
Abstract. A complete classification of phase-matching
directions for the second-harmonic generation in biaxial
crystals with quadratic nonlinearity is presented.

1. Introduction
Modern nonlinear optics is characterised by an increase in
the number of new nonlinear crystals, on the one hand, and
the appearance of new problems, on the other. Among these
problems are the frequency conversion of femtosecond laser
pulses, frequency tuning of laser radiation, etc. Data pre-
sented in handbooks give information on phase-matching
parameters for strictly specified crystal cuts used in typical
regimes, but give no insight into the functional potentialities
of crystals in the solution of unconventional problems.

The aim of the classification proposed by Hobden for the
interaction types in the collinear SHG in biaxial crystals,
which was given as early as 1967 [1], was to show a variety
of possible angular dependences of phase-matching direc-
tions in the crystallo-optical coordinate system and their
interrelation upon changes, for example, in the fundamental
radiationwavelength and crystal temperature andwas of vital
importance in the development of nonlinear optics.

A further development of the classification [1] was made
in Ref. [2], where phase-matching diagrams for the genera-
tion of summation and difference frequencies of laser
radiation were presented. The classification table of stereo-
graphic projections presented in Ref. [1] is often cited in
scientific and engineering publications (e.g., see Refs [3,
4]). However, these references are of a purely academic inter-
est and are not related to the analysis of particular crystals or
groups of crystals. In attempting to use this classification for
the systematisation of presently known crystals, one runs into
problems because the calculation results gave stereographic
projections that were absent in the classification scheme pre-
sented in Ref. [1].

The aim of this paper is to give a complete analysis of all
possible types of the interaction for the SHG in quadratically
nonlinear media with different relations between refractive
indices. It will also be shown that one can generalise the rep-
resentation of results in a form similar to the diagram
presented in Fig. 1 in order to analyse not only the phase-
matching diagram, but also the feasibility of achieving inter-
actions that are noncritical with respect to the radiation
wavelength and temperature.

2. Classification of interaction types in the
generation of optical harmonics
In accordance with the commonly accepted classification of
the types of interaction in the generation of laser harmonics
in biaxial crystals, two types of interaction are possible: ssf
(slow-slow-fast) and sff (slow-fast-fast). Note that the last
letter corresponds to the second-harmonic wave. Each ster-
eographic projection in Fig. 1 shows the angular distribution
of phase-matching directions for the ssf (solid lines) and sff
(dashed lines) interactions. The z axis of a crystal is directed
perpendicularly upward, the x axis is directed from the right
to the left, and the y axis is perpendicular to the plane of
Fig. 1. Hereafter, in all the projections, marks on the arcs
specify the directions of the optic axis of a crystal.

Depending on the dispersion of birefringence of a crystal
(the difference of the principal values of refractive indices)
and its variation with the fundamental wavelength, the angu-
lar distribution changes by transforming from one projection
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Figure 1. Diagram of stereographic projections of the types of interaction
in biaxial crystals.



to another in Fig. 1 along the links connecting these projec-
tions. This transition is accompanied by a change in the point
of intersection of the phase-matching curve with the principal
crystal planes (xy, xz, or yz). This point corresponds to the
noncritical (with respect to the angle) phase-matching.

Fig. 1 shows the combination of two independent dia-
grams for each type of interaction. Both diagrams have
the same configuration (Fig. 2) corresponding to the appear-
ance of phase matching along the y axis (the change from
projection 0 to projection 1 in Fig. 2), for example, with
decreasing fundamental wavelength. For projection 1 in
Fig. 2, the phase matching noncritical with respect to the
angle is realised for certain angles j (for y � 908) and y
(for j � 908) in the planes xy and yz, respectively (j and
y are the current angular coordinates of the phase-matching
directions in the polar coordinate system).

One can see from Fig. 2 that the distribution can change
in two different ways depending on the rate of change in the
difference of refractive indices: (1) the appearance of phase
matching along the x axis and the subsequent appearance
of noncritical phase matching in the plane xz (projection 2
in Fig. 2); and (2) a similar process with the appearance of
phase matching along the z axis (projection 3) and the sub-
sequent realisation of phase matching in the plane xz. As
the wavelength is increased further, we pass in any case
(from projections 2 or 3) to projection 4.

As will be shown below, the results presented above
(Figs 1 and 2) are totally valid for the ssf interaction. As
for the sff interaction, they represent a partial case of a
more general case. We will also analyse changes in the angu-
lar distributions of phase-matching diagrams for both types
of interaction.

2.1 The ssf phase matching
As in Ref. [1] we will consider biaxial crystals in the region of
normal dispersion (n2oi > noi, i � x, y, z). According to
Ref. [5], the principal values of their refractive indices
ni(o) satisfy the relation nz(o) > ny(o) > nx�o� in the entire
transparency region. Hereafter, ni(o) is the dependence of
the principal values of refractive indices on the radiation
frequency, and noi and n2oi are the refractive indices at
the fundamental frequency and the second-harmonic fre-
quency, respectively.

In contrast to Ref. [1], we will not impose limits on the
difference between the principal values of refractive indices:

n2oz ÿ noz � n2oy ÿ noy � n2ox ÿ nox5nox : (1)

All possible configurations of the phase-matching dia-
grams can be conveniently analysed by using the transitions
(links) between stereographic projections for which phase
matching is realised along one of the optic axes of a crystal.
For certain relations between the refractive indices at both
wavelengths, the ssf interaction can be realised along all three
crystal axes (x; y, or z). In all these cases, the phase-matching
condition nf2o � ns

o (where nf2o and nso are the refractive indi-
ces for the fast and slow waves) has the form

n2oy � noz (2)

along the x axis,

n2ox � noz (3)

along the y axis, and

n2ox � noy (4)

along the z axis.
In the general case, the phase-matching curves intersect

the principal planes of a crystal. This takes place for the fol-
lowing relations between refractive indices:

n2oy > noz > n2ox (5)

in the plane xy,

noz > n2ox > noy (6)

in the plane yz, and

noy > n2ox for y < O , (7)

noz > n2oy for y > O (8)

in the plane xz, where O is the angle between the optic axis
and the z direction.

The relations between refractive indices providing the
realisation of one or other phase-matching diagram (projec-
tions in Fig. 2) are determined by the set of conditions
(5) ^ (8), and changes from one projection to another occur
when an appropriate combination of conditions (2) ^ (4)
and (5) ^ (8) occurs.

Fig. 3 presents the dispersion dependences for all possible
relations between refractive indices for the type ssf phase
matching and the corresponding phase-matching diagrams.
The horizontal dashed lines correspond to three refractive
indices at the fundamental frequency of laser radiation. On
the left of the curves, we give the notation of the principal
optic axis of a crystal along which the phase-matching con-
dition is fulfilled. In the region of high radiation fre-
quencies, we have

n2oz > n2oy > n2ox > noz > noy > nox or n2ox > noz ,
(9)

and the phase-matching conditions are not realised (Fig. 3a).
As the radiation wavelength is increased, the tilt angle of all
the dispersion dependences decreases, and condition (3) is
satisfied at a certain wavelength. This condition corresponds
to the appearance of phasematching along the y axis (Fig. 3b).
The appearance of phase matching along the y axis is the only
version for the ssf interaction because it is commonly
assumed that the condition nz(o) > ny(o) > nx(o) is ful-
filled in the entire transparency region of a crystal. As the
radiation frequency (the tilt angle of the dispersion curve)
decreases further, relations (5) and (6) are fulfilled. This
corresponds to projection 1 in Fig. 2 (the intersection of
the phase-matching curve with the planes xy and yz).
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Figure 2. Diagrams for the ssf and sff interactions.
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Further on, two versions of the changes in relations
between refractive indices are possible. In the first case
(the transition along the projections 1 ^ 2 ^ 4 in Fig. 2), rela-
tion (2) is first satisfied, which corresponds to the phase
matching along the x axis (Fig. 3c). Then, variation in the
radiation frequency causes a change in projection 2 in
Fig. 2, i.e., the intersection of the phase-matching curve
with the plane xz (with the angle y relative to the z axis being
greater than the angle O). The phase-matching direction may
reach the optic axis only in the case of zero dispersion. For
projection 2 in Fig. 2, relations (6) and (8) exist. As the refrac-
tive indices are changed further, the phase-matching
direction in the principal planes of a crystal changes from
the plane yz to the plane xz (projection 4 in Fig. 2), which
provides phase matching along the z axis (Fig. 3d). In this
case, conditions (4) and (8) are fulfilled. Projection 4 in
Fig. 2 satisfies relations (7) and (8) (see Fig. 3e).

In the second case (the transition along the projections
1 ^ 3 ^ 4 in Fig. 2), the condition for a change in the

phase-matching direction from plane yz into plane xz (with
y < O ) is first satisfied. When the phase matching along
the z axis is realised, relation (4) in combination with (5) is
satisfied (Fig. 3f). A further change in the radiation frequency
results in a change in projection 3 in Fig. 2., i.e., the intersec-
tion of the phase-matching curve with the plane xz. In this
case, conditions (5) and (7) are realised. Then, the transition
across the crystal axis x [conditions (2) and (7), Fig. 3g] and a
further change in projection 4 in Fig. 2 take place.

Taking into account the general relations determined at
the beginning of the paper for the principal values of refrac-
tive indices of a crystal in the region of normal dispersion
[nz(o) > ny(o) > nx(o)], we present in Table 1 all relations
for different projections for the type ssf interaction.

2.2 The sff phase matching
As shown above, for the type ssf interaction, the results
presented above agree completely with the results in
Ref. [1]. The phase-matching conditions for the type sff inter-
action, which is determined by the equality nf2o � (nso�
nfo)=2, change differently. In this case, the phase matching
can also be realised along all the principal axes of a crystal:

n2oy � 1
2 �noy � noz� (10)

along the x axis,

n2ox � 1
2 �nox � noz� (11)

along the y axis, and

n2ox � 1
2 �nox � noy� (12)

along the z axis. Relations (10) ^ (12) can be realised in the
general form

n2ok � 1
2 �nok � noj� , (13)

where k � x, y and j � y, z.
In the region between these limiting states, the phase-

matching curve intersects the principal planes of a crystal,
which is realised for the following relations between refractive
indices:

n2oy >
1
2 �noy � noz� , (14)

n2ox <
1
2 �nox � noz�

or

n2oy <
1
2 �noy � noz� , (15)

n2ox >
1
2 �nox � noz�

in the plane xy,

n2ox >
1
2 �nox � noy� , (16)

n2ox <
1
2 �nox � noz�
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Figure 3. Dispersion dependences of refractive indices for ssf phase matc-
hing.

Table 1.

Projection Phase-matching planes Phase-matching conditions

0 ± n2ox > noz

1 xy; yz n2oy > noz > n2ox > noy

2 xz �y > O�; yz noz > n2oy; n2ox > noy

3 xz �y < O�; xy n2oy > noz; noy > n2ox

4 xz �y < O�; xz �y > O� noz > n2oy; noy > n2ox
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in the plane yz, and

n2ox <
1
2 �nox � noy� for y < O , (17)

n2oz >
1
2 �noy � noz� for y < O ,

n2oy <
1
2 �noy � noz� for y > O , (18)

n2oy >
1
2 �nox � noy� for y > O ,

in the plane xz.
Here, as in the case of the ssf interaction, phase matching

in the planes yz or xy is possible only for a single relation
between refractive indices. For phase matching in the plane
xy, relations (14) and (15) are valid. This follows from the
fact that conditions (16) ^ (18) are determined by the intersec-
tion of a circle and an ellipse for refractive indices at the
wavelengths of fundamental radiation and the second
harmonic; they are unique because of the general relations
determined above for the refractive indices. The existence of
phase matching in the plane xy is determined by the intersec-
tion of two ellipses. Relations (14) and (15) differ only by the
inequality sign. It is evident that each of these pairs of inequal-
ities is compatible. In what follows, we exclude from
consideration the second inequalities in relations (17) and
(18) because of their identity.

The dispersion dependences of refractive indices ni(o),
which characterise possible changes in the phase-matching
curve, and the corresponding distributions of phase-matching
directions are presented in Fig. 4.The horizontal dashed lines
correspond to three half-sums of refractive indices (13). On
the left of the curves (as in Fig. 3), we give the notation of
the principal axis of a crystal along which the phase-matching
condition is fulfilled. The initial case when the phase-match-
ing condition for the sff interaction is absent is characterised
by the following relations between the principal values of
refractive indices (Fig. 4a):

n2oy >
1
2 �noy � noz� , n2ox >

1
2 �nox � noz� : (19)

Note that the equalities n2ox � (nox � noz)=2 and n2oy �
(noy � noz)=2 do not represent the phase-matching condi-

tions. Consider various possible versions of changes in
phase-matching directions.

The fulfilment of condition (11) corresponds to the
appearance of phase matching only along the y axis
(Fig. 4b), which is similar to the case discussed above for
the ssf interaction (Fig. 3b). The process may go further in
two directions. In the first case, changes in phase-matching
directions are caused by rapid changes in nx(o) (a strong dis-
persion). When relation (11) is satisfied, this leads to the
appearance of phase matching in the planes xy and yz (pro-
jection 1 in Fig. 2), which is characterised by the joint
fulfilment of conditions (14) and (16). One can easily see
that conditions (15) and (16) are incompatible. As the refrac-
tive indices change further, phase matching along the z axis
(Fig. 4c) is realised.This corresponds to the joint fulfilment of
conditions (12) and (14). A further change in the refractive
indices causes a change in projection 3 in Fig. 2. In this
case, relations (14) and (17) are not fulfilled, and conditions
(15) and (17) are incompatible. Later on, phase matching
along the x axis appears [Fig. 4d, conditions (10) and (17)],
and subsequently the phase-matching curve intersects the
plane xz (above the optic axis and below it) at two points
(Fig. 4e). In this case, relations (17) and (18) are fulfilled.

In the second case, after achieving projection 1 in Fig. 2, a
strong dispersion ny(o) is observed, and the phase matching
along the x axis appears [Fig. 4f, conditions (10) and (16)].
Then, a change in projection 2 in Fig. 2 occurs, and relations
(16) and (18) for refractive indices are fulfilled. Subsequently,
phase matching along the z axis appears [Fig. 4g, conditions
(12) and (18)], and the change to projection 4 in Fig. 2 occurs
[conditions (17) and (18)].

In addition to the change from projection 0 to projection 1
in Fig. 2 (the appearance of phase matching along the y axis),
an initial appearance of phase matching along the x axis [con-
dition (10)] under conditions of strong dispersion of nx(o)
and weak dispersion of ny(o) is also possible (Fig. 4h).
After the appearance of phase matching along the x axis,
the phase-matching directions intersect the planes xy and
xz of a crystal. In this case, conditions (15) and (18) are ful-
filled. A further change in the refractive indices leads to the
appearance of phase matching along the y axis [Fig. 4i, con-
ditions (16) and (18)], i.e., the change in projection 2 in Fig. 2.
Then, the change from one projection to another is similar to
the change from projection 2 to projection 4 considered above
(Fig. 2).

In contrast to Fig. 2 we have one more phase-matching
diagram for the sff interaction. This diagram represents a
conic surface with a bisectrix along the x axis (projection
5 in Fig. 5). The system of all projections connected by
allowed transitions (links) gives the diagram presented in
Fig. 5. It shows three possible versions of a transition: 0 ^
1 ^ 3 ^ 4, 0 ^ 5 ^ 2 ^ 4, and 0 ^1 ^ 2 ^ 4. The letters A and B
in Fig. 5 denote the points of intersection of the phase-match-
ing curves with the principal planes of a crystal, which
correspond to the interactions that are noncritical with
respect to the angles. Point A in projection 4 corresponds
to the phase-matching angles y > O, and point B corresponds
to the angles y > O.

Projections 3 and 5 are identical in form (with respect to
the intersection of the principal planes of a crystal by the
phase-matching curves), but the positions of points A and
B show that the processes of transformation of these projec-
tions (a change from the preceding projection to the
subsequent one) are different. We have y > O for point A

2o o 2o o

2o o

2o o

2o o2o o

2o o

2o o

2o o

nz
ny
nx

nz
ny
nx

nz
ny
nx

nz

ny
nx

nz
ny
nx

nz
ny
nx

nz
ny
nx

nz
ny
nx

nz
ny
nx

x

z

y x

z

x

y

a

b f

c g

d h

e i

Figure 4. Dispersion dependences of refractive indices for sff phase matc-
hing.
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in projection 5 and y < O for point B in projection 3. The
direct transition between projections 3 and 5 is impossible
because it requires that two crystal axes be simultaneously
intersected by the phase-matching curve. The conditions cor-
responding to all the projections of the sff interaction in
Fig. 5, i.e., the relations between refractive indices, are pre-
sented in Table 2.

3. Complete configuration diagram
The diagrams in Fig. 2 (for the ssf interaction) and Fig. 5 (for
the sff interaction) may be combined into a single diagram
similar to the one shown in Fig. 1. The complete diagram of
projections is shown in Fig. 6.Here, in contrast to the diagram
in Fig. 1, where the continuous numbering of projections was
used,we use double numbering.The first number corresponds
to the ssf interaction, and the second number corresponds to
the sff interaction. This approach allows us to simplify the
further analysis of distribution changes. Here, we have two
new elements (projections 25 and 45) in comparison with
Fig. 1, and they correspond to the appearance of the sff
phase matching along the x axis. They are connected with
other projections by the corresponding links.

For each of the projections in the diagram in Fig. 6, the
relation between refractive indices is determined by the cor-
responding conditions for the ssf and sff interactions from
Tables 1 and 2. One can show directly that projection 5
for the sff interaction (Fig. 5) is compatible only with pro-
jections 2 and 4 for the ssf interaction (Fig. 2)

Thus we have two more possible configurations of phase-
matching directions [projections 25 and 45 (Fig. 6)] in addi-
tion to the configurations presented in Fig. 1. The phase
matching along the x axis can appear only for the sff inter-
action and cannot be realised for the ssf interaction because
the phase-matching conditions for all principal planes of a
crystal are specified by the intersection of a circle and an

ellipse. InTable 3 we present inequalities for the principal val-
ues of refractive indices for all the projections in Fig. 6. They
were obtained from Tables 1 and 2 by excluding redundant
relations.

The distribution corresponding to projection 5 in Fig. 5
can be realised only for the crystals with different dispersions
nx(o) and ny(o). After some simple manipulations,we obtain
the dispersion relation for the components of refractive indi-
ces from expression (15):

n2ox ÿ nox > n2oy ÿ noy :

This condition is fulfilled, for example, for the crystals hav-
ing `isopoints,' i.e., wavelengths for which the difference
ny(o)ÿ nx(o) vanishes (a uniaxial crystal) and then its
sign changes to the negative one (e.g., see Ref. [6]).

In accordance with the IEEE/ANSI Std. 176 ^1987 con-
vention, the crystallo-optical coordinate system is chosen so
that the condition nz(o) > ny(o) > nx(o) can be fulfilled.
This is a conventional, so-called optical, arrangement of a
crystal. The crystal is said to be positive (negative) if the angle
2O between the optic axes is smaller (larger) than 90 8. In
practice (e.g., see Ref. [7]), these relations for refractive indi-
ces are not fulfilled.

Table 4 presents some parameters of the most extensively
used crystals, including the relations between orientations of
axes in the crystallo-optical (xyz) and crystallo-physical (abc)
coordinate systems. For many crystals, the parameters pre-
sented above do not satisfy the recommendations of the
convention. Consider a complete phase-matching diagram
for the crystals satisfying the relation nx(o) > ny(o) > nz(o):

0

1 5

3 2

4

A B

B A

B

A B

A B

A

Figure 5. Diagram for the sff interaction.

Table 2.

Projection Phase-matching planes Phase-matching conditions

0 ±

n2oy > �noy � noz�=2; n2ox > �nox � noz�=2 1 xy; yz

n2oy > �noy � noz�=2; �nox � noz�=2 > n2ox > �nox � noy�=2 2 xz �y > O�; yz
�noy � noz�=2 > n2oy; �nox � noz�=2 > n2ox > �nox � noy�=2 3 xz �y < O�; xy
n2oy > �noy � noz�=2; �nox � noy�=2 > n2ox 4 xz �y < O�; xz �y > O�
�noy � noz�=2 > n2oy; �nox � noy�=2 > n2ox 5 xy; xz �y > O�
�noy � noz�=2 > n2oy; n2ox > �nox � noz�=2

22 42 44

25 45

21 41 43

20 40

11 31 33

10 30

00

Figure 6. Diagram of stereographic projections of phase-matching direc-
tions for all types of interaction upon SHG in biaxial crystals
[nz(o) > ny(o) > nx(o)�:
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The phase-matching directions for the ssf interaction lie
in the principal planes of a crystal under the following con-
ditions:

nox > n2oz > noy (20)

in the plane xy,

n2oy > nox > n2oz (21)

in the plane yz, and

Table 3.

Projection Phase-matching conditions

sff type ssf type

40 n2oy > �noy � noz�=2; n2ox > �nox � noz�=2 noz > n2oy; noy > n2ox

41 n2oy > �noy � noz�=2; �nox � noz�=2 > n2ox > �nox � noy�=2
42 �noy � noz�=2 > n2oy; �nox � noz�=2 > n2ox > �nox � noy�=2
43 n2oy > �noy � noz�=2; �nox � noy�=2 > n2ox

44 �noy � noz�=2 > n2oy; �nox � noy�=2 > n2ox

45 �noy � noz�=2 > n2oy; n2ox > �nox � noz�=2
20 n2oy > �noy � noz�=2; n2ox > �nox � noz�=2 noz > n2oy; n2ox > noy

21 n2oy > �noy � noz�=2; �nox � noz�=2 > n2ox

22 �noy � noz�=2 > n2oy; �nox � noz�=2 > n2ox

25 �noy � noz�=2 > n2oy; n2ox > �nox � noz�=2
30 n2ox > �nox � noz�=2 n2oy > noz; noy > n2ox

31 �nox � noz�=2 > n2ox > �nox � noy�=2
33 �nox � noy�=2 > n2ox

10 n2ox > �nox � noz�=2 n2oy > noz > n2ox > noy

11 �nox � noz�=2 > n2ox

00 ë n2ox > noz

Table 4.

Crystal Crystal sign Relation between ni 2O
�
8 l

�
nm xyz

BAMB ± nx > ny > nz 57.25 532.1 abc

Banan ± nx > ny > nz 13 ± abc

KCN ± nz > ny > nx 115.2 546.1 bca

KLN ± nz > ny > nx 111 546.1 bca

LBO ± nz > ny > nx 109.2 532.1 acb

LFM ± nz > ny > nx 123.8 532.1 abc

LGO ± nz > ny > nx 74.5 500 bca

MDNB ± nx > ny > nz 51.15 532.1 abc

MBF ± nz > ny > nx 117.5 532.1 bca

KNB ± nx > ny > nz 66.78 532.1 bac

SFM ± nz > ny > nx 92.5 540 abc

a-HIO3 ± nx > ny > nz 47 ± bca

COANP + nz > ny > nx 36.13 547 cab

KTP + nz > ny > nx 37.4 546.1 abc

KTA + nz > ny > nx 34.5 532.1 abc

CTA + nz > ny > nx 52.9 532.1 abc

RTA + nz > ny > nx 39.4 ± abc

KB5 + nx > ny > nz 126.3 546.1 abc

DKB5 + nx > ny > nz ± ± abc

L-CTT + nz > ny > nx 65.8 532.1 acb

MMONS + nz > ny > nx 70.2 543 abc

NaNO2 + nz > ny > nx 62.5 532.5 acb

Note: BAMB, bis(aminomethyl)benzene; Banan, barium sodium nio-
bate (Ba2NaNb5O15); KCN, potassium-cerium nitrate dihydrate
(K2Ce(NO3)5 � 2H2O); KLN, potassium-lanthanum nitrate dihydrate
(K2La(NO3)5 � 2H2O); LBO, lithium triborate (LiB3O5); LFM, lithium
formate (LiCOOH�H2O); LGO, lithium gallate (LiGaO2); MDNB,
metadinitrobenzene [C6H4(NO2)2]; MBF, magnesium-barium fluoride
(MgBaF4); KNB, potassium niobate (KNbO3); SFM, sodium formate

(NaCOOH); a-HIO3, iodic acid; COANP, 2-cycloactylamino-5-nitropy-
ridine; KTP, potassium titanyl phosphate �KTiOPO4); KTA, potassium
titanyl arsenate (KTiOAsO4); CTA, caesium titanyl arsenate
(CsTiOAsO4); RTA, rubidium titanyl arsenate (RbTiOAsO4); KB5,
potassium pentaborate (KB5O8 � 4H2O); DKB5, deuterated potassium
pentaborate (KB5O8 � 4D2O); L-CTT, calcium tartrate tetrahydrate
(CaC4H4O6 � 4H2O); MMONS, 3-methyl-4-methoxy-4'-nitrostilbene.
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nox > n2oy for y < O , (22)

n2ox > noy for y > O (23)

in the plane xz.
For the ssf interaction, all distributions (projections) and

the relation between them, similar to those shown in Fig. 2,
are possible. Analogous to Table 2, we present the conditions
providing the realisation of all possible projections inTable 5.
The sff interaction is distinct in that the phase-matching con-
ditions in the principal planes xz (for y > O and y > O) and
xy are determined by the intersection of a circle and an ellipse
and therefore have a single condition for realisation, whereas
the phase-matching condition in the plane yz is determined
by the intersection of two ellipses for refractive indices. In
this case, by analogy with conditions (14) and (15) for the
sff interaction for nz(o) > ny(o) > nx(o), we have two pos-
sible conditions under which phase matching in the plane
yz takes place. For all the principal planes, the relations
between refractive indices have the form

n2oz >
1
2 �noy � noz� , (24)

n2oz <
1
2 �nox � noz�

in the plane xy,

n2oy >
1
2 �nox � noy� , (25)

n2oz <
1
2 �nox � noz�

or
n2oy <

1
2 �nox � noy� , (26)

n2oy >
1
2 �nox � noy�

in the plane yz, and

n2oy <
1
2 �nox � noy� for y < O , (27)

n2oy >
1
2 �noy � noz� for y < O ,

n2oz <
1
2 �noy � noz� for y > O , (28)

n2ox >
1
2 �nox � noy� for y > O

in the plane xz.

From expressions (24) ^ (28) it follows that in the case
under consideration, in contrast to Fig. 5, phase matching
can be realised not only along the x axis, but also along
the z axis. Table 6 presents the conditions for refractive indi-
ces providing the realisation of all possible distributions of
phase-matching directions for the sff interaction.

A complete diagram of projections for the sff interaction
is presented in Fig. 7. Its main distinction from the diagram in
Fig. 5 is that only a single transition to projection 3 is possible
upon the appearance of phase matching along the z axis (pro-
jection 5 in Fig. 7). Combining diagrams in Figs 2 and 7, one
obtains a complete diagram for all combinations of

0

1 5

B

2 3
B

B

A B

B A

A

4

A

A

Figure 7. Diagram for the sff interaction.

22 42 44

21 41 43

20 40 45

11 31 33

10 30 35

00

Figure 8. Diagram of stereographic projections of phase-matching direc-
tions for all types of interaction upon SHG in biaxial crystals
[nx(o) > ny(o) > nz(o)�

Table 5.

Projection Phase-matching planes Phase-matching conditions

0 ± n2oz > nox

1 xy; yz n2oy > nox > n2oz > noy

2 xz �y > O�; yz n2oy > nox; noy > n2oz

3 xz �y < O�; xy nox > n2oy; n2oz > noy

4 xz �y < O�; xz �y > O� nox > n2oy; noy > n2oz

Table 6.

Projection Phase-matching planes Phase-matching conditions

0 ±

n2oy > �nox � noy�=2; n2oz > �nox � noz�=2 1 xy; yz

n2oy > �nox � noy�=2; �nox � noz�=2 > n2oz > �noy � noz�=2 2 xz �y > O�; yz
�nox � noz�=2 > n2oz; n2oy > �nox � noy�=2 3 xz �y < O�; xy
n2oy < �nox � noy�=2; �nox � noz�=2 > n2oz > �nox � noy�=2 4 xz �y < O�; xz �y > O�
�nox � noy�=2 > n2oy; �noy � noz�=2 > n2oz 5 yz; xz �y < O�
�nox � noy�=2 > n2oy; n2oz > �nox � noz�=2
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distributions of directions for both types of phase matching,
which is presented in Fig. 8. Table 7 presents inequalities for
the principal values of refractive indices (similar to those pre-
sented in Table 3) for all the projections in Fig. 8. They were
obtained from Tables 5 and 6.

In our opinion, the results presented here cover all possi-
ble phase-matching distributions for the SHG in biaxial
crystals. They show the necessity of revising the results of
Ref. [2] for the generation of summation and difference fre-
quencies of laser radiation.

4. Analysis of the configuration diagrams
for KTP and RTA crystals
Let us use the results obtained above to analyse changes in
projections of two well-known crystals KTP and RTA in
their transparency region. The dispersion dependences
were taken from Ref. [8] for a KTP crystal and from
Ref. [9] for an RTA crystal. The wavelengths of fundamental
radiation corresponding to the transitions from one projec-
tion to another for a KTP crystal are given in Table 8. One
can describe the transitions for this crystal by using the dia-
gram in Fig. 1. The numbers of these transitions are given in
the first column of the table.

In the second column, we give the numbers of transitions
between the projections in Fig. 6. As the wavelength is
increased, the transitions along the set of projections of the
KTP crystal from the distribution 00 tend to distribution
22, which is a limiting one, and not to distribution 44, and
after that, we have the reverse transition along the same
sequence of projections to distribution 00. The wavelength
ranges in which phase matching is realised are 741 ^
4251 nm for the ssf interaction and 994 ^ 3106 nm for the
sff interaction. At the wavelengths of transitions from one
projection to another, which are presented in Table 8,
noncritical (with respect to both angles) phase matching
(along one of the optic axes of a crystal) is realised.

Table 9 presents the data for the RTA crystal, which are
similar to the data in Table 6. Here, only a part of the tra-
nsitions can be described by using the diagram in Fig. 1. At
a wavelength of 1138 nm, the type ssf phase matching along
the y axis appears. Subsequently, the transition along the pro-
jections 20 ^ 21 ^ 22 takes place.As the radiationwavelength is
increased further, a decrease in the refractive index nx(o)
becomes the dominant factor. As a result, the phase-matching
curve intersects the principal crystal planes xy and xz (y > O),
which corresponds to projection 25 in Fig. 6.

Table 7.

Projection Phase-matching conditions

sff type ssf type

40 n2oy > �noy � nox�=2; n2oz > �nox � noz�=2 nox > n2oy; noy > n2oz

41 n2oy > �noy � nox�=2; �nox � noz�=2 > n2oz > �noz � noy�=2
42 n2oy > �noy � nox�=2; �noy � noz�=2 > n2oz

43 �nox � noz�=2 > n2oz > �noy � noz�=2; �nox � noy�=2 > n2oy

44 �noy � nox�=2 > n2oy; �noz � noy�=2 > n2oz

45 �noy � nox�=2 > n2oy; n2oz > �nox � noz�=2
30 n2oy > �noy � nox�=2; n2oz > �nox � noz�=2 nox > n2oy; n2oz > noy

31 n2oy > �noy � nox�=2; �nox � noz�=2 > n2oz

32 �nox � noz�=2 > n2oz; �nox � noy�=2 > n2oy

35 �noy � nox�=2 > n2oy; n2oz > �nox � noz�=2
20 n2oz > �nox � noz�=2 n2oy > nox; noy > n2oz

21 �nox � noz�=2 > n2oz > �noz � noy�=2
22 �noz � noy�=2 > n2oz

10 n2oz > �nox � noz�=2 n2oy > nox > n2oz > noy

11 �nox � noz�=2 > n2oz

00 ë n2oz > nox

Table 8.

Projection l
�
nm

Fig. 1 Fig. 6 the ssf interaction the sff interaction

14 00 700 ±

14 ± 13 00 ± 10 741 ±

13 ± 8 10 ± 20 796 ±

8 ± 7 20 ± 21 ± 994

7 ± 6 21 ± 22 ± 1079

6 ± 7 22 ± 21 ± 2981

7 ± 8 21 ± 20 ± 3106

8 ± 13 20 ± 10 4054 ±

13 ± 14 10 ± 00 4251 ±

14 00 4500 ±

Table 9.

Projection l
�
nm

Fig. 1 Fig. 6 the ssf interaction the sff interaction

14 00 700 ±

14 ± 13 00 ± 10 824 ±

13 ± 8 10 ± 20 887 ±

8 ± 7 20 ± 21 ± 1138

7 ± 6 21 ± 22 ± 1243

± 22 ± 25 ± 3285

± 25 ± 20 ± 3387

8 ± 13 20 ± 10 4288 ±

13 ± 14 10 ± 00 4627 ±

14 00 5800 ±
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At a wavelength of 3.387356 mm, the condition for the
type sff phase-matching along the x axis is fulfilled. This
result does not fall into the traditional Hobden classification
(see Fig. 1). We do not consider here the reliability of the dis-
persion dependences of this crystal for the wavelengths above
3 mm. For the RTA crystal at 3.387356 mm (exact phase
matching along the x axis), the difference in refractive indices
n2ox ÿ 0:5(nox� noz) corresponding to the appearance of
phase matching along the y axis is equal to 0.002. Note
that one should not rule out that this wavelength is beyond
the limits of applicability of the Sellmeier equations being
used. The smallness of this difference suggests the possibility
of another transition along the set of projections, in particu-
lar, the transition from projection 22 to projection 21, as in the
case of the KTP crystal. However, the results obtained above
show that projections 25 and 45 in Figs 6 and 8 may occur.

Note that one of the advantages of the use of the diagrams
in Figs 6 and 8 is that the sequence of transitions along the set
of projections can show the feasibility of the existence of
group phase matching, i.e., wavelength-noncritical phase
matching which is required for the conversion of ultrashort
pulses. For the KTP crystal, the transition observed as the
fundamental wavelength increases is of the loop type. This
means that wavelength-noncritical phase matching occurs
for the distributions corresponding to the `extreme' state of
transitions. For the KTP crystal, this is realised in the 1.96 ^
2.012-mm wavelength range for both types of interaction (for
different phase-matching angles j and y). The spectral width
of phase matching is 118 ^135 nm cm1=2 for the type ssf inter-
action and 126 nm cm1=2 for the type sff interaction.

Bearing in mind that frequency doublers are used in tun-
able lasers, the diagrams presented in Figs 6 and 8 make it
possible to estimate the angular tuning rate required for
this purpose. For example, one can find from Table 6 that
the angular rate of tuning of the phase-matching direction
for the KTP crystal in the xy plane for the sff interaction
is 15.74 pm (angular min)ÿ1 in the 994 ^1079 nm wavelength
range and 23.15 pm (angular min)ÿ1 in the 2981 ^ 3106 nm
range.

5. Noncritical types of phase matching
In conclusion, let us consider one more question, which, in
our opinion, was insufficiently discussed in the literature. In
most cases, the analysis of stereographic projections does not
include the problem of the number of solutions for the phase-
matching angles y that may occur for the given angle j. This
question, as a rule, is also ignored in handbooks on nonlinear
crystals. It is obvious that in the case of projections 1 and 2 in
Figs 2, 5, and 7, we have the same angle y corresponding to
each angle j, and the same occurs for projection 5 in Figs 5
and 7. On the other hand, for projections 3 and 4 in Figs 1, 2,
and 5 ^ 8, each angle jmay correspond to two values of angle
y. This possibility is determined by the condition that the
derivative of the phase-matching angle with respect to y
vanishes:

qj
qy
� 0 , 0 < y < p : (29)

Note that, when y � 0 and y � p (provided these angles can
be achieved for the given wavelength), derivative (29) van-
ishes because of the symmetry of the phase-matching curve
about the principal planes of a crystal.

The fulfilment of condition (29) suggests the presence of
phase matching noncritical with respect to the angle, which
can be realised not only in the principal planes of a crystal.
The choice of a specific phase-matching angle y is determined
by the effective nonlinearity, which depends on the angles j
and y, and all (angular, spectral, and temperature) phase-
matching widths. Note that everything discussed here relates
to both ssf and sff phase matching.

Consider the realisation of this regime by using a sodium
formate crystal as an example. Fig. 9 presents the phase-
matching diagram for the ssf (curve 1 ) and sff (curve 2 )
interactions for the fundamental radiation at 532.1 nm.
This distribution corresponds to projection 43 in Fig. 6.
The phase matching noncritical with respect to the angle is
realised at j � 25:98 and y � 43:98 (point A) for the ssf inter-
action and at j � 53:38 and y � 23:78 (point B) for the sff
interaction.

Figure 10 presents the dependences of the angular phase-
matching widths Dy (a, b) and Dj (c, d) for the sff interaction
on the fundamental-radiation wavelength l (a, c) and the
angle j (b, d). All the dependences were calculated along
the phase-matching directions for two angles y (curves 1
and 2 ). The first angle corresponds to the phase-matching
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Figure 9. Distribution of phase-matching directions in a SFM crystal.
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Figure 10. Angular widths of phase matching in a SFM crystal.
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curve going upward from the point B in Fig. 9, and the second
angle corresponds to the curve going downward. The right-
hand maximum of curve 1 in Fig. 10a corresponds to the con-
version regime that is noncritical with respect to the angle
(point A in Fig. 9), and the left-hand maximum corresponds
to the phase-matching in the plane xy that is noncritical with
respect to the angle. The latter regime appears in the case
where the phase-matching curve for the sff interaction in
Fig. 9 gradually approaches the distribution of form 1 in
Fig. 5. Similarly, the right-hand maximum in Fig. 10b, where
curves 1 and 2 merge together, corresponds to the point B in
Fig. 9, and the left-hand maximum to the phase matching in
the plane xy that is noncritical with respect to the angle. The
dependences of the angular phase-matching widths Dj on l
and j are presented in Figs 10c and 10d. One can see clearly
that the phase matching corresponding to the point B in
Fig. 9 has a larger angular width.

6. Conclusions
Using the well-known Hobden classification [1], we have
provided a complete classification of phase-matching direc-
tions for SHG in biaxial crystals with quadratic nonlinearity.
The results obtained for the transformation of stereographic
projections of biaxial crystals under changes of radiation
wavelength demonstrate a strong interrelation between all
the projections in the transparent region of a crystal.

The complete diagram of stereographic projections can be
advantageously applied to analyse crystals used in practice,
for example, to predict noncritical (with respect to the angle,
wavelength, and temperature) phase matching. A more
detailed comparative analysis of known biaxial crystals
based on the results of this paper will be published elsewhere.

The calculation results presented here were obtained by
using the LID ^ SHG (Laser Investigator & Designer ^
Second Harmonic Generation) code (see http://
www.bmstu.ru/~lid).
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