
Abstract. The diffraction broadening of a focused beam
with a Bessel amplitude distribution is examined. Calcula-
tions are reported not only of the traditional differential
characteristics (radial distributions of the electric-energy
densities and of the axial total electromagnetic energy flux
in the beam), but also of integral quantities characterising
the degree of transverse localisation of the radiation in a
tube of specified radius within the beam. It is shown that in
a large-aperture Bessel beam only a very small fraction of
the total beam power is concentrated in its central core
and that a focal point is also observed on intense focusing
of the Bessel beam. This spot is not in the geometric-optical
focal plane but is displaced from the latter by a certain
distance.

New types of solutions of the wave equation for free space,
which differ in principle from the traditional plane waves or
classical Gaussian beams, have attracted considerable atten-
tion in recent years [1 ^ 4]. One interesting representative of
such solutions is a paraxial beam with a Bessel amplitude
distribution [5 ^14]. However, paraxial beams suffer from a
significant shortcoming, which is a very weak transverse
localisation of the intensity distribution as a whole.

This communication considers, first, the change in the
transverse distribution and in the degree of concentration
of radiation in Bessel beams as a result of the application
of a large-aperture lens in the formation of these beams by
the classical annular slit method. Second, it describes also
a study of the spatial distribution of the optical field in the
focal region of a large-aperture focusing system with a Bessel
amplitude ^ phase filter. (In other words, a study was made of
the field arising as a result of the intense focusing of a beam
with a Bessel amplitude distribution.)

We shall examine the properties of focused Bessel beams
within the framework of the vector diffraction theory [15, 16],
since in the case of large apertures the standard scalar
approximation can no longer provide a satisfactory descrip-
tion. We shall assume at the same time that the Fresnel
number of the optical system NF � a 2=lf (where a is the
radius of the exit pupil, l is the wavelength, and f is the focal
distance) is significantly greater than unity (as a rule, NF 4 1
in the usual large-aperture focusing systems). The classical
Debye approximation is then sufficiently precise [17] and

only allowance for the vector character of the field leads
now to a vector diffraction integral [16].

We shall employ the relative distributions of the longitu-
dinal electromagnetic-energy flux (the axial component of the
Poynting vector) p and of the spatial electric-energy density w
(in the paraxial case, w � p is the light intensity in relative
units) for the description of the focused field. Assuming
that the optical system has a rotational symmetry and is aber-
ration-free and aplanatic (satisfies the Abbë sine condition
[18]) we have in the case when the source emits a linearly
polarised field

p�r; z� � jI0j2 ÿ jI2j2 , (1)

w�r;j; z��jI0j2 � 4jI1j2 cos2 j� jI2j2 � 2 cos 2jRe�I0I �2 �, (2)
In

�
�ym
y0

t�y��cos y�1=2fn�y�Jn�lÿ12pr sin y� exp�ilÿ12pz cos y�dy,
(3)

f0 � sin y�1� cos y� , f1 � sin2 y , f2 � sin y�1ÿ cos y�,
(4)

where r, j, and z are cylindrical coordinates (the z axis
coincides with the optical axis of the focusing system, the
geometrical focus is at the point r � z � 0, j is determined
relative to the axis along which the electric vector of the inci-
dent field is directed); Jn is a Bessel function of the first kind
with an integral index n; 04y0 < ym; ym is half the aperture
angle in the image space; t(y ) defines the relative angular
dependence of the amplitude on the exit pupil (exit sphere)
formed by the amplitude ^ phase filter of the system. Instead
of the two true spatial coordinates r and z,we shall henceforth
use the traditional normalised quantitiesö `optical coordi-
nates' v � 2prlÿ1 sin y and u � 2pzlÿ1 sin 2y.

We may note that the diffraction integral (3) works only in
a focal region which is located at a distance from the exit
pupil or, in other words, the distance to the geometric-optical
focal plane should be significantly shorter than the distance
to the exit sphere (z5 f ). Since in large-aperture systems
we virtually have a � f and NF � a=l, we find that, for
a � 10 cm and l � 0:5 mm (NF � 2� 105), the maximum
value of juj may be �104 assuming that the condition
z=f90:01 is sufficient. Attention should be drawn also to
the fact that, as can be readily seen from formulas (1) ^ (3),
in the Debye approximation the diffraction field in the focal
region always possesses specular reflection symmetry relative
to the geometric-optical focal plane z � 0, i.e. p(ÿ z) � p(z)
and w(ÿ z) � w(z). The familiar `focal shift' [19] arises if
NF91 (the question of the focusing of Bessel beams in
this case has already been examined [20]).
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The dependence of the quantities p and w on the coordi-
nates v and u yields a satisfactory idea about the field
extrema, but the efficiency of the spatial localisation of the
radiation in Bessel beams cannot be inferred from them.
This is because precisely the numerous weak side lobes carry
the bulk of the total power of such beams. In order to describe
the degree of spatial localisation of the light, we introduce the
integral characteristics

Kp�v, u� �
�v
0
p�v, u�dv

��1
0
p�v, u�dv , (5)

Kw�v, u� �
�v
0

�2p
0
w�v, j, u�dv dj

��1
0

�2p
0
w�v, j, u�dv dj,

(6)

which describe precisely (quantitatively) the change in the
degree of transverse concentration of the radiation in the
beam when the latter propagates in free space. The width of
a Bessel beam is understood as the width of the distribution as
whole (Kp;w ! 1), and not only the width of its central core.

We shall now examine the large-aperture Bessel beams
generated by the method of a narrow annular slit [6]. It is
then necessary to adopt y0 � ym ÿ Dym in expression (3)
(Dym is the angular slit width; Dym5 ym) and t (y ) � 1.
The results of numerical calculations of the quantities p,
w, Kp, and Kw by formulas (1), (2), (5), and (6), respectively,
are presented in Figs 1 ^ 3. We note immediately that the
large-aperture beams considered are vector beamsö the
electric (magnetic) field vector has not only transverse com-
ponents but also a perceptible axial component which
depends on the transverse coordinates; in other words, the
direction of the electric vector (the polarisation of light) at
a certain point within the beam depends on the coordinates
of this point. A characteristic feature of such beams is that
only the quantity p has rotational symmetry, while a depend-
ence on the angle j (in the radial direction) within the beam
arises for w (Fig. 1a). Furthermore, w � p only for v � 0,
whereas outside the optical axis (v 6� 0) the transverse distri-
bution of w differs from the corresponding distribution for p
(wmay be assumed to be symmetrical relative to rotation for

small aperturesö in paraxial beams w hardly differs from p).
Indeed, our calculations have demonstrated directly (Fig. 1a)
that in such beams the transverse distribution w, arising
mainly owing to the contribution of the integrals I1;2 [see for-
mulas (1) and (2)], differs appreciably from the function
J 2
0 (r).
The main feature of paraxial Bessel beams, namely that

only a small fraction of the total beam power is localised
at its central maximum, clearly characterises also their
large-aperture (vector) analogues. However, large-aperture
beams are on the whole more likely to be concentrated around
their axis than paraxial beams. Calculations have shown that,
in terms of optical coordinates, the integral beam charac-
teristics Kp;w for different aperture angles have the same
order of magnitude (specific results for ym � 68 and 608 are
presented in Figs 2 and 3). Since r � v=sin ym, it follows
that, for a fixed value of v, for example for ym � 68 and 608,
the ratio of the true spatial radii, which cover an approxi-
mately the same proportion of the total beam power, is
r (ym � 68)=r (ym � 608) � sin 608=sin 68 � 8:3, i.e. the radius
of the central part (the central maximum) of a large-aperture
Bessel beam with ym � 608 is virtually an order of magnitude
smaller than for a small-aperture beam with ym � 68.

During the propagation of the beam, the quantities p
and w on the optical axis of the system and at certain distan-
ces from itdecrease in almost the sameway. Inotherwords,the
consumption of energy in the beam cross section is practically
uniform.The latter fact is indicated also by the dependences of
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Figure 1. Dependences of p (dashed curves), w for j � 0 (continuous
curve) and 908 (chain curve), and the function J 2

0 (dotted curve; in
Fig. 1b, the dotted curve merges with the dashed curve) on v in the geomet-
ric-optical focal plane (u � 0) for ym � 608 (a) and 68 (b) and for
DYm � 0:58 (a) and 0.058 (b).
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Figure 2. Dependences ofKw (continuous and dotted curves) andKp (das-
hed curves) on v for different values of u and ym � 68 (dotted curves) and
608 (remaining curves) and for DYm � 0:058 (dotted curves) and 0.58
(remaining curves).
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Kp;w on u (Fig. 3) and the difference between the integral
parameters Kp and Kw is less notable than the difference
between p and w.We may also note that, for a fixed aperture,
the degree of transverse localisationof the beams is smaller the
smaller the width of the annular slit (to a first approximation,
this dependencemaybe regarded as linear). For a specified slit
width, the degree of spatial localisation of the beam in the
transverse direction may be increased by increasing the aper-
ture angleof the focusing system (however,this leads to a rapid
diffraction broadening along the axis).

We shall next consider the case where y0 � 0 in for-
mula (3) and

t�y� � J0�C sin y= sin ym� , (7)

where the real constant is C > 2:405. In other words, we
investigate the optical field in the focal region of the focusing
systems with amplitude ^ phase filters and transmission of
type (7). For large values of C, such filters form a convergent
spherical wave with a virtually Bessel amplitude distribution
at the wave front, whereas for small values of C they repre-
sent truncated Bessel filters. The dependence of the
diffraction pattern on C along the geometric-optical focal
plane is illustrated in Fig. 4. For C !1, the diffraction
image is transformed into a single light ring, which was
demonstrated a long time ago in the scalar theory [7, 21].
In principle, this follows simply from the fact that the Fourier
transform of the function J0(x) is a circle [9]. Consequently,

when the zeroth Bessel beam is focused, its bright central
maximum is fully suppressed in the geometric-optical focal
plane and only a single intense side maximum at a distance
v � C is formed there.

However, this is valid only in the geometrical-optical focal
plane u � 0 and in its immediate vicinity. The dependence of
w along the beam axis (for v � 0) on u (Fig. 5) shows that, on
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Figure 3. Dependences on the optical coordinate u ofKw (continuous cur-
ves) andKp (dashed curves) forYm � 608 and DYm � 0:58 and also ofKw

(dotted curves) for ym � 68 and DYm � 0:058 in the axial direction for
fixed values of v.
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Figure 4. Dependences of p (dashed curve) and w for j � 0 (continuous
curves) and 908 (chain curve) on v in the geometric-optical focal plane
(u � 0) for ym � 608 and C � 5 (a), 50 (b), 500 (c), and 5000 (d).
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Figure 5. Dependences of w in the axial direction on the optical coordi-
nate u along the beam symmetry axis (v � 0) (continuous curve) and at a
distance v � 50 from the axis (chain curve) for C � 50 andYm � 608.
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moving away from this plane, w begins to increase, reaches its
maximum at a certain distance u � C, and beyond this point
(in the direction of increase in u) diminishes extremely slowly
for large values of C, retaining for a long time its high value,
as happens in the large-aperture Bessel beams examined
above directly beyond their geometric-optical focus.

At the same time, sufficiently far from the optic axis the
quantity w exhibits the opposite behaviour: on moving away
from the geometric-optical focal plane, the energy density
decreases (Fig. 5). The appearance of intense field localisa-
tion on the beam axis at the point u � C is demonstrated
best in Fig. 6, which presents the dependences of the quanti-
ties p and w along the transverse plane u � C on the radial
optical coordinate v for different values of C. Thus the focus,
in the usual (true) sense, i.e. defined as a point on the beam
axis where the energy density is a maximum, exists also in
the given instance. It is merely displaced from the geometrical
focus by a certain distance u � C. For high values of C, the
energy density at the true focus exceeds the energy density at
the geometric-optical focus by several orders of magnitude
(see Figs 6c and 6d).

On moving away from the true focus (u > C ), the field
diverges and the degree of its localisation diminishes. How-
ever, this decrease is extremely slow for focused Bessel
beams, i.e. in the case of filters with large values of C. In order
to obtain a more detailed idea about the behaviour of the
degree of concentration of the optical field beyond the geo-
metric-optical focal plane, we shall consider the integral
characteristicsKp;w, because the distribution of the quantities
p and w characterises only qualitatively the spatial localisa-
tion of the radiation in the beam.

The dependences of the integral beam characteristicsKp;w

of two types were investigated. First, these are the dependen-
ces ofKp;w on the optical coordinate v both in the geometric-
optical focal plane and in other transverse planes (u � const)
at a specified distance from the geometric focus (Fig. 7). It
was found that, for large values of C, the quantitiesKp;w reach

0.5 for v � C in the u9C planes. In more remote planes
(u > C ), the increase in the functions Kp;w is greater the
larger the value of u.

Second, calculations were made also of the dependences
of the degree of concentration of the focused optical field
in a certain `optical tube' with a radius v along the optic
axis, i.e. the dependences of Kp;w on u for fixed values of v
(Fig. 8). The results show that, in the central part of the
beam (v < C ), in which less than half of the total beam
energy (Kp;w < 0:5) is contained in the focal plane, the high-
est light concentration is attained outside the focal plane,
approximately at a distance u � C from the latter. For small
values of C (but greater than 2.405), the degree of light con-
centration beyond this point (for u > C ) decreases extremely
rapidly (Fig. 8a), i.e. the diffraction broadening of the beam is
pronounced. However, the greater the value of C the greater
the stability of the beam and the slower its diffraction broad-
ening in the region u > C (Figs 8c and 8d). In `optical tubes'
with large radii (v0C ), the highest light concentration (the
highest values of Kp;w) is attained in the geometric-optical
focal plane, Kp;w decreasing slowly and monotonically
beyond this plane. Thus, the behaviour of the integral param-
eters Kp;w of the beam also demonstrates that in the region
u > C the focused Bessel beam possesses diffraction proper-
ties similar to those of the corresponding properties of large-
aperture Bessel beams considered in the first part of this
study. We may also note that the difference between Kp

and Kw is in principle insignificant, since it does not exceed
several percent.
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Finally, we shall formulate the principal conclusions.
1. The radial distribution of the axial-flux density of the

total electromagnetic energy and of the spatial electric-energy
density in large-aperture Bessel beams differs appreciably
from the corresponding transverse distributions for paraxial
beams, which are satisfactorily fitted by the function J 2

0 (r).
The main feature of the Bessel beams, which is that a very
small part of the total power is concentrated in the main
maximum, is definitely exhibited also by large-aperture
Bessel beams, although the latter are on the whole much
more strongly localised around their axes than paraxial
Bessel beams.

2. When Bessel beams are intensely focused, the energy
density at the centre of the beam begins to increase gradually
on moving away from the geometric focus and reaches its
maximum at a certain distance from this point. The energy
density at the maximum (the true focus) is then larger by sev-
eral orders of magnitude than at the geometric focus. On
moving further away from the true focus, the field diverges
and the degree of its localisation and the energy density in
the beam decrease, albeit extremely slowly, remaining large
for a long time.
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Figure 8. Dependences ofKw (continuous curves) andKp (dashed curves)
on u in `optical tubes' with different optical elements v for ym � 608 and
C � 5 (a), 50 (b), 500 (c), and 2000 (d).
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