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Interrelation of the laser-induced damage characteristics

in statistical theory

M F Koldunov, A A Manenkov, I L Pokolotilo

Abstract. An analysis is performed of the general relation-
ships of the statistical theory of laser-induced damage in
transparent solids caused by absorbing inclusions. It is
shown that the structure of the statistical theory equations
determines the interrelation of various dependences of the
damage thresholds on physical parameters. This results in
the equivalence of the spot-size dependence of the damage
threshold and the reliability of the transparent solid, as well
as in a similarity of the threshold dependences obtained
upon single-shot and multishot irradiation. The predictions
of the theory are in good agreement with the experimental
data.

1. Introduction

The statistical relationships are most general for laser-in-
duced damage (LID) of transparent solids. They are typi-
cal for both the intrinsic mechanisms of LID [1,2] and the
mechanisms related to absorbing inclusions [3, 4], and are ob-
served upon single-shot [5] and multishot irradiation [6].

Statistical features of the damage can be caused by differ-
ent reasons. These can be spatial or temporal fluctuations of
the radiation intensity [7], the random nature of the appear-
ance of the seed electron that leads to avalanche ionisation [1],
or a random distribution of absorbing inclusions in a transpa-
rent solid [3,4 - 6].

In any case, despite their different nature, statistical fea-
tures complicate studies of LID in transparent solids, because
they tend to blur the dependences observed in experiments.
Statistical features significantly increase the amount of the
experimental data needed to identify the damage mechanism.
Therefore, one usually seeks to prevent statistical features in
LID experiments. In particular, the single-mode single-fre-
quency radiation sources are used in these experiments to
avoid the influence of laser fluctuations on experimental
results.

When the inclusion-related damage mechanism is domi-
nant, the statistical features are unavoidable. They are int-
rinsic to the nature of the damage caused by the inclusions
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randomly distributed over the volume of the transparent
solid. For these reasons, investigation of various statistical
relationships and their interrelation is a fundamental problem
of the theory of LID, which is important for both the metro-
logy of LID and identification of its physical mechanisms.

Interrelation of the statistical relationships was studied in
Refs [3-6]. In particular, Manenkov et al. [6] used the
requirement of correspondence between the damage proba-
bility and the spot-size dependence to prove that absorbing
inclusions play the dominant role in damage of polymethyl-
metacrylate (PMMA). The approaches used in these works
were based on utilisation of the distribution function of inclu-
sions over damage thresholds, which is usually unknown. The
attempts to develop the method for experimental determina-
tion of this function met with serious difficulties [8, 9]. There-
fore, it is particularly interesting to investigate interrelations
between different experimentally observed statistical features
of LID without making any assumptions about the distribu-
tion function. This work is dedicated to the solution of this
problem.

2. Basic concepts of the statistical theory of LID

We review basic concepts of the statistical theory of the
LID caused by absorbing inclusions [4,10], which will be
used in the subsequent analysis. The basic assumptions of
the theory are the following:

(1) the inclusion size is much smaller than the dimensions
of the interaction region;

(2) the inclusions are randomly distributed over the vol-
ume (or the surface) of the transparent solid;

(3) an ensemble of inclusions {c¢,} (where s=1,
2,..., L; ¢, is the concentration of the inclusions of the s-
th type; L is the number of the inclusion types) is character-
ised by the distribution over the damage thresholds,

(4) the inclusion of the s-th type initiates damage when
the intensity of the incident radiation exceeds the threshold
Ilif)(,u), dependent on p — the physical and geometric cha-
racteristics of the inclusion (absorption coefficients, dimen-
sions etc.) — and the parameters of the incident radiation
(pulse duration, wavelength, etc.).

For single-mode and single-frequency radiation, taking
into account these assumptions, the reliability Q(Z, v, 1) of
the transparent solid (i.e., the probability of no damage)
has the form

O(1,0,1) = exp {— vicK(#ﬂ (1)

=\ W
where [ is the maximum intensity in the interaction region;
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K /Ilf)(,u)) is the dimensionless monotonically increasing
function of the intensity, which is determined by the mode
structure and the focusing conditions of radiation; and v is
the volume of the focal region. The damage probability
P(I, v, p) is related to the reliability by the normalisation
condition

P(ILv,0) + O(1,v,p) = 1. 2

Note that the dependence Ié;")(,u) cannot be observed
because of spatial variation in the laser damage resistance.
Experimentally one investigates the dependence of the max-
imum radiation intensity /4(v, p) inside the interaction region
on the testing conditions, i.e., the parameters v and p (Where u
is, for example, the laser pulse duration) that results in the
damage for a given reliability 5. This dependence can be de-
termined from the condition

O(1,v,u) = p. 3)

Taking into account Eqns (1) and (3), we obtain the main
equation of the statistical theory of LID

L I Inp~!
E K(—— | = , 4
Cg (I(S) ('u) > v ( )

s=1 th

The solution of this equatlon allows one to calculate Z;(v, 1)
for given values of {cs}, b (,u) and a given geometry of the
interaction region. A specific feature of the solutions of this
equation is that the dependences /4(v, ), corresponding to
different  and v coincide if § and v satisfy the compensation
relationship

% = const, (5)

which means that a variation in the damage threshold caused
by the spot-size effect is compensated by a corresponding
variation in the rehablhty

Although I, (,u) does not depend on the focal volume
size, the observable dependence Ig(v, u) appreciably depends
on v, as follows from (4). This so-called spot-size dependence
of the damage threshold is a fundamental consequence of the
random distribution of inclusions over the volume of the
transparent solid. Many authors investigated it in detail for
various materials (see Refs [3, 5]).

A detailed analysis of the general laws of LID in trans-
parent solids (e.g., of the dependences Q(I, v, u) and
Ig(v, p), requires a wealth of experimental data. In practice,
the studies of statistical relationships are usually limited to
investigation of either the spot-size dependence of the dam-
age threshold for a given reliability f, or the dependence
of the reliability (or the damage probability) of the transpar-
ent solid for a given focal volume v.

The statistical relationships are fully determined by the
distribution of the inclusions over the damage thresholds,
i.e., by the set {c¢,}. Knowing this set {c,}, one can calculate
all the statistical features of LID, in particular, find Q(/, v, 1)
and /g(v, u) for any experimental conditions. The importance
of the set {c,} for the study of the damage mechanism has led
to many attempts to infer it from the statistical properties of
the damage (the dependence of the reliability on the intensity
[8] or the spot-size dependence [9]) by solving the so-called

inverse problem. However, this problem is unstable and there-
fore very difficult to solve. For these reason, the studies of the
statistical relationships that were based on evaluation of {c,}
did not provide an efficient method for solving the statistical
problems of LID.

3. Interrelation of the reliability and
the spot-size dependence of the LID threshold

The dependence of Q(7, v, 1) on the focal volume results
in variation of the absolute value of damage threshold with
variation of v and in the modification of the dependence of
the LID threshold on other parameters [10]. These modifica-
tions hinder a comparison of the experimental data obtained
under different conditions. Nevertheless, the structure of the
equations of the statistical theory of LID makes it possible in
some cases to adequately compare the results of investiga-
tions of these dependences. Let us introduce the function

Cl,pu) = 5

©)

which has the physical meaning of the effective concentra-
tion of the inclusions involved in the damage. An important
property of C({, u) is that, unlike O(/, v, p) and I4(v, p), it is
independent of v. Instead, it can be simply calculated from
given reliability Q(Z, v, u), using Eqn. (6), and from the spot-
size dependence of the damage threshold Zg(v, 1) using the
relationship C (I, ) = (In ™) Jvg (I, 1), where vy (I, p) is
the inverse function to Zg(v, ). The function vg(Z, ) is the
volume of the focal region whose irradiation leads to damage
with the probability 1 — . This function is properly defined
in the entire intensity range since /4(v, 1) monotonically de-
creases with increasing v. The above properties allow one to
find the relation between of O(/, v, ) and Ig(v, w).

Suppose that we have the an experimentally measured
dependence of the reliability of a transparent solid on the
laser radiation intensity for a given value of the focal volume
vy Then, calculating C (I, u) from Eqn. (6) for two different
values of v, one of them coinciding with vy, and equating the
results, we obtain

Qv 1) = [Q(T, v, )] "™ 0
Expression (7) allows one to calculate Q(Z, v, u) for any v
using the experimentally measured reliability Q(Z, vy, ).

The left-hand side of equation (4) is equal to C (/, u). Fora
given reliability Q(7, vy, ) , this function can be determined
from Eqn. (6). Using Eqns (4) and (6) together, we derive the
relationship

O(L,v9, 1) = B, ®)
which yields the spot-size dependence of the LID threshold
Ig(v, ).

B

Thus, if we know the reliability Q(Z, vy, 1) at some focal
volume vy, we can calculate it for any other v and also deter-
mine the spot-size dependence of the LID threshold g(v, u).

On the contrary, if we know the experimental dependence
of the LID threshold 7 (v, p) for a given reliability f,, we can
calculate /g(v, ) for any other value of f and determine
o, v, p.

Indeed, using Eqn. (4) to calculate C(Z, p) from vg(Z, )
for two different values of f (one of them coinciding with
Bo) and equating the results, we obtain
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g ©

vg(L, ) = vg, (I, 1)

Expression (9) defines the spot-size dependence /(v ) as
the inverse function to vg(/, u) for any reliability f. Finally,
equating the expressions for C (/, ) in terms of the functions
Q(Is v, /“t) and Uﬁo(l’ :u) [ln Q(I’ v, ,u)]/u = (ln ﬁO)/U[)’U(Is ,u),
we find

o(r,v,0) = ™", (10)
Expression (10) allows one to calculate Q (Z, v, ) for a given
value vg (1, w.

Thus, relationships (7)-(10) demonstrate the interrelation
of the reliability and the spot-size dependence of the LID
threshold.

4. Similarity of the LID relationships
for single- and N-shot irradiation

We introduce notations Itl(f)(l, w) and ]u(]“') (N, ) for dam-
age thresholds of the s-th type inclusions upon single- and N-
shot irradiation, respectively. In a similar way we define nota-
tions for other characteristics: Q (Z,v, 1, u) and Q (I, v, N, p),
etc. We have shown earlier [11] that Eqns (1) —(4) can be used
to describe the statistical features of damage for both single-
and N-shot irradiation; of course, Q (1, v, 1, u) should then be
replaced by Q(/, v, N,u) in these expressions to indicate
explicitly the irradiation mode. This means that the reliability
and the spot-size dependence are related by Eqns (7) —(10)
upon N-shot irradiation as well.

Furthermore, Q(Z,v,1,1) and Q(I, v, N, ), as well as
Ig(v, 1, p) and I4(v, N, p) are related to each other by the simi-
larity relationships. This statement is based on the following
physical argument. On the one hand, as shown previously
[4,12], the temperature Ty, (1) of the thermal explosion initia-
tion (i.e., the LID upon single-shot irradiation) and the tem-
perature Ty, (N) corresponding to the initiation of accumula-
tion of irreversible changes (i.e., the LID upon N-shot irra-
diation) are determined by the properties of the solid and
by the mechanisms of these processes; they are independent
of both the properties of the inclusions and the parameters of
the radiation pulse.

On the other hand, the temperature of the inclusion hea-
ted by the laser radiation is determined by the properties of
the inclusion and the laser pulse, as well as the transparent
solid. The critical intensities Iﬂ(f)(l, w) and IUS‘Y)(N , 1) of the
damage initiation are related to the temperatures T,(1)
and Ty, (N) by the expressions

Tu(1) = kO WIY (1, 0), Tu(N) = kO ()1 (N, p),

where k(1) and k¥ (u) are the coefficients depending on
the material characteristics of the solid and the inclusion
(thermal conductivity, absorption coefficients etc.); the bar
over k denotes averaging over N laser pulses.

The coefficients k& *(x) and k(1) can be determined by
solving the heat conduction equation; they have the same fun-
ctional dependence on the heat-transfer properties of the
inclusion and the solid. The difference between k(u) and
k() is due to modification of these properties upon heat-
ing. The estimates [13] show that these variations are ne-
gligible; therefore, we will neglect the difference between
k®(u) and k) (u) in the following and assume that & *(x)

= k“(u). Taking into account this assumption, the ratio

I (L) _ T(1)
Ilgf)(N7 ) Tw(N)

is independent of the properties of the inclusion. Introducing
the notation Ty,(1)/Ty(N) = @ (N ), for the ratio of the
damage thresholds we have

1Y(1, 1)

: = &(N).

1D

In accordance with its physical meaning, the function @(N)
monotonically increases with increasing N and satisfies the
condition @ (1) = 1.

Therefore, the ratio of the damage thresholds upon single-
and N-shot irradiation is independent of the properties of the
inclusion and the parameters of the laser pulse. This allows us
to establish the relation between Q (I,v,1,1) and Q (I, v, N, p).
Using Eqns (1) and (11), we obtain

O,v, 1, 1) = QUO(N),v,N, ). (12)
In a similar fashion, it follows from Eqns (4) and (11) that the
dependence of the damage threshold on any parameter (the
pulse duration, the focal region dimensions, etc.) upon sin-
gle-shot and N-short irradiation are related by the expression

Iy(I,v,N, )

o(N) (13)

]/f([a v, l,ﬂ) =

Thus, the reliabilities Q (I, v, 1,u) and Q(I, v, N, u) are
related by transformation (12), while the dependences of
the LID threshold of the transparent solid upon single-
and N-shot irradiation are related by expression (13).

5. Comparison with the experimental data

The developed theory describing the interrelations
between the statistical properties of LID is valid for the entire
range of the laser pulse durations where the dominant role is
played by the damage mechanism related to the absorbing
inclusions. It was established earlier that this situation takes
place in a wide range of the pulse durations from milliseconds
to a few picoseconds and, possibly, femtoseconds [14]. More-
over, it is important for the obtained results to be applicable
that the spatial distribution of the laser beam intensity in the
interaction volume should not be distorted by any nonlinear
effects (self-focusing, self-defocusing etc.).

Comprehensive experimental investigation of statistical
relationships of LID in transparent solids demands serious
efforts. Therefore, experiments are usually limited to investi-
gation of either the dependence of the reliability on the inten-
sity or the spot-size dependence of the damage threshold. Ref.
[6] is perhaps the only work reporting the results of investi-
gation on both the damage probability and the spot-size
dependence of the damage threshold upon single- and N-
shot (N = 200) irradiation.

Manenkov et al. [6] studied the damage in PMMA by 20-
ns, 1.06-pm laser pulses. The thickness of the investigated
samples was H < F, where F is the focal length of the lens.
The spatial distribution of the laser beam intensity was
close to the Gaussian one. Under these conditions, v =
nd’H /2, where d is the diameter of the focal spot; therefore,
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Figure 1. Dependences of the damage probability in PMMA P(I, 1) on the
maximum intensity of the laser radiation in the focal plane 7 upon single-
shot irradiation for the focal spot diameter d = 200 (), 500 (2), 800 (3),
and 1300 um (4), as well as the experimental data of Ref. [6] for
d = 500 pum (crosses). Here and in Figs 2 — 4 the intensities /; 5 are defined
for d = 500 pm.
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Figure 2. Dependences of the damage probability in PMMA P(Z, 200) on
the maximum intensity of the laser radiation in the focal region 7 upon
200-shot irradiation for d = 200 (1), 500 (2), 800 (3), and 1300 pum (4),
as well as the experimental data of Ref. [6] for d = 500 pum (crosses).

any dependence on v is equivalent to the dependence on d.
Figs 1-3 show the experimental data for [Ijs(d,1),
Iy5(d,200), and P(I,d,1) and P(I,d,200) from Ref. [6].

The probability P(I,d, N) of the LID was approximated
by the expression

~explyo + 11U/ 1ys)]
P(I,va) - 1 — exp[Vo —l—“,’l(I/IO,S)]

oo 220

where 7, 7, 7» and I are the best fit parameters for expres-
sion (14) and experimental data; I 5 is the damage threshold
of PMMA upon single-shot irradiation for the reliability
p=0.5.

(14)

This function fits the experimental data best upon single-
shot irradiation in the region I > [, (the intensity [ is the
minimum damage threshold of PMMA) for d = 500 um, if
vo = —4.2,9, =4.5, 9, =6 and [)/I5 = 0.2 (see Fig. 1).

To find P (1, d, 1) for other values of d, we first calculated
the reliability corresponding to expression (14) from normal-
isation condition (2) and then performed transformation (7).
When performing transformation (7), we assumed that
v/vg = (d /d0)2 in accordance with the condition H < F of
experiment [6]. We calculated the dependence Q(7,d, 1) for
the diameters d = 200, 800, and 1300 um that were used in
experiment [6], and then determined the dependence
P(1,d,1) for the same values of d using Eqn. (2). The results
of the calculations are shown in Fig. 1. After calculating the
family of curves P (1, d, 1), we determined the damage thresh-
old for various values of d (the spot-size dependence) from
the relationship P(I,d, 1) = 0.5. One can see from Fig. 3
that the results of the calculations for I;s(d, 1) agree with
the experimental data of Ref. [6] to within the experimental
error.

1/
1
1 -
0.1
;\me
0.01 1 1 1 1 ] N T |
100 300 1000 d/;,lm

Figure 3. Spot-size dependences of the damage threshold in PMMA upon
single-shot (@, /) and 200-shot (m,2) irradiation, and the experimental
data of Ref. [6] (+).

We calculated P (1,d,200) and Is(d,200) in a similar
manner. The best agreement between the function (14) and
experimental data for P(I,d,200) and d =200 pm was
observed when y, = —11, y; =450, y, =100 and [)/lys =
0.001. The curve family P (7, d,200) was calculated for the
same sizes of the focal spot as above. We calculated the
spot-size dependence of the damage threshold with the aid
of the expression P (/,d,200) = 0.5; the results agreed with
the experimental data [6] to within the experimental error
(see Fig. 3).

To compare the damage probabilities P (I, d, N ), meas-
ured upon single- and 200-shot irradiaton, one has to per-
form the transformation (12), which depends on a single
parameter @(200). By transforming P ([, d,200) to the reli-
ability with the aid of expression (2), performing trans-
formation (12) with @ (200) = 40, and converting the result
back to the damage probability, we obtained the curve shown
in Fig. 4. One can see that the transformed dependence
P(1,d,1) agrees with the dependence P (I, d,200) measured
in Ref. [6] to within the experimental error. Similarly, the
spot-size dependences I, s(d, 1) and I, 5(d,200) satisfy rela-
tionship (13) to within the experimental error.
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Figure 4. Similarity of the LID probabilities upon single-shot and 200-
shot irradiation. The figure shows the experimental data [6] upon the
single-shot irradiation that were re-scaled to the 200-shot irradiation (+)
and the data for the 200-shot irradiation mode for d = 500 pm ().

Thus, the dependences I 5(d, 1) and I, 5(d, 200), as well as
the dependences P(I,d,1) and P(I,d,200) measured in
Ref. [6] are interrelated to each other in accordance with
expressions (7)—(10) and (12), (13).

6. Conclusions

Our analysis of LID properties under conditions of spatial
variation of the laser-induced damage resistance has shown
that unique interrelation between the damage probability
(reliability) and the spot-size dependence has to be ob-served
upon both single-shot and multishot irradiation. The estab-
lished interrelation is a fundamental property of the
statistical theory of LID and is of principal importance for
the studies of the LID mechanism.

The analysis, based on the concepts developed, of pub-
lished experimental data has shown their good agreement
with the theory. This indicates that the damage mechanism
related to the absorbing inclusions played the dominant
role in the investigated sample.
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