
Abstract. It is shown that the formation of a negative gas
lens in a waveguide gas laser of medium pressure can break
the symmetry and the number (classification) of waveguide
modes. The violation of symmetry can be caused by imper-
fect waveguide construction or can occur spontaneously.
The spontaneous violation of symmetry is caused by the
optical nonlinearity of an active medium (the saturation
effect) and leads to the appearance of new modes, which
are absent in the linear waveguide with the same optical
characteristics. The violation of symmetry of waveguide
modes can cause, in particular, a decrease in coherence of
laser radiation.

1. Introduction
Recent studies (see, e.g., Ref. [1]) showed that gas heating in
a slab waveguide laser of medium pressure can result in a
well-pronounced lens effect. If the discharge exciting the gas
and the optical laser system are symmetric about the middle
plane of the slit, it is natural to expect the same symmetry for
optical waveguide modes. However, this assumption is not
always valid in reality because of a negative gas lens formed
in the waveguide. As the lens power increases, the frequen-
cies of waveguide modes approach one another in pairs
(corresponding to successive even and odd modes), and
each pair is gradually divided into two parallel radiation
fluxes, which are separated by the region where nearly
total internal reflection of radiation takes place. The larger
the lens power, the larger the number of pairs formed in the
system. Nevertheless, in a symmetric waveguide, each mode
of a pair retains symmetry and coherence of radiation
throughout the waveguide section.

However, as the lens power is increased, the coupling
between these two fluxes becomes so weak that even weak
engineering (or technological) deviations from the waveguide
symmetry, which are inevitable, are able to cause an almost
complete breakdown of symmetry of waveguide modes and
the disintegration of the aforementioned pairs of modes
into other modes, which are almost totally spatially sepa-
rated. In this case, mutual coherence of radiation in two
halves of the waveguide (two radiation fluxes) is absent.

As will be shown below, the violation of mode symmetry
can take place even in an exactly symmetric waveguide,which
is associated with an inevitable optical nonlinearity (satura-
tion) in a laser. Because of this, it is reasonable to speak
about a kind of spontaneous violation of the waveguide
symmetry.

2. Modes of a nonlinear waveguide

Let the radiation field be dependent on two Cartesian coor-
dinates x and y. The x axis is directed along the normal to the
waveguide boundaries, and the z axis specifies the direction
in which radiation travels. The waveguide thickness is 2l, and
its boundaries lie in the planes x � �l. The equation describ-
ing the propagation of the light field in the waveguide has the
form

D f � �1� de�k20 f � 0 . (1)

Here,

D � q2

qx 2 �
q2

qz 2

is the Laplace operator; k0 is the wave number of radiation in
vacuum; f is one of the field components; and the dielectric
constant of a gas at the frequency under consideration 1� de
is a function of x and a functional of the radiation field. The
dependence of de on x describes refraction and gain of a
medium, and the dependence of de on the field intensity
describes saturation.

For simplicity, the gain is assumed to have a local depend-
ence on the light field strength, and it is given by the formula
(Ref. [2])

Imde�x� � 1
k0

g�x�
1� j fj2=I . (2)

Here, g( x ) is the unsaturated gain and I is the saturation
parameter. For simplicity, we assume that I � const.

Let (see also Ref. [3])

f � A exp�ik0z� ,
where A � A(x, z ) is the slowly varying field amplitude sat-
isfying the modified wave equation

DA� 2ik0
qA
qz
� dek 2

0A � 0 : (3)

Waveguide modes (in the nonlinear regime) are described by
the solutions of the last equation found by the method of
separation of variables, i.e., the solutions of the form

A�x; z� � a�x�a�z�: (4)
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Substituting Eqn (4) in Eqn (3), we have

1
a�x�

d2a�x�
dx 2 �

1
a�z�

d2a�z�
dz 2

� 2ik0
1

a�z�
da�z�
dz

� k 2
0 de�x; a�x�a�z�� � 0 :

Let us fix the quantity a and consider the equation

1
a�x�

d2a�x�
dx 2 �

�
k 2
0 de�x; a�x�a� � q�a�

	 � 0 (5)

with additional (boundary) conditions

a�ÿl � � a�l � � 0 : (6)

This is a nonlinear analogue of the problem of waveguide
modes.

Strictly speaking, the procedure described above is not
really correct. From Eqn (5), it follows that the function a
depends on a and, therefore, on z. However, when the unsa-
turated gain is small (this case often takes place in practice),
one may neglect the dependence of a on z (for detail, see [3]).
This situation will be considered further. The quantity q will
be called, as in the linear case, the eigenvalue of the problem,
which is now nonlinear.The discrete set of values of q with the
corresponding functions a ( x ) (nonlinear modes) can be
found from Eqn (5) and the boundary conditions. In this
case, a is treated as a parameter.

Then, one should solve the equation

1
a�z�

�
d2a�z�
dz 2

� 2ik0
da�z�
dz

�
� q�a� ,

which describes a change in amplitude of the field travelling
along the waveguide. One may neglect in this equation the
second derivative of a because 1=k0 is much smaller than the
characteristic distance on which the amplitude changes.
Generally speaking, the dependence of the field on z in the
nonlinear waveguide is no longer exponential, but it may be
rather close to it, provided the saturated gain (depending
now on the cavity loss) is low, which was already assumed
above.

3.Violation of the symmetry of modes
Consider Eqn (5) with boundary conditions (6). It is conven-
ient to rewrite it in a more customary form

d2f�x�
dx 2 �

�
k 2
0 de�x; f�x�� � q

	
f�x� � 0 : (7)

Here, z and a are fixed, and (see above) f ( x ) � a ( x )a. It is
an intricate problem to analyse this equation in the general
case. However, one can analyse it in sufficient detail in cer-
tain specific cases, which give knowledge of basic features of
the problem.

Consider the fundamental mode and ignore, first, both
the gain and its saturation. In this case, we have a conven-
tional linear problem. Let

j �
� l
0

�ÿ q0 ÿ k 2
0 de�x; 0

�1=2dx, j4 1 : (8)

Here, q0 is the eigenvalue of the fundamental mode, which is
assumed to be negative and give a positive radicand in
Eqn (8). In this case, radiation undergoes strong reflection
near the middle of the waveguide and, as noted above, is

divided into two fluxes, which are coupled very weakly. The
decay of the field toward the waveguide centre, as well as the
difference of eigenvalues q for the zero and first modes, is
given, in order of magnitude, by the factor exp (ÿ j ).

However, the fields of both modes under consideration
(with indices n � 0 and 1) remain symmetric about the mid-
dle waveguide plane. For both modes, f 2(x ) are even
functions of x. This directly follows from the linearity of
the problem. Indeed, if f( x ) were an asymmetric solution
of the boundary problem (6), (7), then, according to the
superposition principle for the solutions of linear problems,
f ( x )� f (ÿ x ) and f (x )ÿ f (ÿ x ) would be two linearly
independent degenerate solutions of the initial problem,
which is impossible.

Assume that the saturated gain is small and that the quan-
tity g (x )=k0(1� j f (x )j2I ÿ1) [see Eqn (2)] may be treated as
a small correction to the real part of the dielectric constant
Re de. In this case, one may use the perturbation theory. It
is convenient to carry out further analysis in a more compact
general form and subsequently come back to the specific
problem under consideration.

Let L̂ be a linear Hermitian operator with a discrete spec-
trum in the space H, and f( f ) a nonlinear operator in the
same space ( f 2 H ). The nonlinear problem on eigenvalue
perturbations is formulated in the following way. One should
find approximate solutions of the equation

L̂ f � ef� f� � lf (9)

for e! 0. In addition to the vector f, one calculates l in a
similar linear problem. It will be clear that, in the nonlinear
problem, l represents a parameter that should be determined
from certain additional conditions.

As in the linear case, we will seek the solution of the prob-
lem in the form

f � f0 � e f1 � . . . , l � l0 � el1 � . . . : (10)

Here, f0 is one of the eigenvectors of the operator L̂, and l0 is
the corresponding eigenvalue. The case of degenerate eigen-
values is not a priori excluded. Substituting Eqn (10) in
Eqn (9), we have in the first order with respect to eÿ

L̂ÿ l0� f1 � l1 f0 ÿ f� f0� . (11)

The solvability of this equation requires that the vector in
its right-hand side be orthogonal to the subspace of eigenvec-
tors corresponding to the eigenvalue l0. For simplicity,
consider the case of doubly degenerate l0 because it will
be needed in the further analysis. Let the eigenvector space
have the orthonormal basis f fe, fog (the choice of notations
will be explained below). We also assume that

f0 � ce fe � co fo :
The orthogonality condition takes the form

l1ce � h fejf�ce fe � co fo�i ,
(12)

l1co � h fojf�ce fe � co fo�i ,
where the angle brackets denote the scalar product in the
space H. Because now f is a nonlinear operator, the last
equations are also nonlinear and have a solution for differ-
ent, generally speaking, arbitrary l1. Thus, the nonlinear
problem (9) is radically different from the corresponding
linear problem. Now, the eigenvalue is not determined by
the problem itself, but it should be set as an additional
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condition. In the problem of waveguide laser modes, this
condition represents the equality of saturated gain for a
round cavity trip to the cavity loss. If the modes of a non-
linear waveguide are considered as such, one should simply
assume Imq to be specified.

Now, let us turn back to the waveguide mode problem.We
make one more simplification and assume that the gain itself
and the degree of saturation are small. Then

1

1� j f j2=I ' 1ÿ j f j
2

I
:

The space H � L 2(ÿ l, l ) is a conventional Hilbert space of
functions on the interval (ÿ l, l ). In this case,

L̂ � d2

dx 2 � a�x�; f� f� � ib�x�
�
1ÿ j f�x�j

2

I

�
f�x� ,

where a ( x ) � k 2
0 Rede ( x ), b(x ) � k 2

0 Imde (x ), and it is
assumed that

max
x
ja�x�j4 max

x
jb�x�j .

As noted above, in a symmetric cavity, modes of the linear
approximation should be symmetric. In particular, the funda-
mental (zero) mode fe is even, and the next (in order of
increasing eigenvalue) mode fo is odd. For clearness, the
mode indices are chosen by analogy with the notation used
in spectroscopy. Because the difference of eigenvalues of
the linear problem qe and qo exponentially decreases with
increasing j (see above), we consider the case where one
may neglect this difference and assume the modes fe and
fo to be degenerate with a rather high accuracy. In this
case, Eqns (12) take the form

q1ce � ih fej bfeice ÿ i
�
fe

����b jce fe � co foj2I
�ce fe � co fo�

�
,

(13)

q1co � ih foj bfoico ÿ i
�
fo

����b jce fe � co foj2I
�ce fe � co fo�

�
:

(14)

Here, we took into account that a, b, and fe are even func-
tions of x, whereas fo is an odd function.

Further, in the same degree as qe and qo may be assumed
identical, we neglect the difference of the functions f 2

e (x )
and f 2

o ( x ) (one may assume that both functions are real
because they are eigenfunctions of the real Hermitian oper-
ator L̂). Formally analysing system of Eqns (13), (14) as a
linear system whose coefficients, however, depend on ce and
co, one can easily see that q1 should be purely imaginary,
and the coefficients ce and co themselves may be assumed
real (in actuality, they are determinedwithin an arbitrary com-
mon phase factor).

Taking everything said above into account, one can write
the system of equations under consideration in the form

c 3e � 3cec
2
o � rce , c 3o � 3coc

2
e � rco : (15)

Here, r � (h f jbf i�iq1)=h f 2jbf 2i, and f means any of the
functions fe and fo. The parameter r, as mentioned above,
should be assumed to be fixed and dependent on external
conditions. System of Eqns (15) has the following set of sol-
utions: the solution for the fundamental even mode in the
form

co � 0 , c 2e � r ,
the solution for the first odd mode in the form,

ce � 0 , c 2o � r
and a new solution

c2e � c2o � r=4 .

In the latter case, ce � �co, and therefore we have two more
modes. One of them is almost completely concentrated in
the region x < 0, and the other one is concentrated in the
region x > 0. These two modes are asymmetric.

In the above example, we considered perturbations of a
virtually degenerate pair of modes. Note that numerical sim-
ulation of the problem under conditions close to those used in
Ref. [1] made it possible to observe the violation of symmetry
for modes that are far from degeneracy. Fig. 1 presents one of
such modes (solid curve) and the symmetric mode (dashed
curve), which remained in addition to the first one. The cal-
culation was made for a pressure of 100 Torr (133 mbar) in
the gas mixture Ar : He : Xe � 59:5 : 40 : 0:5, with a temper-
ature difference of 300 K between the wall and the waveguide
center.

The asymmetry of the radiation field in a laser with the
lens effect was observed experimentally. In Fig. 2, the
same asymmetric mode (dashed curve) is compared with
the experimental data [4]. Here, the waveguide is 2 mm thick,
as before (now the coordinate x is given in relative units). The
measurements were made at a pressure of 150 mbar for the
aforementioned composition of a gas mixture. Most likely,
lasing in this experiment was multimode.
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Figure 1. Spontaneous violation of symmetry of waveguide modes.
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Figure 2. Comparison of one of the theoretically obtained asymmetric
modes (dashed curve) with the experimental data.
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4. Conclusions

Thus, the optical nonlinearity of an active medium in the
presence of a negative gas lens, even in an ideally symmetric
waveguide, is able to cause the formation of asymmetric
modes, with symmetric modes being retained. In addition
to the spontaneous violation of the waveguide symmetry,
which was described above, the violation of the field sym-
metry can be caused by an inevitable imperfection of the
waveguide construction. This asymmetry is of particular
importance in the case of nearly degenerate pairs of modes
considered above. In any case, the appearance of asymmetric
modes can cause a decrease in coherence of laser radiation
because the smaller the spatial overlap of modes forming
laser radiation, the lower the mutual coherence of the radi-
ation field in two parts of a waveguide (at x < 0 and x > 0).
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