
Abstract. Condensation of the weakly nonideal gas in an
anisotropic parabolic trap was considered. The first order
(with respect to the interaction parameter) correction D�n0 �
�n0(T )ÿ �n 0

0 (T ) to the temperature dependence of the ground
state population �n 0

0 (T ) of the ideal gas atoms was found
using thermodynamic perturbation theory. The correction
found D�n0 proved to be much larger than the one calculated
within the mean field theory [see Giorgini S, Pitaevskii L P,
Stringari S Phys. Rev. A 54 R4633 (1996)] at temperatures
below critical. This correction tends to zero as the temper-
ature approaches the critical one; i.e., the interaction of the
atoms does not lead to variation in the critical temperature.
A simple analytic expression was found that describes the
smooth variation of �n 0

0 (T ) as it approaches zero in the vici-
nity of the critical temperature. A new criterion for applica-
bility of the thermodynamic limit is given.

The latest advances in the field of laser cooling of atoms
allowed the implementation of new efficient loading methods
for parabolic magnetic traps. As a result, the critical temper-
ature of Bose condensation was achieved in such traps [1].
Since the first observations of the Bose condensation of
atomic gases, the question of how the interatomic interaction
affects the process of condensation has been actively studied
(see, for example, [2]). From the conceptual viewpoint, this
problem is currently one of the most important in the theory
of Bose condensation.

At present, this problem is approached with the help of the
mean field approximation [2, 3]. This approximation is based
on the Gross-Pitaevskii equation, which describes the con-
densate wave function (the order parameter) and which
follows from the assumption of spontaneously symmetry bro-
ken gauge. It was established within this approach [3] that, in
the first order with respect to the interaction parameter a (a is
the scattering length), the condensation temperature is
shifted by DTint from its ideal-gas value Tc,

DTint
Tc
� ÿ1:3 a

R
N 1=6, (1)

Here, R � (�h=mo)1=2 is the oscillator dimension; m is the
mass of the atom; o � (oxoyoz)

1=3, where oi are the fre-

quencies of the parabolic trap; and N is the total number of
trapped atoms.

In this paper, the thermodynamic perturbation theory is
used to investigate the effect of the interatomic interaction on
the temperature dependence of the ground-state population
�n0(T ) of the gas in an anisotropic parabolic trap. The
main result of our approach is that, in the first order with
respect to the interaction parameter a, this dependence has
the form

�n0�T � � �n 0
0 �T �

�
1ÿ g

�
T

Tc

�2�
;

(2)

g � 23=2

p1=2
z�2�

z2=3�3�
a

R
N 2=3 � 2:3

a

R
N 2=3,

where z(x) is the Riemann zeta function. The function �n 0
0 (T )

describes the ground-state population of the ideal gas
[2, 4, 5]:

�n 0
0 �T �
N

� 1ÿ j0�T �; j0�T � �
�
T

T 0
c

�3

� y
�
T

T 0
c

�2

N ÿ1=3, (3)

where T 0
c � N 1=3�hozÿ1=3(3); y � 1:5 (�o=o) �z(2)=z 2=3�3�� �

2:18�o=o; and �o � (ox � oy � oz)=3. The second term in
the expression for the function j0(T � is the correction due
to the finite number of atoms in the trap. As a result,
�n 0
0 (T ) vanishes at the temperature Tc � T 0

c � DTfin,, where
DTfin=T

0
c � ÿ(y=3)N ÿ1=3 [4,5].

It is generally accepted that the ideal-gas dependence (3)
holds in the thermodynamic limit (see, e.g., [2, 4])

N !1; o! 0; No3 ! const . (4)

Below, we show that the correct condition for the thermody-
namic limit is not uniform in �n 0

0 and has the form

�n 0
0 �T �4

�����
N
p

. (5)

It is the fulfilment of condition (5) rather than (4), that
determines validity of expressions (2) and (3). For any values
of N and o in the region �n 0

0 (T )4
�����
N
p

, the corrections
omitted in Eqns (2) and (3) become the leading terms and
provide the smooth character of vanishing (with zero deriv-
ative) of �n 0

0 (T ) when T=Tc 5 1ÿN ÿ1=2 (see Fig. 1).
Furthermore, these corrections play the decisive role in der-
ivation of the dependence (2) in the region of the thermo-
dynamic limit (5) as well.

A specific feature of Eqn (2) is a decrease in the correc-
tion D�n0 � �n0(T )ÿ �n 0

0 (T ) with decreasing �n0. As we show
below, this feature is also preserved in the region
�n 0
0 �T �4

�����
N
p

. This means, that the curves �n0(T ) and
�n 0
0 (T ) approach one another with increasing temperature

at T ! Tc (see Fig. 1). This result, however, qualitatively
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contradicts the prediction of mean field theory (1). Another
contradiction is that the correction parameter in Eqn (2) is�����
N
p

times larger than the corresponding parameter in
Eqn (1); i.e., the correction in Eqn (2) is much larger than
that in Eqn (1) when T < Tc.

The appearance of the parameter g in the thermodynamic
perturbation theory can be qualitatively explained in the fol-
lowing way. The characteristic correction to the energy per
particle induced by the interatomic interaction is determined
by the parameter �ho(a=R )N (see, e.g., [6, 7]). After intro-
ducing it into the Gibbs distribution, this correction is
divided by T (the temperature in units of energy). Thereupon,
one should take into account that �ho=T � (�ho=Tc)(Tc=T ) �
(Tc=T )�N ÿ1=3.

We start our derivation by calculating, with the help of
perturbation theory, the interaction-induced corrections to
eigenvalues of the secondary quantisation Hamiltonian

Ĥ � Ĥ0 � Û; Ĥ0 �
X
s

esa
�
s as ,

Û � 1
2

X
s01; s

0
2 ; s1; s2

U
s01; s

0
2

s1; s2 a
�
s01
a�s02as1as2 ,

Here, a�s and as are, respectively, the creation and annihila-
tion operators of a particle in the state s. In the case of an
anisotropic trap, all levels are non-degenerate, and the first-
order correction DE�n0; n1; :::� to the energy of the unper-
turbed Hamiltonian E0�n0; n1; :::� � e0n0 � e1n1 � ::: has the
form

DE�n0; n1; :::� � hn0; n1; :::jÛjn0; n1; :::i

� 1
2

X
k

Akknk�nk ÿ 1� �
X
k 6�l

Aklnknl . (6)

In Eqn (6) we took into account that all the eigenfuctions are
real in the absence of degeneration, and introduced the nota-
tion

Akl � Alk � Ukl
kl � Ulk

kl �
�
C 2
k �r�U�rÿ r 0�C2

l �r 0�dr dr 0:

Then, we insert E0 � DE in the Gibbs distribution,

W �n0; n1; :::� � Sÿ1exp
�
m
T
�n0 � n1 � :::�

ÿ 1
T
�E0�n0; n1; :::� � DE�n0; n1; :::��

�

� Sÿ1exp
�
m
T
�n0 � n1 � :::� ÿ

1
T
�E0�n0; n1; :::�

�

�
�
1ÿ 1

T
DE�n0; n1; :::�

�
(7)

and, using Eqn (6), calculate the normalisation constant

S � S0

�
1ÿ
X
kl

Bkl ~nk ~nl

�
; S0 �

Y
i

�
1ÿ exp

�
~mÿ ei

T

��ÿ1
; (8)

~ni �
�
exp
�
ei
T
ÿ ~m
�
ÿ 1
�ÿ1

; Bkl �
Akl

T
;

where ~m � m=T . Note that in presence of interatomic inter-
action (Bkl 6� 0), the quantities ~ni and ~m are not the average
number, in contrast to the case of ideal gas (Bkl � 0).

To calculate the average number �ni of atoms populating
the level i when Bkl 6� 0, one has to perform the summation

�ni �
X

n0;n1;:::

niW �n0; n1; :::� .

Using Eqns (7) and (8), we obtain

�ni � ~ni ÿ 2~ni�~ni � 1�
X
k

Bik ~nk : (9)

The parameter ~m can then be determined from the relation-
ship N �P �ni. We rewrite this relationship in the following
form to the separate terms that contain ~n0

N � ~n0 �
X
i6�0

~ni ÿ 2B00�~n0�2�~n0 � 1�

ÿ~n0�~n0 � 1�S1 ÿ ~n0S2 ÿ S3; (10)

S1 � 2
X
k6�0

B0k ~nk; S2 � 2
X
k6�0

B0k ~nk�~nk � 1�;

S3 � 2
X
k;l 6�0

Bkl ~nk ~nl�~nl � 1�;

Eqn (10) can be solved for the parameter ~m using the iteration
method. First, we need to calculate the sum

1.0
�n0=N; �n 0
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Figure 1. Temperature dependences of the condensed fraction of �n 0
0 =N of

the ideal gas calculated by Eqn (16)(the solid curves) and Eqn (3) (the
dotted curve) and of the condensed fraction �n0=N of the weakly nonideal
gas calculated by Eqn (19) for g � 0:25 (the dashed curves) and g � ÿ0:25
(the dash-dot curves).The total number of particles isN � 103.
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F � ~n0 �
X
k6�0

~nk : (11)

For that purpose, we introduce the vector index k � �kx,
ky, kz� (where ki � 0, 1, :::, i � x, y, z) that enumerates the
energy levels of the 3D oscillator ek � �ho(kX), where X �
(Ox,Oy,Oz�; Oi � oi=o (the ground level �3=2��h�o is assu-
med to have zero energy). We therefore have

~nk �
�
exp�bkÿ ~m� ÿ 1

�ÿ1 �X1
p�1

exp� p�ÿbk� ~m�� ,
(12)

b � �ho
T

X :

The summation in Eqn (11) can then be easily performed [8],
and we find

F � ~n0 �
X1
p�1

e~mp
�Y3
i�1

�
1ÿ eÿbi p

�ÿ1
ÿ 1
�
: (13)

Next, we derive from Eqn (8) the exact formula ~m �
ÿln�1� 1=~n0�, which can be approximated by ~m � ÿ1=~n0
down to very small �n0 5 5. The parameter b � �ho=T �
N ÿ1=3Tc=T , which means that the inequality b5 1 holds
for large values of N, beginning from temperatures T that
are much lower than the condensation temperature (T 5
Tc) but still satisfy the condition

t4N ÿ1=3, t � T=Tc . (14)

In the following, we will assume condition (14) to always be
fulfilled. The sum (13) can then be replaced by a series expan-
sion to the second order with respect to 1=b and the first
order with respect to ~m � ÿ1=~n0 to obtain

F � ~n0 �Nj0�T � ÿ
1
~n0
Nj1�T �; j1�T � � gt3; g � z�2�

z�3� :(15)

The passage to the thermodynamic limit corresponds to
dropping the last term in the expression for F in Eqn (15).
However, it is this term that ensures the smooth reduction of
the ground-state population to zero (with the zero derivative)
in the region �n 0

0 4
�����
N
p

(j1ÿ tj 4Nÿ1=2) and provides the
correction that plays the decisive role in the following calcu-
lations in the region of the thermodynamic limit (5).

In the zeroth order with respect to interparticle interac-
tion (the ideal gas), we insert B � 0 in Eqn (10), with the
result that F � N and, the quantities ~ni then describe popu-
lations of the states of the ideal gas. For the ground-state
population ~n0 � �n 0

0 of the ideal gas we find from (15) the
expression

�n 0
0

N
� 1

2

�
1ÿ j0�T � �

n
�1ÿ j0�T ��2 � 4j1�T �=N

o1=2
�
. (16)

Near the critical temperature, jtÿ 1j 5 1, this expression
takes the form

�n 0
0

N
� 3

2

(
1ÿ t�

�
�1ÿ t�2 � 4

9
g
N

�1=2)
:

The temperature dependence (3), usually called the thermo-
dynamic limit, follows from Eqn (16) under the conditions

t < 1 and 1ÿ j0(T )4N ÿ1=2 [which are equivalent to
condition (5)]. This decrease of �n 0

0 with increasing temper-
ature continues up to temperatures that are very close to Tc
but still satisfy the condition 1ÿ t4N ÿ1=2, equivalent to
Eqn (5).

Then, the character of the decrease of �n 0
0 (T ) changes, and

in the range N ÿ1=2 5 tÿ 15 1, it is given by the equation
�n 0
0 (T ) � (g=3)(tÿ 1)ÿ1, as follows from Eqn (16). In the

intermediate region, jtÿ 1j 4N ÿ1=2, the exact formula (16)
must be used. Previously, this deviation of the function
�n 0
0 (T ) from the thermodynamic limit was studied only num-

erically [4, 5]). Thus, in the zeroth order with respect to the
interatomic interaction, the ground-state population �n 0

0 (the
ideal gas) is given by expression (16).

In the first order with respect to the interatomic interac-
tion, we set

~n0 � �n 0
0 � D�n0; F �~n0� � F

ÿ
�n 0
0
�� � qF

q�n 0
0

�
D�n0

� N � �1�Nj1
ÿ

�n 0
0
�ÿ2�

D�n0

and, using Eqns (10) and (9), obtain

�n0 � �n 0
0 �

ÿ
�n 0
0
�2ÿ

�n 0
0

�2 � j1N

ÿÿ 2B00j1N �n 0
0

ÿj1NS1 � �n 0
0S2 � S3

�
: (17)

Note that only by taking account of the last term in Eqn (15)
(cor-rection to the thermodynamic limit) the term proportio-
nal to B00, which becomes leading in the thermodynamic
limit (5) is retained in the expression (17).

In the case of the harmonic oscillator and the contact in-
teraction U�rÿ r 0� � �4p�h2a=m�d�rÿ r 0�, the values of B00
and the sums S1;2;3 can be calculated exactly. In particular,
B00 can be found by a simple integration: 2B00
� g�gNt�ÿ1, where we took into account that �ho=T �
tÿ1N ÿ1=3z 1=3(3). In order to calculate the sums S1;2;3 the
numbers ~nk must first be represented in the form (12) and
then summed over k using the well-known formula for Her-
mite polynomials [9]

X1
k�0

yk

k!
H 2

k �x� �
1

�1ÿ 4y2�1=2
exp
�

4y

1� 2y
x2
�

;

finally, integration completes the calculation. The result, a
sum of functions over one or two scalar indices (m1;m2),
becomes much simpler in the considered case b5 1:

S1 � g
z�3=2�
z�2�

�
z�3�
N

�1=2
t1=2; S3 � gzÿ1�2�t 7=2

�
N

z�3�
�1=2

M;

(18)

S2 � gzÿ1�2�t
�
z�3�
N

�1=3 �1
0
duu

� Y
i�x;y;z

�
1ÿ eÿOiu

�ÿ1=2
ÿ 1
�
;

where

M �
X1

m1;m2�1
m
ÿ3=2
1 m

ÿ1=2
2 �m1 �m2�ÿ3=2 � 1:2 .

One can see from Eqn (18) that, under condition (14), the
term in Eqn (17) that contains S2 is much smaller than the
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term containing B00; therefore, the former term can be
neglected. We then obtain the following expression for the
ground-state population

�n0 � �n 0
0 ÿ gt2

ÿ
�n 0
0
�2ÿ

�n 0
0

�2 � gt3N

�
�n 0
0 � dt3=2N1=2

�
�19�

where �n 0
0 is given by Eqn (16), and d � z�3=2�zÿ1=2�3��1ÿ

Mzÿ1�2�zÿ1�3=2�� � 1:74.
In the thermodynamic limit (5) �1ÿ t4Nÿ1=2�, this

expression takes the form

�n0
N
� �1ÿ j0�T ��

ÿ
1ÿ gt 2�ÿ gdt 7=2N ÿ1=2 : (20)

When T � Tc, it follows from Eqn (19) that

�n0
N
�
�

g
N

�1=2�
1ÿ 1

2
g
�
1� dgÿ1=2

��
: (21)

Finally, under the conditions N ÿ1=25tÿ 151 ( �n 0
0 5N 1=2 ),

we find from Eqn (19) that

�n0
N
� 1

3
g

N�tÿ 1�
�
1ÿ d

3
gN ÿ1=2�tÿ 1�ÿ1

�
: (22)

In the thermodynamic limit (20), the correction D�n0 given
by the last term in the right-hand side is much smaller than
the one given by the first term, which appears, as mentioned
above, only as a result of the difference in value of �n 0

0 and its
value given by Eqn (3) in the thermodynamic limit (5). There-
fore, formula (2) should be used instead of formula (20). This
means that, in all the cases given by Eqns (20) ^ (22), the cor-
rection D�n0 is proportional to �n 0

0 and tends to zero, together
with �n 0

0 , in the region tÿ 15N ÿ1=2 (see Fig. 1). The result
given by Eqn (1) can be obtained only by taking a formal limit
of �n 0

0 approaching zero (�n 0
0 5 Nÿ1=2) in Eqn (20). This for-

mal passsage to the limit, however, violates the condition (5)
of validity of Eqn (20) (in this region, �n0 has the form (22)
rather than (20)). An important property of expression (2)
is that it depends only on the term (A00=2)�n

2
0 of the sum

(6), which preserves its form in traps of any shape.
Note that calculation of the dependence �n0(T ) according

to Eqns (3) or (16) with the critical temperature correction
given by the mean field theory equation (1) does not lead
to any noticeable changes in the plot due to that correction.

Weakness of the interatomic interaction imposes new,
other than condition (14), restrictions on the validity of the
derived expression (19). The first constraint follows from
the fact that the correction to �n 0

0 in Eqn (19) should be small
compared to both �n 0

0 and the difference N ÿ �n 0
0 . Only in this

case, the thermodynamic perturbation theory can be used to
calculate the populations of excited states as well as the
ground-state population. The second constrain is related to
the condition of smallness of the energy correction (6) (per
particle) compared to the energy level difference �ho. In the
thermodynamic limit (20), both of these restrictions are
important, which leads to the conditions g5 1; �a=R��n0
5 1, and t4 g. For the case given by Eqn (21), only the first
requirement is important, which corresponds to the con-
straint g5 1. Conversely, for the case given by Eqn (22),
the second requirement plays the dominant role, resulting
in the restriction �a=R�N1=2 5 1, which is the weakest of
all the mentioned constraints. The only experimental meas-
urement of �n0(T ) [10] we are aware of was performed with

a large number of particles and, therefore, did not satisfy
the above constraints.
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