, x� � e2P �2��Z, x� � . . . .

Substituting these expansions into the first equation in the
set (4), we derive in the first order in e

q
qZ

�
B �0� � eB �1�

�
� q
qZ

�
E �0� � eE �1�

�
� ÿe qP

�0�

qZ
,

or

B� E � ÿeP �0� .
In deriving the equations presented above, we assumed that
P �0� is independent of x and the fields vanish simultaneously
with the polarisation of the medium. To be more specific we
assumed that the fields and the polarisation both vanish for
t! �1.

Substituting the expression derived above into the second
equation in the set (4) and keeping the terms up to the first
order in e on the right-hand side of this equation, we find that

qE
qx
� ÿ e

2
qP �0�

qZ
.

Using the initial variables z and t, we can rewrite this equa-
tion as

qE
qz
� 1
c

qE
qt
� ÿ 2p

c

qP
qt

, (5)

which corresponds to the wave equation written in the
approximation of a unidirectional wave.

3. Resonance media
To be able to apply Eqn (2) or (5) to describe the propagation
of short pulses of electromagnetic radiation, we should spec-
ify how the polarisation of the nonlinear medium should be
calculated. For many years, the approximation of a reso-
nance medium has been the most popular model of a
nonlinear dispersive medium. Moreover, such a nonlinear
medium can be represented as an ensemble of two-level
atoms. Among recent studies we should mention Refs [24,
25], which were devoted to the propagation of pulses with a
duration of a few cycles of the carrier in a medium of two-
level atoms. In such a situation, the rules that can be
employed to calculate the polarisation of a medium are espe-
cially simple. These rules are formulated as the Bloch
equations for a vector whose components are related in a
certain way with the elements of the density matrix of a two-
level atom (see the details in Ref. [14]).

3.1 The stationary solution to the Maxwell^Bloch
equations
In the scalar approach free of the slowly varying envelope
approximation, the Maxwell^Bloch equations are written as
[13, 14, 43]

q2E
qz 2
ÿ 1
c2
q2E
qt 2
� 4pnatd

c 2
q2r1
qt 2

, (6.1)

qr1
qt
� ÿoar2 ,

qr2
qt
� oar1 �

2d
�h
Er3 ,

qr3
qt
� ÿ2dEr2,

(6.2)

where nat is the density of resonance atoms and d is the
dipole moment of the atomic transition. These equations
ignore the inhomogeneous broadening of the resonance
absorption line (all the atoms have equal transition frequen-
cies oa). Introducing new variables t � oat, x � oaz=c, and
q(t,x) � 2dE=�hoa, we can rewrite these equations as

q2q

qx 2 ÿ
q2q
qt2
� a

q2r1
qt2

, (7.1)
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qr1
qt
� ÿr2 ,

qr2
qt
� r1 � qr3 ,

qr3
qt
� ÿqr2 , (7.2)

where a � 8pnatd
2=�hoa is the dimensionless parameter that

can be expressed in terms of the time tÿ1c � 4pnatd
2�hÿ1

characteristic of a two-level system [44, 45]; a � 2=tcoa.
To derive equations governing the stationary propagation

of a pulse of electromagnetic radiation, we should assume
that the components of the Bloch vector and the normalised
pulse envelope depend only on one variable t� z=V , or the
dimensional variable B � oa(t� z=V ), where V is the velocity
of pulse propagation. This finding implies that stationary
waves propagate only in one direction. In this case, the set
(7) can be reduced to a set of ordinary equations. Writing
the boundary conditions for jBj ! 1 as dq=dB � q � 0,
r1 � r2 � 0, and r3 � ÿ1, we find the following solution to
the set of equations considered:

q�B� � 2
y
sech

�
oa

y

�
t� z

V

��
,

where y 2 � (c 2 ÿ V 2)T=�(1� a)V 2 ÿ c 2� > 0. As can be
seen from this expression, the duration of a stationary
pulse can be defined as tp � y=oa. Then the expression for
the electric field strength can be written as

E�t; z� � E0sech
�
dE0

�h

�
t� z

V

��
, (8)

where E0 � �htÿ1p dÿ1 is the field amplitude. This expression
for a stationary pulse coincides with the formula derived by
Bullough and Ahmad [13] and presented by Bullough et al.
[14]. Since expression (8) does not involve a carrier wave,
such an electromagnetic pulse is an example of a video pulse.

The velocity of propagation of the stationary video pulse
(8) can be found from the above-defined duration and the
amplitude of this pulse. Similar to the McCall ^Hahn theory
of self-induced transparency (SIT) [28], these quantities are
related to each other in our case in such a way that a pulse
may invert a two-level system and switch it back to the initial
state within the pulse duration. After some algebra, we find
that

1
V 2 �

1
c 2

�
1� ay 2

1� y 2

�
� 1
c 2

�
1� 4�tp=tc�2

1� �tpoa�2
�
,

or

1
V 2 �

1
c 2

�
1� 8pnatd

2�hoa

�dE0�2 � ��hoa�2
�
, (9)

which coincides with the expression presented by Bullough et
al. [14].

Apart from solitary waves, the Maxwell ^ Bloch Eqns (6)
or (7) allow for the existence of another class of stationary
solutions ö cnoidal waves. Solutions of this class describe
periodic extended waves. Since Eqns (6) hold true so long
as the duration of a solitary wave is less or much less than
the relaxation times in the atomic subsystem, cnoidal waves
simply represent a mathematical example that falls beyond
the limits of the physical meaning of the starting equations.
Nevertheless it seems appropriate to mention also this class
of solutions to the Maxwell ^ Bloch equations in order to
illustrate the properties of the model considered.

3.2 A video pulse of polarised radiation in a resonance
medium
Consider a light pulse propagating in a resonance medium
consisting of two-level atoms with quantum transitions
between levels that are degenerate in projections of angular
momenta ja and jb [46, 47]. We will study the case of
ja � 1! jb � 0 transitions. It is convenient to introduce
the following notations for the elements of the density matrix
r̂ governing transitions between the states ja, mi � j ja � 1,
m � �1i and jbi � j jb � 0, m � 0i:

r12 � ha,ÿ 1jr̂ja,� 1i , r13 � ha,ÿ 1jr̂jbi ,

r23 � ha,� 1jr̂jbi , r11 � ha,ÿ 1jr̂ja,ÿ 1i ,

r22 � ha,� 1jr̂ja,� 1i , r33 � hbjr̂jbi ,

rkl � r�lk , l, k � 1, 2, 3 .

The generalised set of Maxwell ^ Bloch equations can be
written as

qE ��1�

qz 2
ÿ 1
c 2

q2E ��1�

qt 2
� 4p
c 2

q2

qt 2
hd13r31 � d31r13i , (10.1)

qE �ÿ1�

qz 2
ÿ 1
c 2

q2E �ÿ1�

qt 2
� 4p
c 2

q2

qt 2
hd23r32 � d32r23i , (10.2)

i�h
qr13
qt
�ÿ�hoar13�d13�r33ÿr11�E ��1� ÿ d23r12E �ÿ1� , (11.1)

i�h
qr23
qt
�ÿ�hoar23�d23�r33ÿr22�E �ÿ1� ÿ d13r21E ��1� , (11.2)

i�h
qr12
qt
� d13r32E ��1� ÿ d32r13E �ÿ1� , (11.3)

i�h
q
qt
� r11 ÿ r33� � 2�d13r31 ÿ d31r13�E ��1�

� �d23r32 ÿ d32r23�E �ÿ1� , (11.4)

i�h
q
qt
� r22 ÿ r33� � �d13r31 ÿ d31r13�E ��1�

� 2�d23r32 ÿ d32r23�E �ÿ1� . (11.5)

Here, E �q� is the spherical q component of the vector of the
electric field strength in the light wave (q � �1), dkl are the
matrix elements of the dipole moment operator of the atomic
transition ja � 1! jb � 0 (d13 � d23 � d �31 � d �32), and the
angle brackets indicate summation over all the atoms with
the frequency oa.

It would be convenient to use real variables and to intro-
duce the dimensionless electric field strength:

r13 � r1 � ir2 , r23 � s1 � is2 ,

r12 � p1 � ip2 , r33 ÿ r11 � n1 ,

r33 ÿ r22 � n2,
dE ��1�

�hoa

� q1 ,
dE �ÿ1�

�hoa

� q2 . (12)

Employing real variables, we can rewrite the considered set
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of equations as

qr1
qt
� ÿr2 ÿ q2p2 ,

qr2
qt
� r1 ÿ q1n1 � q2p1 ,

qs1
qt
� ÿs2 � q1p2 ,

qs2
qt
� s1 ÿ q2n2 � q1p1 ,

(13.1)
qp1
qt
� ÿq1s2 ÿ q2r2 ,

qp2
qt
� ÿq1s1 � q2r1 ,

qn1
qt
� 4q1r2 � 2q2s2 ,

qn2
qt
� 2q1r2 � 4q2s2 ,

q2q1
qx 2 ÿ

q2q1
qt 2
� a

q2r1
qt 2

,
q2q2
qx 2 ÿ

q2q2
qt 2
� a

q2s1
qt 2

, (13.2)

where t � oat; x � oazc
ÿ1, and the parameter a appeared

above in equation (7.1).
Eqns (13) describe the propagation of ultrashort (includ-

ing extremely short) pulses of polarised electromagnetic
radiation in a resonance medium. It is unlikely that the com-
plete solution to this set of equations can be found in the
analytical form. However, following the conventional
approach to the investigation of nonlinear waves, we can
find stationary solutions.

To do this,we assume again that the sought-for solution to
the set of Eqns (13) is described by functions depending on
the variable B � oa(t� z=V ). Omitting the details of the der-
ivation of the set of equations for normalised electric field
strengths q1 and q2, presented in Ref. [48], we will write
this set of equations in the final form:

d2q1
dy 2 �

ÿ
q 21 � q 22

�
q1 �

1
2
ÿ
q 20 n10 ÿ 1

�
q1 , (14.1)

d2q2
dy 2 �

ÿ
q 21 � q 22

�
q2 �

1
2
ÿ
q 20 n20 ÿ 1

�
q2 , (14.2)

where y � ���
2
p

B; and q 20 � aV 2(c 2 ÿ V 2)ÿ1.
Let us introduce parameters a2i � (q 20 ni0 ÿ 1)=2, i � 1, 2.

If the populations of excited levels are equal to each other and
all the atoms are in the ground state, we should set
n10 � n20 � 1 and a1 � a2 � O, which corresponds to the
case of an initially nonpolarised resonance medium. The sol-
ution to the set (13) can be written in the following simple
form:

q1�B� �
������
2O
p

e���sech
ÿ ������

2O
p

B
�
,

q1�B� �
������
2O
p

e�ÿ�sech
ÿ ������

2O
p

B
�
,

where e��� are the components of the unit vector determining
the polarisation states of the field in the pulse of electro-
magnetic radiation. The solution presented above depends
on the propagation velocity. However, it would be more con-
venient to employ the parameter q 20 . The real variables of the
density matrix of the medium are related to these solutions
by the formulas:

q1 � q 20 r1 , q2 � q 20 s1 ,

dq1
dB
� ÿq 20 r2 ,

dq2
dB
� ÿq 20 s2 ,

p1 � qÿ20 q1q2 , n1 � qÿ20
ÿ
2q 21 � q 22

� � n10 ,

n2 � qÿ20
ÿ
q 21 � 2q 22

� � n20 .

Now, switching back to the initial physical variables, we
can represent the electric field strength in the pulse of electro-
magnetic radiation as

E ����t; z� � e ���E0sech
�
dE0

�h

�
t� z

V
ÿ t0

��
. (15)

Eqn (15) is a simple extension of the results presented in
Ref. [13] to the case of a vector (polarised) ultrashort pulse
and a specific model of a resonance medium. Similar to the
expressions derived in Ref. [13], the duration tp of a station-
ary ultrashort pulse in Eqn (15) is expressed in terms of the
peak amplitude of the pulse, tp � �h(dE0)

ÿ1, whereas the
velocity of pulse propagation can be determined from the
definitions of parameters q0 and O:

1
V 2 �

1
c 2

�
1� 8pnatjd j2�hoa

��hoa�2 � 2�dE0�2
�
.

Along with solution (15), which describes a polarised
video pulse, we can also formally derive periodic solutions
corresponding to nonlinear anharmonic waves, including
cnoidal waves.

The populations of excited states corresponding to differ-
ent projections of the angular momentum are usually equal to
each other. However, we can break this symmetry, for exam-
ple by irradiating a resonance medium with weak circularly
polarised light. Then, in the case of cw radiation, the
steady-state population difference between energy levels
coupled by different transitions depends on the intensity
and the polarisation type of incident radiation. For a high-
power short pulse passing through a medium prepared in
such a way, the medium becomes polarised; i.e., the popula-
tions of excited levels differ from each other: n10 6� n20. For
such a medium, we should set a1 6� a2 in Eqn (14). If, follow-
ing Refs. [49, 50], we set q1 � g=f and q2 � h=f, then
equations (14) can be rewritten in the bilinear form:

D 2�g � f ��a 2
1 gf , D 2�h � f ��a 2

2hf ,

D 2� f � f ��g 2�h 2 ,
(16)

where D(a � b) � (da=dy)bÿ a(db=dy) are the Hirota opera-
tors [51, 52].

These bilinear equations can be solved in the following
way.The functions g, h, and f are represented as polynomials,
e.g.,

g � eg1 � e3g3 , h � eh1 � e3h3 , f � 1� e2f2 � e4f4 .

Substituting these expansions into Eqns (16) and equating
the coefficients appearing with the same degrees of e, we
arrive at a set of chained linear equations with variable coef-
ficients:

D 2�g1 �1� � a 2
1 g1 ,

D 2�h1 �1� � a22h1 ,

2D 2� f2 �1� � g 21 � h 2
1 ,

D 2�g3 �1� � a 2
1 g3 � a 2

1 g1 f2 ÿD 2�g1 �f2� ,
D 2�h3 �1� � a 2

2h3 � a 2
2h1 f2 ÿD 2�h1 �f2� ,

2D 2� f4 �1� � 2�g1g3 � h1h3� ÿD 2� f2 �f2� ,
D 2�g3 �f2� �D 2�g1 �f4� � a 2

1 �g1 f4 � g3 f2� ,
D 2�h3 �f2� �D 2�h1 �f4� � a 2

2 �h1 f4 � h3 f2� ,
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2D 2� f2 � f4� � g 23 � h 2
3 , D 2�g3 � f4� � a 2

1 g3 f4 ,

D 2�h3 � f4� � a 2
2h3 f4 , D 2� f4 � f4� � 0 :

Solving these equations sequentially, we derive the solu-
tion to the set (16):

g � 2
���
2
p

a1 exp�y1�
�
1� exp

ÿ
2y2 � a12

��
,

h � 2
���
2
p

a2 exp�y2�
�
1ÿ exp

ÿ
2y1 � a12

��
,

f � 1� exp�2y1� � exp�2y2� � exp�2y1 � 2y2 � a12� ,
where exp a12 � (a1 ÿ a2)=(a1 � a2), y1,2 � a1;2(yÿ y1,2); y1,2
are the integration constants, and the other integration con-
stants are chosen in such a way as to obtain the solution in
the form of a solitary wave. Now, the solution to the starting
set of equations (14) can be written as

q1�y��
2
���
2
p

exp�y1�
�
1�exp ÿ2y2 � a12��

1�exp�2y1��exp�2y2��exp�2y1 � 2y2 � a12�
, (17)

q2�y��
2
���
2
p

exp�y2�
�
1ÿ exp

ÿ
2y2 � a12

��
1�exp�2y1��exp�2y2��exp�2y1 � 2y2 � a12�

. (18)

Setting n10 � n20, i.e., considering the case of a nonpolar-
ised medium, we reduce the solution derived above to q1(y) �
q2(y) � a1sech�a1(yÿ y1)�. Rewriting this solution in terms of
the initial physical variables, we arrive at the expression for
the electric field in a circularly polarised video pulse deter-
mined by formula (15).

Thus we analysed the propagation of an extremely short
stationary pulse of an electromagnetic field in a resonance
medium with a degenerate upper energy level. This analysis
has shown that the parameters of such a pulse depend on
the state of the medium. The solution known for the scalar
case [13, 14] can be easily generalised to the case of a vector
video pulse if the condition n10 � n20 � 1 is satisfied for the
population differences between the ground and excited states
with different projections of the angular momentum.Thus we
obtain a circularly polarised half-cycle pulse corresponding
to an atomic transition. The velocity of such a video pulse
is independent of polarisation and coincides with the velocity
obtained by Bullough and Ahmad [13].

The new solution to the complete set of Maxwell ^ Bloch
equations exists if a previously prepared resonance medium
has an asymmetric population distribution in excited states
with different projections of the angular momentum,
n10 6� n20. One of the spherical components of the vector
of the electric field strength behaving in a way similar to
the electric field in the scalar case corresponds to a unipolar
transient of the electric field. The second component corre-
sponds to a sign-alternating solitary wave. Fig. 1 presents
time dependences of the spherical components of the vector
of the electric field strength in a light pulse for two different
values of the parameters n10 and n20. As q 20 n01 or q 20 n02
tends to unity from the right, the oscillating component
vanishes, and the video pulse as a whole becomes circularly
polarised.

A similar consideration can be performed for pulses of
polarised radiation propagating in media with ja � 0!
jb � 1 and ja � 1! jb � 1 transitions.

Based on solution (15), we can provide a more detailed
analysis of the applicability of the model of two-level atoms.
Let us find the spectral half-width of the video pulse. If the
duration of the video pulse is defined as tp � (2�hdE0)

ÿ1,

then the Fourier transform of this pulse is given by

E�o� �
��1
ÿ1

��E �q��t, z��� exp�iot�dt � p
2
E0tp sech

�
p
4
otp

�
.

Consequently, the spectral half-width Dop of the video pulse
is determined from the relation Doptp � (4=p) ln (2� ���

3
p

) �
1:677.

In contrast to the spectrum of a quasi-monochromatic
wave, E(o) reaches its maximum at the point o � 0. How-
ever, the amplitudes of Fourier components constituting
the wave packet (15) exponentially decrease with increase
in o. Thus, the model of a two-level atom is applicable in
the case when �hDop is less than, for example, one tenth of
the energy gap between the excited and ground states.

The application of the two-level model implies that we
ignore cascade transitions. The role of transitions of this
type was considered by Kaplan [19].

An additional restriction on the duration of a video pulse
described by both formula (15) and expressions (17) and (18)
is associated with the photoionisation limit for the amplitude
of the electric field: E0 4 Eat � 109 V cmÿ1. Since the dura-
tion tp is related to E0, we can infer that tp 5tat, where tat �
2�h(dEat)

ÿ1. Suppose that d � 1 D. Then we have tat � 70 fs.
Applying the relation between tp and Dop derived above, we
arrive at the photoionisation limit for the spectral half-width
of a video pulse: Dop 4Doph � 2:2561013 sÿ1.

Consequently, stationary video pulses may propagate in
resonance media, where the energy of excited states exceeds
the energy of the ground state by at least 10�hDoph (which cor-
responds to approximately 2610ÿ20 J).When the duration of
a video pulse is less than this limit (tat � 70 fs), then the
amplitude of the stationary pulse may become so high that
the perturbative treatment of the interaction of atoms with
the electromagnetic field may become inadequate. Kaplan
and Shkolnikov [20], for example, proposed to consider an
atomic system classically if the strengths of the electric
and atomic fields are comparable with each other. In such
a situation, it would be interesting to investigate the interac-
tion of a video pulse of polarised radiation with a nonlinear
oscillator with two (or more) degrees of freedom.
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Figure 1. Dependence of spherical components of a video pulse on the
dimensionless time y � ���

2
p

oa(t� z=V ) for (a) q 20 n01 � 4 and q 20 n02 � 7
and (b) q 20 n01 � 9 and q 20 n02 � 8.
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3.3 The propagation of pulses of unidirectional waves
The stationary video pulses considered above are particular
examples demonstrating the possibility of propagation of
extremely short pulses. To find a broader class of solitary
waves of this type by using analytical methods, we have to
make additional assumptions. As mentioned above, the con-
dition of the existence of stationary video pulses implies the
implicit choice of one of possible directions of pulse prop-
agation. Thus it would be natural to adopt from the very
beginning the approximation of unidirectional waves in the
basic complete set of Maxwell ^ Bloch equations without
restricting ourselves to the requirement that the solutions
should be stationary.

The set of equations governing the propagation of short
electromagnetic pulses in this approximation can be derived
from the complete set (6) by replacing the wave Eqn (6.1) by
the reduced wave equation in accordance with the rule
described in Section 2. Thus, Eqn (5) in the case under con-
sideration can be rewritten as

qE
qz
� 1
c

qE
qt
� ÿ

�
2pd
c

��
qr1
qt

�
.

The Bloch Eqns (6.2) remain unchanged. Using new nor-
malised variables t�oa(tÿz=c), z� (4pnatd

2=c�h)z, and
q � (2d=�hoa�E, we can represent the reduced Maxwell ^
Bloch (RMB) equations in the following form:

qq
qz
� ÿ q

qt
hr1i ,

qr1
qt
� ÿr2 ,

qr2
qt
� r1 � qr3 ,

qr3
qt
� ÿqr2 .

(19)

Here, the angle brackets indicate summation over all the
two-level atoms and division of the resulting sum by the
concentration of these atoms nat.

It is well known [14, 15, 53] that the set of RMB equations
can be represented as the condition of compatibility for a pair
of linear matrix equations, which provides a background for
the application of the method of the inverse scattering prob-
lem (ISP) [54, 55] to the solution of the set (19). Assuming
that all the atoms of a resonance medium are in the ground
state before the onset of the light pulse and after the propa-
gation of the light pulse through the medium, we can find
exact solutions to the RMB equations describing the propa-
gation of video pulses and ultrashort pulses with a carrier. All
the details of such a solution of the set (19) by the ISP method
can be found in Ref. [53]. Below we present only the results of
this analysis.

Generally, an N-soliton solution to the RMB equation is
written as

q�z, t�2 � 4
d2

dt2
ln det

ÿ
1� Ĥ �Ĥ� , (20)

where the matrix Ĥ is defined by its matrix elements

Hnm �
�CnCm�1=2 exp�it�ln ÿ l �m��

ln ÿ l �m
,

Cn�z� � Cn�0� exp
��

2ilnoa

4l 2
n ÿ o 2

n

�
z
�

.

The complex numbers ln and Cn, where n, m � 1, 2, . . . , N,
are determined by the initial conditions for the electric field
in the pulse at the input of the medium (for z � 0).

Following Ref. [53] we can reduce expression (20) to a
more symmetric and convenient form. First, we define matrix
Ĵ such that

�Ĥ � Ĵ �nm �
ÿi exp�i�ln ÿ lm�tÿ an ÿ am�

ln � lm
, (21.1)

�Ĵ�Ĥ ÿ1�nm�
ÿi exp�i�ln�lm�t�an�am�2�bn�bm��

ln � lm
,

(21.2)

where the parameters an and bn can be determined from the
following expressions:

iC�z� � exp�ÿ2an�bz�� ,Y
j

�lj � ln�
�Y
j6�n
�lj ÿ ln�

�ÿ1
� ÿi exp�2bn� .

Recall that q(z,t) is a real quantity. Consequently, the num-
bers lm and cn are either purely imaginary or form anti-
Hermitian pairs, l �m � ÿln and C �m � ÿCn. Here, we do
not discuss the proof of this statement, which is based on
the properties of the spectral problem of the ISP method
Ĥ � Ĵ � Ĵ � Ĥ � holds true, and Eqns (21) yieldÿ

Ĵ � Ĥ ÿ1 � Ĵ � Ĥ ��nm �Mnm exp�bn � bm� ,

where

Mnm �
cosh�Wn � Wm�
2i�ln � lm�

,

Wn �
1
4

�
kntÿ

�
4oakn
k 2
n � o 2

a

�
z� dn

�
, kn � 4iln .

Using these expressions, we can rewrite formula (20) in a
more elegant form:

q�z; t�2 � 4
d2

dt2
ln det

ÿ
M̂
�
. (22)

Since all the numbers lm can be grouped into L1 purely
imaginary numbers and L2 anti-Hermitian pairs (with
N � L1 � 2L2), N-soliton solutions to the RMB equations
consist of L1 fundamental solitons (1-solitons) and L2 breath-
ers (or bions, i.e., coupled soliton ^ antisoliton pairs).
Breathers are defined as stable solitary waves that display
intrinsic oscillations. In the theory of self-induced transpar-
ency, such solitary waves are called 0p pulses, as opposed
to 2p pulses, which correspond to 1-solitons [14, 43]. Breath-
ers, similar to 1-solitons, are stable with respect to collisions
with each other and with other solitons.

The solution to the RMB equations corresponding to a 1-
soliton is written as

qoa�z; t� � k1sech
�
1
2
k1

�
tÿ z

V1

��
, (23)

where V1� c�1�ha0oa�k 2
1 � 4o2

a�ÿ1i�ÿ1 is the group velocity,
and a0 � 4pnatd

2=�hoa. This solution is an RMB version of
the stationary solution to the complete set of Maxwell ^
Bloch Eqns (8.2). An electromagnetic pulse of this type has
no carrier wave and represents a unipolar transient of elec-
tromagnetic radiation. Such a wave can be considered to be a
video pulse according to the definition given above.
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One of the two-soliton solutions to the RMB Eqns (19) is
written as

qoa�t, z� �
�
k 2
1 ÿ k 2

2

k 2
1 � k 2

2

�

� k1sech W1 � k2sech W2
1ÿB12�tanh W1 ÿ tanh W2 ÿ sech W1sech W2�

, (24)

where

B12 �
2k1k2
k 2
1 � k 2

2
, Wn �

kn
2

�
tÿ z

c

�
1� 4a0oa

k 2
n � 4o2

a

��
.

This solution describes the collision of two video pulses
(Fig. 2) in the same sense as in the collision of two
McCall ^Hahn 2p pulses in the theory of self-induced trans-
parency. However, a 2p pulse is a soliton whose envelope
varies slowly in time,whereas in the case under consideration,
we deal with real strengths of the electric field. Moreover, the
two-soliton solution to the set of Eqns (19) can be employed
to generalise a concept of a 2p pulse. Suppose that l1 and l2
or k1 and k2 form a pair of anti-Hermitian complex numbers
(i.e., k1 � ÿk �2 ). In this case, the two-soliton solution to RMB
equations corresponds to a breather representing a real soli-
tary wave with intrinsic oscillations (Fig. 3). The envelope of
this wave is an analogue of a McCall ^Hahn 0p pulse.

Indeed, suppose that k1� ÿk �2 � k0 �2iO and d1�ÿd �2 �
d0 � id00. Then, expression (24) gives the exact solution to
Eqns (19) [43]:

qoa�t; z� � 2k0sech Wreal

�
cos Wim ÿ g sin Wim tanh Wreal
1� g2 sin2 Wimsech2Wreal

�
, (25)

where g � k0=2O and

Wreal

� 1
2
k0

�
tÿ z

c

�
1� 4a0oa

�
k 2
0 � 4

ÿ
o2
a � O 2��

k 2
0�8k 2

0

ÿ
o2
a�O 2��16ÿo2

a�O 2�2
��
�d0,

Wim

� O
�
tÿ z

c

�
1� 4a0oa

�
4
ÿ
o2
a ÿ O 2�ÿ k 2

0
�

k 2
0�8k 2

0

ÿ
o2
a�O 2��16ÿo2

a�O 2�2
��
�d00 :

Similar to the theory of self-induced transparency for a 0p
pulse, the solution to the RMB equations given by Eqns (25)
describes a pulse with a zero area. Let us choose parameters
k0 and O such that k0 5O. Then, expanding expression (25)
up to the zeroth order in g, we find that

qoa�t; z� � 2k0sech Wreal cos Wim.

Thus, a McCall ^Hahn 2p pulse is the limiting case of a
breather corresponding to the set of RMB Eqns (19).
Expanding expression (25) as a power series in g, we can
find corrections to the stationary pulse in the theory of
self-induced transparency (i.e., corrections to a 2p pulse).
In the first order in g, expression (25) yields

qoa�t, z� � 2k0sech Wreal cos�Wim � f�t, z�� , (26)

where f(t, z) � g tanh Wreal. This formula describes a phase-
modulated (or chirped) 2p pulse. Defining the instanta-
neous frequency as Doch � qf=qt, we find that Doch �
g2oasech

2Wreal.
Thus the theory of propagation of extremely short pulses

of electromagnetic radiation based on the RMB Eqns (19) is
an interpolating theory, which describes the range of param-
eters stretching from the case of video pulses arising in the
form of unipolar transients of the electromagnetic field to
the case of ultrashort pulses whose envelopes vary slowly
in space and time. The disadvantages of this theory stem
from the model of two-level atoms constituting a resonant
medium within the framework of this approach.

4. Two-level media under quasi-resonance
conditions
If a two-level medium is irradiated with a monochromatic
wave with amplitude Em, then the populations of resonant
levels under conditions of exact resonance vary periodically
in time with the Rabi frequency oR � dEm=�h. Generally,
when the electromagnetic wave is not monochromatic, we
can formally define the instantaneous Rabi frequency follow-
ing the same approach and understanding Em as the in-
stantaneous strength of an electromagnetic radiation pulse.
The Rabi frequency thus defined is not associated with the
oscillation frequency of populations in the relevant energy
levels, but it serves as a measure of the electric field strength
in the radiation wave.

Suppose that the pulse amplitude is such that the Rabi
frequency is low compared with the frequency of the reso-
nance transition. Then, a small parameter e � oR=oa can
be introduced in the theory describing the propagation of
such pulses. Now we can try to solve approximately the Bloch
equations by representing the solutions to these equations as

q
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ÿ15 t ÿ10
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0
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2

Figure 2. Collision of two video pulses in accordance with Eqn (24) for
normalised pulse durations tp1;2 � 1 and 0.5, respectively.
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Figure 3. A video pulse in the form of a breather with a few cycles of the
electric field strength, which is similar to the McCall ^Hahn 0p pulse.
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power-series expansions in e. Substituting such solutions into
the formulas describing the polarisation of the medium, we
can derive a nonlinear wave equation governing the evolution
of the electric field strength in an electromagnetic pulse.

4.1 The case of a scalar wave
Consider the Bloch Eqns (6.2) governing the evolution of a
two-level atom under the action of an electromagnetic pulse
characterised by a scalar electric field strength E. Intro-
ducing new variables q � p � iE=jE0j, B � r1 � ir2, and
C � r1 ÿ ir2, we can represent Eqns (6.2) as

oR
qB
qT
ÿ ioaB � 2oRqr3 , oR

qC
qT
� ioaC � ÿ2oRpr3 ,

(27.1)

qr3
qT
� Bpÿ Cq , (27.2)

where oR � djE0j=�h; jE0j is the maximum value of jEj, and
T � oRt. The formal integration of Eqn (27.2) yields

r3 � s�
� T
ÿ1
�Bpÿ Cq� dT 0 ,

where s � ÿ1 for an absorbing medium. Introducing two-
component vectors v � colon�B, C� and w� colon(q, p), we
can represent Eqns (27.1) as a single vector equation:ÿ

oRR̂ÿ ioa

�
v � 2oRsw , (28)

where

R̂ � 1 0
0 ÿ1

� �
q
qT
ÿ 2

q

�
p ÿq

�
q

p

�
p ÿp

�
q

0BB@
1CCA

is the matrix operator, which is also employed in the theory
of solitons [55]. The integral operators u

�
v, involved in the

expression for R̂, are defined in the following way:�
u

�
v

�
f�T � � u�T �

� T
ÿ1

v�t� f�t�dt , Vf�t� .

Using the resolvent operator Ĝ � (1� ieR̂)ÿ1, we can
write the solution to Eqn (28) as v � 2iseĜw. Since the
parameter e � oR=oa is small, this operator can be repre-
sented as a power series in e:

Ĝ � ÿ1� ieR̂
�ÿ1 � 1ÿ ieR̂ÿ e2R̂ 2 � . . . .

Using the relations that follow from the definition of the
operator R̂,

R̂
q
p

� �
�

qq
qT

ÿ qp
qT

0BB@
1CCA , R̂ 2 q

p

� �
�

q2q
qT 2 ÿ 2q�pq�

q2p
qT 2 ÿ 2p�qp�

0BBB@
1CCCA ,

with an accuracy up to the second order in e, we find that

B � 2ies
�
q ÿ ie

qq
qT
ÿ e2

q2q
qT 2 � 2e2q�qp�

�
,

C � 2ies
�
p� ie

qp
qT
ÿ e2

q2p
qT 2 � 2e2p�pq�

�
.

Then, taking into account that r1 � (B� C)=2 and q � p, we
derive the expression for the polarisation per single atom:
r1 � 2ies(q ÿ e2q2q=qT 2 � 2e2q3). Thus the expression for

the mean polarisation of a single atom,

hr1i � ÿ
�
2ds
�hoa

�
E �

�
2ds
�ho3

a

�
q2E
qt 2
�
�
4d 3s

�h 3o3
a

�
E 3 . (29)

can be substituted into the right-hand side of the wave
Eqn (6.1).

In what follows,we will consider several examples of wave
equations.

4.2 The nonlinear wave equation
Substituting expression (29) into Eqn (6.1) and taking into
account the inhomogeneous broadening of the resonance
absorption line, we arrive at the following equation [56]:

q2E
qz2
ÿ 1
V 2

q2E
qt 2
� q2

qt 2

�
a1E

3 � b1
q2E
qt 2

�
, (30)

where the coefficients a1 and b1 and the renormalised veloc-
ity V of the electromagnetic radiation pulse are given by

a1 �
�
16pnatsjd j4
c2�h 3o3

a

�
, b1 �

�
8pnatsjd j2
c2�ho3

a

�
,

1
V 2 �

1
c2

�
1ÿ

�
8pnatsjd j2

�hoa

��
.

Introducing new variables t � (jb1jV 4)ÿ1=2z and z �
(jb1jV 2)ÿ1=2t and the normalised electric field strength in
the radiation pulse u(t; z) � (ja1jV 2)1=2E(z; t), we can repre-
sent Eqn (30) as

q2u
qt2
� q2

qz 2

�
u� su 3 � s

q2u

qz 2

�
, (31)

where s � sign a1 � sign b1 determines the sign of the equi-
librium population difference between the resonance energy
levels. This nonlinear wave equation governs the propagation
of extremely short radiation pulses in a dispersive nonlinear
medium in the case when the amplitudes of these pulses are
small compared with the strength of the atomic field. This
approach is free of limitations associated with the use of the
slowly varying envelope approximation, but it has some new
restrictions, the model of two-level atoms being the main one
among them.

We should note that the nonlinear wave Eqn (31) differs
from the well-known Boussinesq equation (see Ref. [55],
p.117) by a higher intensity. Therefore the equation consid-
ered does not seem to be totally integrable. However, it is
not very difficult to find stationary solutions to Eqn (31).

Suppose that u depends on a single variable y � z� at
and the field vanishes simultaneously with all its variables
for t! �1. This requirement can be considered as a boun-
dary condition for a stationary solitary wave with zero
asymptotics. Applying Eqn (31), we find that d2u=dy 2 �
s(a2 ÿ 1)uÿ u3. This equation is often encountered in the
theory of nonlinear waves, and the solution to it can be
found by using standard methods. The real solution to this
equation meeting the boundary conditions exists for
p 2 � s(a2 ÿ 1) > 0. Integrating this equation, we arrive at
the following solution:

u�y� � p���
2
p

cosh� p�yÿ y0��
,

where y0 is the integration constant, which can be set equal to
zero. Using the initial normalised variables, we can rewrite
the solution to Eqn (31) as
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u�z; t� � u0sech
� ���

2
p

u0�z� t
ÿ
1� 2su20

�1=2�	 . (32)
Different signs of the argument of the function on the

right-hand side of Eqn (32) correspond to different propaga-
tion directions of the stationary solitary wave. Note that the
maximum amplitude of the field strength is bounded in an
absorbing medium (i.e., for s � ÿ1): u20 4 0:5.

Along with stationary solutions in the form of video
pulses (32), Eqn (31) has periodic solutions corresponding
to cnoidal waves and solutions with nonzero asymptotics
for t! �1, which correspond to dark solitary waves
[57, 58]. A class of algebraic solitons can be separated among
solitary dark waves. These solitons correspond to the waves
whose amplitudes nonexponentially decay at infinity.

For the equation considered, such a solution can be
represented as

u�y� � u1 ÿ
4u1

1� �z� t�1� 3su21�1=2�2
,

where u1 � lim u for t! �1. These solutions do not corre-
spond to ultrashort pulses of electromagnetic radiation, and
we mention them only to illustrate the diversity of stationary
solutions to the nonlinear wave Eqn (31).

4.3 Unidirectional nonlinear scalar waves
To find the polarisation in the reduced wave equation

qE
qz
� 1
c

qE
qt
� ÿ 2pnatd

c

�
qr1
qt

�
,

which is derived with an assumption that electromagnetic
waves propagate in only one of many possible directions
[14, 56], we substitute expression (29) for the polarisation
into this equation to arrive at the following equation:

qE
qz
� 1
V

qE
qt
� aE 2qE

qt
� b q

3E

qt 3
� 0 , (33)

where the coefficients and the group velocity V are given by

a �
�
24pnatsjd j4
c�h 3oa

�
, b1 �

�
4pnatsjd j2
c�ho3

a

�
,

1
V
� 1
c

�
1ÿ

�
4pnatsjd j2

�hoa

��
.

Eqn (33) written in terms of new variables t � jbjz,
z � tÿ z=V , and u(t, z) � (a=6b)1=2E(z, t) has a form of a
modified Korteweg ^ de Vries (mKdV) equation:

s
qu
qt
� 6u2

qu
qz
� q3u

qz 3
� 0 .

It is well known [59] that this equation is totally integra-
ble, and soliton solutions to it can be obtained with the use of
the ISP method [54, 55]. Specifically the one-soliton solution
is written as

us�t, z� � u0sech
ÿ
u30tÿ su0z� d0

�
, (34)

where the parameters u0 and d0 can be determined from the
initial conditions within the framework of the ISP method.
This solution corresponds to an electromagnetic pulse that
can be interpreted as a video pulse. Multisoliton solutions to
the mKdV equation describe the propagation and interaction
of several video pulses of different polarity, as well as breath-
ers (Fig. 4), which can be interpreted as ultrashort pulses
having a carrier wave. Let us consider such a breather sol-
ution to the mKdV equation [59],

ub�t, z� � ÿ
4u0
v0

v cosh W1 sin W2 ÿ u0 sinh W1 cos W2
cosh2 W1 � �u0=v0� cos2 W2

, (35)

where W1�2u0z� 8u0(3v
!
0 ÿ u20)t� d1 and W2�2v0z�

8v0(v
2
0 ÿ 3u20)t� d2.

Parameters u0; v0; d1, and d2 are determined from the ini-
tial conditions. Provided that u0 5 v0 under these conditions,
solution (35) can be represented as

ub�t, z� � ÿ4u0sech W1 sin W2 .

This expression describes an ultrashort pulse with a hyper-
bolic secant envelope and a high-frequency (harmonic)
carrier wave. Thus we can assume that the breather solution
to Eqn (33) describes femtosecond optical pulses in a more
adequate way than the solution to the nonlinear SchrÎdinger
equation, which is often employed in nonlinear fibre optics
[60].

We should note that some of the solutions to Eqn (33) cor-
respond to dark solitons, which attract considerable attention
in nonlinear fibre optics [57, 58]. Algebraic solitons [61, 62],
e.g.,

u�t, z� � u0 ÿ
4u0

1� 4u20�zÿ 6u20t�2
are an example of solutions of this class.

Thus Eqn (33) describes optical ultrashort and extremely
short pulses of electromagnetic radiation, as well as video
pulses in a dispersive nonlinear medium without the use of
the approximation of slowly varying complex envelopes in
the case of unidirectional wave propagation. This conclusion
has also been reached in Ref. [63], where analysis was per-
formed by using of another approach.

4.4 Quasi-resonant propagation of a polarised pulse
To describe the propagation of a pulse of polarised electro-
magnetic radiation under quasi-resonance conditions, we
will employ a model of a two-level medium, which is based
on generalised Bloch Eqns (11) and which was considered in
Section 3.2. Suppose that the amplitude of the electric field
in the pulse is so small that the condition e �
oR=oa � jd13jE0=�hoa is satisfied, where E0 � max jE ��1�j
is the constant amplitude of the electric field. The set of

ÿ4 0 4 t

ub�t; z � 1�

ÿ1:0

ÿ0:5

0

0.5

1.0

Figure 4. Abreather of the mKdVequation as an example of an extremely
short pulse of electromagnetic radiation in a quasi-resonance medium.
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Eqns (11) can be solved by using the resolvent operator
method [64] in the same way as was done in the case of
scalar waves in Section 4.1. Introducing auxiliary notations

B1 � r13 , B2 � r23 , C1 � r31 , C2 � r32 ,
oRq1 � i�hÿ1d13E

��1� , oRq2 � i�hÿ1d23E
�ÿ1� ,

oRr1 � i�hÿ1d31E
��1� , oRr2 � i�hÿ1d32E

�ÿ1� ,

T � oRt , oR � jd13jE0=�h ,

we can rewrite the generalised Bloch Eqns (11) in the follow-
ing form:

oR
qB1

qT
� ioaB1 � oRq1�r11 ÿ r33� � oRq2r12 , (36.1)

oR
qB2

qT
� ioaB2 � oRq2�r22 ÿ r33� � oRq1r21 , (36.2)

oR
qC1

qT
� ÿioaC1 ÿ oRr1�r11 ÿ r33� ÿ oRr2r21 , (36.3)

oR
qC2

qT
� ÿioaC2 ÿ oRr2�r22 ÿ r33� ÿ oRr1r12 , (36.4)

qr12
qT
� �B1r2 ÿ C2q1� ,

qr21
qT
� �B2r1 ÿ C1q2� , (37.1)

q
qT
�r11 ÿ r33� � 2�B1r1 ÿ C1q1� � �B2r2 ÿ C2q2� , (37.2)

q
qT
�r22 ÿ r33� � �B1r1 ÿ C1q1� � 2�B2r2 ÿ C2q2� . (37.3)

Formally solving Eqns (37), we derive

r12 � Î�B1r2 ÿ C2q1� , r21 � Î�B2r1 ÿ C1q2� , (38.1)

�r11 ÿ r33� � s� 2Î�B1r1 ÿ C1q1� � Î�B2r2 ÿ C2q2� , (38.2)
�r22 ÿ r33� � s� Î�B1r1 ÿ C1q1� � 2Î�B2r2 ÿ C2q2� , (38.2)
where s � ÿ1 for an absorbing medium and the integration
operator Î� f � was used. It is convenient to introduce matri-
ces Ĵdiag(1;ÿ1; 1;ÿ1), w � colon(B1; C1; B2; C2), and c �
colon(q1; r1; q2; r2) and an operator R̂ � Ĵ q=qT ÿ L̂, where
L̂ is the matrix of integral operators defined in the previous
sections:

L̂

�

2q1

�
r1�q2

�
r2 ÿ2q1

�
q1 q1

�
r2 ÿq1

�
q2ÿq2

�
q1

2q1

�
r1 ÿ2r1

�
q1ÿr2

�
q2 r1

�
r2�r2

�
r1 ÿr1

�
q2

q2

�
r1 ÿq2

�
q1ÿq1

�
q2 2q2

�
r2�q1

�
r1 ÿ2q2

�
q2

r2

�
r1�r1

�
r2 ÿr2

�
r1 2r2

�
r2 ÿ2r2

�
q2ÿr1

�
q1

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

.

Now, Eqns (36) can be represented in the form of a matrix
equation with respect to w: (1� ieR̂)w � isec. Using the
resolvent operator Ĝ � (1� ieR̂)ÿ1, we can express the sol-
ution to this equation in the form of a series w � ise(1�
ieR̂ÿ e2R̂ 2 � :::)c. Restricting our consideration of this
series to the terms of the third order in e, we can write the
explicit approximate solution to Eqns (36):

w �
B1
C1

B2
C2

0BB@
1CCA� ise

q1 ÿ ie
qq1
qT
ÿ e2

q2q1
qT 2 � 2e2q1�q � r�

r1 � i
qr1
qT
ÿ e2

q2r1
qT 2 � 2e2r1�q � r�

q2 ÿ ie
qq2
qT
ÿ e2

q2q2
qT 2 � 2e2q2�q � r�

r2 � ie
qr2
qT
ÿ e2

q2r2
qT 2 � 2e2r2�q � r�

266666666666664

377777777777775
. (39)

Thus, with an accuracy not exceeding e3, the polarisations
P ��1� � d13r31 � d31r13 and P �ÿ1� � d23r32 � d32r23 on the
right-hand sides of the wave Eqns (10) are described by the
approximate expression

P �q� �ÿ 2sjd13j2
�hoa

�
E �q�ÿ 1

o2
a

q2E �q�

qt 2
ÿ2jd13j2
��hoa�2

�E � E�E �q�
�
.

(40)

Substituting Eqn (40) into the equations for the fields, we can
write the nonlinear wave equation approximately describing
the evolution of the pulse of the electromagnetic wave:

q2E
qz2
ÿ 1
V 2

q2E
qt 2
ÿ b q

4E
qt 4
ÿ a q2

qt 2
�ÿ
E � E�E� � 0 , (41)

where a�h16pnatsjd13j4=c2(�hoa)
3i and b�h8pnatsjd13j2=c2�ho3

ai.
The velocity of the pulse V , which changes because of the
dispersion introduced by the resonance medium, is given by

V ÿ2 � cÿ2
�
1ÿ

�
8pnatsjd13j2

�hoa

��
:

Using new normalised variables, we can write W(t; B) �
V

������jajp
E(x; t), t � V ÿ2jbjÿ1=2, and z � V ÿ1jbjÿ1=2t. The non-

linear wave equation can then be written in a more elegant
form:

q2W
qt2
� q2

qz 2

�
W � s�W �W�W � s

q2W
qz 2

�
. (42)

This expression is a simple extension of the nonlinear
wave equation from Ref. [56] to the case of polarised radia-
tion.

Solution in the form of a running wave is often the sim-
plest solution to nonlinear evolution equations. It would be
natural to find such a solution for Eqn (42). Let the
normalised field W(t; z) depend on a single variable
y � z� at. Then, Eqn (42) yields the following equation
for the complex field Z � W1 � iW2:

d2Z
dy 2 � p 2Z ÿ jZj2Z , (43)

where p 2 � s(a2 ÿ 1) > 0.
Reducing Eqn (42) to Eqn (43) we took into account that

the electromagnetic field vanishes at infinity, which means
that the integration constants should be equal to zero. Setting
Z � W exp (iF), we can employ Eqn (43) to derive a set of
equations for real variables:

d2W
dy 2 ÿW

�
dF
dy

�2
�p 2WÿW 3 , 2

dF
dy

dW
dy
�W d2F

dy 2 � 0 .

(44)

Multiplying the second equation in set (44) byW and inte-
grating the resulting expression, we obtain the integral of
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motion,W 2dF=dy� const � 0.The choice of the integration
constant is determined by the boundary conditions for the
electric field at infinity. Since the solution to Eqns (44)
with W � 0 is of no interest, we have to impose the require-
ment dF=dy � 0 for all the values of the variable y � B �at.

Thus, the stationary solutions to Eqn (42) describing the
propagation of a short pulse of electromagnetic radiation can
be derived with the assumption that the polarisation state (the
vector e � E=jEj � fe1 �W cosF, e2 � W sinFg) of the
radiation wave remains unchanged in the process of radiation
propagation. In such a situation, Eqn (42) or the first equa-
tion in set (44) is reduced to Eqn (16) from Ref. [56].
Using the well-known results, we can readily write the rele-
vant solutions.

For zero-boundary conditions with t! �1, the station-
ary solution (9) can be represented as

W�z� at��W0esech
� ���

2
p

W0�z� t�1�2sW 2
0 �1=2ÿz0�

	
, (45)

where the integration constant z0 can be set equal to zero.
For nonzero boundary conditions and with a fixed polar-

isation vector, the stationary solutions have the form of a
solitary dark wave, of algebraic solitary waves similar to
those considered in Section 4.2, and of nonlinear periodic
waves [56]. The analysis of solutions of this class falls beyond
the scope of this paper.

Let us examine whether the solution derived above is con-
sistent with our assumption that the Rabi frequency is much
lower than the characteristic frequency �o of quantum transi-
tions.Using nonnormalised (physical) variables, we can write
the solution (45) in the following way:

E�z; t� � E0e sech
�
tÿ1s

�
t� az

V
ÿ t0

��
, (46)

where ts � Eÿ10 (jbj=2jaj)1=2 and a � (1� 2sE 2
0 V

2jaj)1=2. The
spectral width of Eqn (46) can be estimated as � tÿ1s . Con-
sequently, the resonance approximation remains applicable if
tÿ1s 5 �o. Employing the definition of the parameters jaj and
jbj involved in Eqn (41), we can estimate the ratio of these
parameters as jaj=jbj � 2jd13j2 �o2�hÿ2 (where we neglected
inhomogeneous broadening and all the frequencies oa were
replaced by �o). Thus the condition of the resonance approxi-
mation coincides with the condition of the smallness of the
amplitude: oR 5 �o.

If we consider the propagation of a pulse of electromag-
netic radiation in the approximation of unidirectional waves,
then Eqns (10) should be replaced by a pair of reduced Max-
well equations:

qE ��1�

qz
� 1
c

qE ��1�

qt
� ÿ 2pnat

c

q
qt



P ��1�

�
, (47)

where the polarisations P ��1� are defined by expressions
(40). Substituting Eqn (40) into Eqn (47) for the fields, we
arrive at the nonlinear equation describing approximately
the evolution of a pulse of the electromagnetic wave:

qE
qz
� 1
V

qE
qt
� b q

3E
qt 3
� a q

qt

�ÿ
E � E�E� � 0 , (48)

where the parameters a and b are two times smaller than
the corresponding parameters in Eqn (41), and the propa-
gation velocity V ÿ1 � cÿ1(1ÿ h4pnatsjd13j2=�hoai�.

Using new normalised variables t � jbjz, z � tÿ z=V ,
and c(t,z)� �������

a=b
p �E ��1�(z; t)�iE �ÿ1�(z,t)�, we can represent

the nonlinear Eqn (48) as

s
qc
qt
� q
qz

�
q2c

qz 2
� jcj2c

�
� 0 . (49)

This equation, which is referred to as the complex mkdV
equation, was considered in Ref. [65]. If we assume that
the phase c of the complex field remains unchanged in the
process of propagation, then expression (49) is reduced to the
conventional (real) mKdV equation. In principle, the latter
equation can be solved by using the ISP method [59], and
soliton solutions to this equation can be written in the
explicit form.The mKdV equation and solutions to this equa-
tion were discussed earlier in Section 4.3, where the 1-soliton
and breather solutions were given by formulas (34) and (35).

We have no solution for a more general situation, when
Eqn (49) is not reduced to a real mKdV equation. We may
anticipate that the nonsoliton character of solutions to this
equation should be manifested most clearly when separate
pulses interact with each other. Note that Eqn (49) may
have solutions describing the propagation of extremely short
pulses (and video pulses as a particular case of such pulses)
and pulses of polarised electromagnetic radiation enveloping
an arbitrary number of field cycles. Such signals are not rep-
resented as quasi-harmonic waves in this case.

5. The propagation of electromagnetic pulses
in media with a cubic nonlinearity
Consider the propagation of a pulse of electromagnetic radi-
ation in the approximation of a unidirectional wave. Suppose
that resonance transitions are absent in the nonlinear medi-
um. Such a model was analysed by Vuzhva [66], who studied
self-induced transparency in ion crystals within the frame-
work of the Duffing model for a nonlinear nonresonant
medium. The Maxwell equation for slowly varying envelopes
in this case has the form of Eqn (5). It would be instructive to
consider two cases of the Duffing model describing a par-
ticular situation of a medium with a cubic nonlinearity. The
approximation of a medium with a cubic nonlinearity should
be understood as an assumption that the third-order suscept-
ibility is the first nonzero nonlinear susceptibility determi-
ning the nonlinear polarisation of a medium in a given field.

5.1 The scalar Duffing model
Let us supplement Eqn (5) for the electric field strength with
an equation describing the polarisation P � natdaP1:

q2P1

qt 2
� o2

aP1 � baP
3
1 �

e 2

mda
E , (50)

where P1 is the coordinate related to normal oscillations of
an anharmonic one-dimensional oscillator. We assume that
all the oscillators have equal frequencies oa of natural oscil-
lations and ignore the relaxation of oscillations. Introducing
dimensionless variables

z � z

ctp0
, t �

�
tÿ x

c

�
tÿ1p0 ,

E � E0q�z, t� , p � 2pnatdaE
ÿ1
0 P1 ,

Q � 2pnatdaE
ÿ1
0

qP1

qt

we can represent the set of equations (5) and (50) in the
following form:
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qq
z
� ÿQ ,

qp
qt
� Q ,

qQ
qt
� v 2a p� 2bap

3 � aaq , (51)

where aa � (2pe 2natdat
2
p0=m), ba � (ba=2)(E0tp0=2pnatda)

2,
and va � oatp0.

To find the stationary solution to this set of equations, we
assume that the variables q, p, and Q depend on a single var-
iable Z � tÿ z=V (V is the velocity of the stationary pulse).
Then, Eqns (51) can be rewritten as

qq
qZ
� VQ ,

qp
qZ
� Q ,

qQ
qZ
� v 2a p� 2bap

3 � aaq . (52)

The first two equations of this set give q(Z) � V p(Z). The set
(52) also allows us to find the relation between Q(Z) and p(Z):
Q 2� (aaV ÿv 2

a )p
2ÿ bap

4. In the case when aaV < v 2a , the
equality Q � p � 0 is the only solution to the considered
equation, given that p and Q are real. Consequently, a non-
trivial solution to Eqn (52) exists only for aaV > v 2a , which
implies that the velocity V of the stationary pulse is always
higher than the critical velocity Vc� v 2

a =aa�2o2
a=o

2
p, where

op� (4pe 2na=m)1=2 is the frequency of plasma oscillations.
We should note that the stationary pulse considered in

terms of variables z and t propagates with the velocity
Vst � cV (1� V )ÿ1, which meets the condition

c > Vst 5 c
2o2

a

o2
a � o2

p
.

The shape of the stationary pulse is determined by set (52):

q�Z� � V
�
aaV ÿ v 2a

ba

�1=2
sech

�
Z
�
aaV ÿ v 2a

�1=2�
. (53)

This solution describes an extremely short pulse of electro-
magnetic radiation arising in the considered model of a
nonlinear medium. Such a pulse has no carrier wave and
can be treated as a video pulse. A more general case of
propagation of short (not only stationary) pulses was inves-
tigated numerically in Ref. [67]. This study has shown that
the propagation of a bipolar video pulse enveloping several
cycles of oscillations of the electric field strength around its
zero value is accompanied by the appearance of high-
frequency oscillations on the trailing edge of the pulse.
Fig. 5 shows one of the plots obtained in Ref. [67], illustrat-
ing such a behaviour of an extremely short pulse.

5.2 The vector Duffing model
Let us assume that an ultrashort pulse propagates in a non-
linear medium that can be represented as a set of molecules
whose internal degrees of freedom are described by the
potential field

U�x, y� � 1
2o1x

2 � 1
2o2y

2 � 1
2K2x

2y 2 � 1
4 K4
ÿ
x 4 � y 4� . (54)

If the coupling parameter is K2 � 0, then this potential
describes the scalar Duffing model for an anharmonic oscil-
lator that may be involved in two independent oscillations
along two orthogonal directions. Expression (54) is an ele-
mentary generalisation of this model. The polarisation of a
molecule is determined by the expression p � exe1 � eye2,
whereas the total polarisation is given by the product of the
atomic density nat and the polarisation of a single molecule.

The propagation of an electromagnetic pulse will be con-
sidered in the approximation of a unidirectional wave. The
wave equations for the electric field strengths corresponding
to different polarisation components of an ultrashort pulse
are written as

qE1

qz
� 1
c

qE1

qt
� ÿ 2pnate

c

qx
qt

,
qE2

qz
� 1
c

qE2

qt
� ÿ 2pnate

c

qy
qt

.

The equations of motion for the oscillator considered can be
derived from the classical Newton equation and can be rep-
resented as

q2x
qt 2
� o2

1x� K2xy
2 � K4x

3 � e

m
E1�z, t� ,

q2y
qt 2
� o2

2y� K2yx 2� K4y
3 � e

m
E2�z; t� .

Let us introduce new independent variables z � z=ctp0,
t � (tÿ z=c)=tp0, pj � qqj=qt, q1 � (2penat)x, and q2 �
(2penat)y. Thus, the two-component (vector) Duffing model
is governed by the following set of equations:

qEj

qz
� ÿpj ,

qqj
qt
� pj , i � 1, 2 , (55)

qp1
qt
� aE1 ÿ v 21 q1 ÿ b2q1q 22 ÿ b4q 31 ,

qp2
qt
� aE2 ÿ v 22 q2 ÿ b2q2q 21 ÿ b4q 32 .

(56)

where a � 2pnate
2t 2p0=m, b2;4 � K2;4(2penatt

2
p0)
ÿ2, and v1;2 �

o1;2tp0.
Stationary solutions can be found for this set of equations.

With the assumption that the fields depend only on
Z � tÿ z=V , Eqns (55) subject to boundary conditions for
the electric field strength in the pulse and the polarisation
of molecules vanishing at infinity yield Ej � V qj. Substitut-
ing these expressions into Eqns (56), we derive

d2q1
dZ 2 �

ÿ
b4q

2
1 � b2q 22

�
q1 �

ÿ
aV ÿ v 2

1
�
q1 , (57.1)

d2q2
dZ 2 �

ÿ
b2q

2
1 � b4q 22

�
q2 �

ÿ
aV ÿ v 2

2
�
q2 . (57.2)

We have already encountered these equations in the set (14)
of Section 3.2. Therefore we can readily find the solution to
these equations. Let us assume that the eigenfrequencies o1
and o2 are equal to each other. In this case, a particular
solution to the set (57) can be written as

z

0 50 100 t

q

3

2

1

0

ÿ1

Figure 5. Nonstationary propagation of a video pulse in a medium with a
cubic nonlinearity, manifested in the formation of oscillations on the trai-
ling edge of the pulse (ba � 5, va � 0:2).
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q1�Z��q2�Z��
�
2�aV ÿ v 2�
b2 � b4

�1=2
sech

hÿ
aV ÿv 2�1=2�ZÿZ0�i ,

where Z0 is the integration constant. This solution describes a
linearly polarised video pulse propagating in the medium
under study without any distortions.

A more interesting solution can be found when the oscil-
lation frequencies o1 and o2 differ from one another, but the
anharmonicity coefficients are equal to each other (b1 � b2).
In this case, the set (57) coincides with the set of equations
considered in Section 3.2, and we can simply employ the sol-
utions derived in this section:

q1�Z� �
2
����������
2bÿ12

q
m1 exp�y1��1� exp�2y2 � m12��

1� exp�2y1� � exp�2y2� � exp�2y1 � 2y2 � m12�
,

(58)

q2�Z� �
2
����������
2bÿ12

q
m2 exp�y2��1� exp�2y1 � m12��

1� exp�2y1� � exp�2y2� � exp�2y1 � 2y2 � m12�
,

where exp (m12) � (m1 ÿ m2)=(m1 � m2), m
2
1;2 � (aV ÿ v 21;2), and

y1;2 � m1;2(Zÿ Z1;2), Z1;2 are the integration constants. Solu-
tions (58) describe the stationary propagation of a polarised
video pulse whose polarisation components change asynch-
ronously. One of the components of this pulse represents a
unipolar transient of the electric field, whereas the second
component corresponds to a sign-alternating solitary wave.

Considering these examples, we assumed that an electro-
magnetic wave propagates in one direction. However, if we
restrict our analysis to the propagation of a stationary pulse,
this approximation is of no importance. If the reduced
Maxwell equation is replaced by the wave equation

q2E
qz 2
ÿ 1
c 2

q2E
qt 2
� 4pnate

c 2
q2x
qt 2

(or the vector generalisation of this equation), then the
assumption that the field strength depends only on
Z�tÿz=V gives the relationship E�4pnateV

2(c 2ÿV 2)ÿ1x,
which eventually brings us to the set of equations of the form
of set (52). Following this procedure, we arrive at the result
known from Ref. [20].

6. The propagation of electromagnetic pulses
in media with quadratic nonlinearities
To describe a nonlinear medium in this section, we will use a
model of an anharmonic oscillator, which is often employed
to investigate parametric processes in nonlinear optics
[68, 69]. The calculation of polarisation in the field of a
monochromatic wave in such a model gives the second-
order nonlinear susceptibility, which is characteristic of the
parametric frequency summation or subtraction in a pair of
interacting monochromatic waves. Such a representation of
interacting waves is inapplicable when we consider video
pulses, since the carrier wave is absent in this case. It
would be appropriate therefore to examine the propagation
of extremely short pulses enveloping one or several cycles of
the electric field within the framework of simple models with-
out invoking the concepts of harmonic analysis.

6.1 The scalar model of an anharmonic oscillator
We start by considering the scalar model of an anharmonic
oscillator. The electromagnetic wave in this model is des-
cribed by the wave equation

q2E
qz 2
ÿ 1
c 2

q2E
qt 2
� 4p
c 2

q2P
qt 2

, (59.1)

where the polarisation P is related to the generalised coor-
dinate x of the anharmonic oscillator by the formula
P � natex. The Newton equation for the considered oscilla-
tor is written as

q2x
qt 2
� o 2

0 x� K2x
2 �l

e

m
E�z, t� , (59.2)

where o0 is the eigenfrequency of the oscillator, K2 is the
anharmonicity coefficient, l � (e� 2)=3 is the Lorentz fac-
tor, and e is the dielectric constant. We can include the
parameter l in the mass m by introducing the effective
mass meff .

At the first step of our analysis, we search for the station-
ary solution to the set of Eqns (59). The electric field strength
and the polarisation corresponding to the stationary solution
depend only on the variable t � t� z=V . Taking this into
account, we can rewrite the wave Eqn (59.1) as d2E=dt 2 �
bd2x=dt 2, where b � 4pnateV

2(c 2 ÿ V 2)ÿ1. Integrating this
equation allowing for the relevant boundary conditions char-
acteristic of a solitary wave vanishing at infinity, we find the
relation between the electric field strength and the coordinate
of the oscillator:E � bx. Now, Eqn (59.2) can be rewritten as
a nonlinear equation for an anharmonic oscillator:

d2x
dt 2
� ÿo 2

0 ÿ vo 2
p �x� K2x

2 � 0 , (60)

where v � V 2(c 2 ÿ V 2)ÿ1 and o 2
p � 4pnate

2=meff is the fre-
quency of plasma oscillations.

The first integral of Eqn (60) can be found in a standard
way:�

dx
dt

�2
� ÿo 2

0 ÿ vo 2
p
�
x 2 � 2

3
K2x

3 � 0 , (61)

where we take into account that the sought-for solution rep-
resents a solitary wave vanishing at infinity. Introducing the
notation

p 2 � vo 2
p ÿ o 2

0 > 0 , (62)

we find that the solution to Eqn (60) describes a nonsingular
function meeting the boundary conditions. In this case, the
integration of Eqn (61) yields

y � sech2
�
p

2
�tÿ t0�

�
,

where y � (2K2=3p
2)x, and t0 is the integration constant.

Switching back to the initial physical variables we can
write the following expression for the electric field strength
in the video pulse:

E�t� � E0sech
2� 1

2 �vo 2
p ÿ o 2

0 �1=2�tÿ t0�
�
, (63)

where E0 � 6pnatK
ÿ1
2 ev(vo 2

p ÿ o 2
0 ).

Inequality (62) imposes a limitation on the velocity of the
stationary pulse thus determined. This limitation can be writ-
ten as

o 2
0

o 2
0 � o 2

p
<
V 2

c 2
< 1 .

We can simplify the set of Eqns (59) by considering the
propagation of a pulse in the approximation of a unidirec-
tional wave. In this case, expression (59) can be replaced
by the formulas
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qE
qz
� 1
c

qE
qt
�ÿ 2pnate

c

qx
qt

,

q2x
qt 2
�o0 2x�K2x 2� e

meff
E�z, t�.

(64.1)

This set of equations can be rewritten as

qe
qz
� ÿ qq

qt
,

q2q
qt 2
� q � q 2 � e , (64.2)

where the normalised variables are defined by the following
expressions:

z � z o 2
p

2co0
, t � o0

�
tÿ z

c

�
, e � eK2

mefo 4
0
E ,

q � K2
o 2

0
x.

The numerical solution to the set of Eqns (64.2) has
shown that a small-amplitude video pulse decays in the
process of propagation (Fig. 6), whereas in the case of
high-power pulses (beginning with some threshold power),

dispersion-induced distortions of the video pulse are sup-
pressed [the set of Eqns (64.2) was numerically solved by
E V Kazantseva (Moscow Engineering Physics Institute),
who was kind enough to give her permission to represent
her results here, see Figs. 6 and 7].

Fig. 7 illustrates the interaction of two video pulses cor-
responding to stationary solutions of the set (64). Owing to
a difference in their amplitudes, these pulses have different
group velocities, which allows us to investigate collisions of
these pulses in the approximation of unidirectional waves.
If an amplitude modulation in the form of a weak harmonic
wave is put on the initial stationary video pulse (63), then this
modulation is filtered out as the stationary pulse propagates
through the medium. This process changes only slightly the
parameters of the pulse. Unfortunately, these results are
insufficient for us to refer to stationary video pulses arising
in this model as solitons.

6.2 The vector model of an anharmonic oscillator
The propagation of a pulse of polarised radiation in a
medium with a quadratic nonlinearity can be analysed by
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using a model of an ensemble of two-component anharmonic
oscillators. As an elementary generalisation of the model
considered above, we can employ the following equations
in such an analysis:

q2E1

qz 2
ÿ 1
c 2

q2E1

qt 2
� 4pnate

c 2
q 2x

qt 2
,

q2E2

qz 2
ÿ 1
c 2

q2E2

qt 2
� 4pnate

c 2
q 2y

qt 2
,

(65)

q2x
qt 2
� o 2

1 x� K12xy� K11x
2 � e

m
E1�z, t� , (66.1)

q2y
qt 2
� o 2

2 y� K12xy� K22y
2 � e

m
E2�z, t� . (66.2)

The electric field strength and the polarisation corre-
sponding to the stationary solution depend only on the
variable t � t� z=V . Similar to the scalar model,we can inte-
grate the equations for the fields in this case, arriving at the
relations for E1;2 � bx; by. Eqns (66) are reduced to the fol-
lowing set of nonlinear equations:

q2x
qt 2
� ÿo 2

1 ÿ vo 2
p �x� K12xy� K11x

2 � 0 , (67.1)

q2y
qt 2
� ÿo 2

2 ÿ vo 2
p �x� K12xy� K22y

2 � 0 . (67.2)

If both the eigenfrequencies of normal oscillations and the
anharmonicity constants are equal to each other (a model of
an isotropic anharmonic oscillator), then the problem con-
sidered can be reduced to the case of a scalar model. A
model of an anisotropic oscillator is much more interesting.

Consider a more general case when the potential energy of
small oscillations of a molecule or an electron around the
equilibrium position can be written in an arbitrary form,
U(x; y). Assuming that the generalised coordinates corre-
spond to small deviations of the system under study from
the equilibrium position, we can expand this potential as a
Taylor series:

U�x, y� � 1
2
q2U
qx 2 x

2 � 1
2
q2U
qy 2 y

2 � q2U
qxqy

xy� 1
6
q3U
qx 3 x

3

� 1
6
q3U
qy 3 y

3 � 1
2

q3U
qx2qy

x 2y� 1
2

q3U
qy2qx

y 2x� . . . .

Restricting our analysis to the cubic terms in this expansion,
we can replace Eqns (66) by the Newton equations for the
anharmonic oscillator considered:

q2x
qt 2
�o 2

1 x�o 2
12y�2K12xy�3K11x 2�K21y 2� e

m
E1�z ,t� ,(68.1)

q2y
qt 2
�o 2

2 y�o 2
21x�2K21xy�3K22y 2�K12x 2� e

m
E2�z, t� ,

(68.2)

The coefficients involved in these equations are related to the
coupling constants of the potential U(x; y).

We can then once again determine the relation between
the electric field strength and the generalised coordinate,
E1;2 � bx; by, and derive the final equations in a form similar
to Eqns (67):

q2x
qt 2
ÿ p 2

1 x� o 2
12y� 2K12xy� 3K11x

2 � K12y
2 � 0 , (69.1)

q2y
qt 2
ÿ p 2

2 y� o 2
21x� 2K21xy� 3K22y

2 � K12x
2 � 0 . (69.2)

To find particular solutions to the set (69) we can assume
that the normal oscillations are proportional to each other,
x � y, and the potential U(x; y) has a symmetric shape. It
would be much more important to find solutions to the set
(69) without imposing limitations on the potential. However,
such solutions have so far not been found.

7. Conclusions
Thus we have considered some cases of model media that
allow the explicit temporal dependence of the electric field to
be determined in the analytical form for an arbitrarily short
pulse of the electromagnetic field. We did not make any
assumptions concerning the harmonic carrier of the wave
or the variation rate of the field in the pulse. In most
cases, only particular solutions describing the stationary
propagation of video pulses can be found. Such solutions
correspond to sufficiently strong electromagnetic fields
where the dispersion inherent in the medium is suppressed
by nonlinear processes.

The estimates presented above demonstrate that the
amplitude of the field strength in stationary video pulses is
close to the strength of the atomic field in a medium. Conse-
quently, ionisation processes and multiphoton absorption
should be taken into account for an accurate description of
the models considered. In the case of weaker and nonstation-
ary pulses, the dispersion of a nonlinear medium leads to the
broadening of pulses enveloping one or several cycles of oscil-
lations of the electric field around its zero value and results in
modulation of the trailing edges of such pulses. We may
anticipate that such pulses should gradually evolve into
quasi-harmonic waves.

A comprehensive review of all the results obtained in the
considered area of research is beyond the scope of this paper.
However, it seems useful to mention several studies. In par-
ticular, we should note that an analysis beyond the
framework of the model of two-level atoms was performed.
A multifrequency ultrashort pulse involved in a cascade proc-
ess of stimulated Raman scattering was investigated in
Refs [19, 70]. The derived stationary solutions to generalised
Maxwell ^ Bloch equations represent a nonlinear super-
position of individual single-frequency Lorentzian `bright
solitons'. The interference of these solitons may give rise to
the formation of a sequence of easily resolvable high-power
pulses with a duration of about 0.2 fs.

In a review [71] Shvartsburg discusses the method that can
be employed to model video pulses with an arbitrary steep-
ness of pulse edges and an asymmetric shape. It is
proposed to represent such pulses as a superposition of waves
with an envelope described by orthogonal polynomials rather
than as wave packets consisting of harmonic waves. In par-
ticular, the Laguerre optics of video pulses is considered.
This analysis demonstrates that video pulses and quasi-har-
monic waves display different behaviour in the linear case.

Since the notion of the carrier wave is not defined for
video pulses, nonlinear optical phenomena involving such
pulses also display some new features. Harmonic generation
and parametric frequency summation or subtraction are
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manifested in the spectral width of a pulse rather than in the
change of well-resolved frequency components of radiation
(e.g.,o0, 2o0, 3o0, etc.). Consequently, the duration of a video
pulse will decrease. On the other hand, material dispersion
should impede such shortening of a video pulse,which implies
that we deal with two competing mechanisms, determining
the duration of an extremely short pulse of electromagnetic
radiation.

Similar to many other works, plane-wave pulses were dis-
cussed in this paper. An obvious extension of this approach
should be associated with the investigation of electromag-
netic waves with a more complex geometry, e.g., moving
bunches of electromagnetic radiation (`optical bullets' [72],
bubbles [20], etc.).
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