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Study of the uniqueness and stability of the solution
of inverse problem in saturation fluorimetry

I V Boychuk, T A Dolenko, A R Sabirov, V V Fadeev, E M Filippova

Abstract. The uniqueness and stability of the solutions of
two- and three-parameter inverse problems in nonlinear
fluorimetry (saturation fluorimetry) of complex organic
compounds is studied by the method of computer simula-
tions. The main attention is paid to a practical stability of
such problems with respect to the input data noise and
variations in the model. The use of the technique of artificial
neural networks (including their training on noisy input
data) provides the solution stability under real experimental
conditions.

1. Introduction

This work was initiated by studies in the field of laser diag-
nostics of complex organic compounds (COCs) in aqueous
media [1, 2]. At the same time, the problem of the uniqueness
and stability of the inverse problems of nonlinear laser fluo-
rimetry (saturation fluorimetry) is of general interest.
Fluorimetry is extensively used for diagnostics of organic
compounds in aqueous media [1-4], although it faces a
number of obstacles, in particular, the problem of COC
identification. In some cases, this problem cannot be solved
within the framework of a phenomenological approach only,
i.e., using only fluorescence and fluorescence excitation spec-
tra and even total luminescence spectra, although these
spectra provide extensive information.

The above statement can be illustrated by the fluores-
cence spectra of humus, which is contained in some con-
centration in natural water [3], tap water, and even (in
trace amounts) in purified technological water used in mic-
roelectronics. Although the humic substance composition
is different for different media (in particular, the ratio of
humic and fulvic acids changes), its fluorescence and fluo-
rescence excitation spectra, which represent broad struc-
tureless bands, are virtually indistinguishable [3], which
severely restricts the possibilities of conventional (‘linear’)
fluorimetry for diagnostics of this important component of
aqueous media.

Similar obstacles are often encountered in fluorescencei
in situ diagnostics of petroleum pollutants of aqueous media,
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especially when their fluorescence is weaker than that of
humic substance. One of the ways to increase the informa-
tion content of fluorimetry is to use a nonlinear regime.
In this case, along with conventional fluorescent parameters
(position and shape of the fluorescence band, the fluorescence
decay time, etc.), one determines molecular photophysical
parameters of fluorophores such as the absorption, fluores-
cence, and flu-orescence excitation cross sections, and the
rate constants of intramolecular transitions and intermolec-
ular energy transfer which can be used in diagnostics of
organic impurities [1 —4].

It is important to emphasise that in this way not only
applied problems of diagnostics of organic complexes are
solved but also fundamental problems. The mechanisms of
photophysical molecular processes proceeding upon interac-
tion of laser radiation with COCs are established, the nature
of fluorescence bands is elucidated, and genesis and transfor-
mation of COCs are studied. All these parameters should be
measured in vivo. Such diagnostics, which is based on the
measurement of photophysical parameters of COCs can be
performed by means of nonlinear fluorimetry [1, 2, 4 - 6].

Fluorescence saturation upon powerful laser excitation
[7] represents a nonlinear dependence of the number Ny of
fluorescence photons on the photon flux density F of exciting
radiation (Fig. 1). The fluorescence saturation curves can be
plotted in different forms: Ny(F), '(F') etc., where I is the
fluorescence saturation factor, which is determined from
the expression

I, Ny, Nﬁ) (rel. units)
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Figure 1. Dependences of the number of fluorescence photons Ny (/) and
Ny (2) and the saturation factor I' (3) on the exciting radiation flux den-
sity.
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where Ny is a real number of fluorescence photons; Ny is the
number of fluorescence photons that would be emitted in the
absence of saturation, i.e., in the case of a linear dependence
of Ny on Ny (Fig. 1).

Fluorescence of organic molecules can be saturated for
several reasons such as the dynamic depletion of the ground
state of the molecules, intersystem crossing, absorption from
excited states, intermolecular interactions of the singlet-sin-
glet (ss) annihilation type, etc. It is obvious that these
parameters of the saturation curve are determined by photo-
physical characteristics of the molecule and, hence, these
characteristics can be found from the saturation curves.
The solution of this inverse problem is used as the basis
for nonlinear fluorimetry applied to the spectral analysis
of fluorescing atoms and molecules.

2. Inverse problems of saturation fluorimetry

As noted above, the inverse problem of saturation fluori-
metry consists in the determination of molecular
photophysical parameters from the fluorescence response
(the saturation curve) within the framework of the model
applied. The mathematical formulation of such a problem
was given in Ref. [8], where the problem was shown to be
correct according to Tikhonov [9], i.e., its solution is unique
and stable on some chosen set of solutions (the authors of
Ref. [8] meant theoretical uniqueness and stability of the
solution).

The photophysical model that we used in the inverse prob-
lem of saturation fluorimetry involved the following
processes: absorption of light, radiative and nonradiative
relaxation, intersystem crossing, and intermolecular interac-
tions [8]. We neglected transitions from the triplet state to the
ground singlet state by restricting our consideration to the
problems in which the duration of the exciting laser pulse
t = 1078 s, i.e., is substantially shorter than the triplet state
lifetime.

We also ignored absorption of the pump radiation and
fluorescence by molecules in the excited singlet (S;) and trip-
let (77) states and multiphoton absorption, although some of
these processes (but not all and not always) can affect fluo-
rescence saturation curves, which requires a special
consideration during the choice of an object and conditions
of the experiment.

In accordance with the chosen model of photophysical
processes in organic molecules, we can write the system of
kinetic equations for populations nl, n2, and n3 of the energy
states Sy, T4, and S;:

w = —F(t,r)ay3m (t,r)+(Ks, + K5)n3 (1, 7) + 93 (2, r),
on,(t,r
%):Kazm(fﬂ’)’
% = F(t,r)o3n (t,r) — (K31 + K3)ns(t,r) (1

*K321’l3([, V) - 'yl’l%(l‘, ")7

ny +ny 4 n3 = ny,

where F(t,r) = Fy f (t/1,)g(r/ro) is the photon flux density of
exciting radiation; ry is the laser beam radius; f(¢/1,) and
g(r/rq) are temporal and spatial distributions of laser radia-
tion, respectively; r = (x,y) and z are co-ordinates directed
perpendicular and parallel to the laser beam, respectively;
o13 1s the absorption cross section for exciting radiation;
K; = K3, + K| + Ky,; K3; and K%, are the rates of radiative
and nonradiative transitions from the S, state to the S, state;
K>3 is the rate of the S} — T transition; y is the rate constant
of the ss annihilation; #, is the concentration of fluorescing
molecules; yn; is the rate of the ss annihilation; and yn is the
maximum rate of the ss annihilation.

By solving the system of equations (1) analytically or
numerically, we can find the population ns of the first excited
level and the number Ny of fluorescence photons emitted
from the volume V' = S/ (S is the beam cross section and /
is the thickness of the layer from which fluorescence is
detected:

00 !
Nﬂ:KSlJ dtJ dl’J dzn3(l,r,z). (2)
0 S 0

Using relations (1) and (2), we can obtain theoretical curves
of the fluorescence saturation, which are required for solu-
tion of the inverse problem.

One can see from (1) and (2) that the fluorescence satu-
ration curve depends on the following photophysical para-
meters: (i) the absorption cross section ay3; (ii) the S; state
lifetime 73 = K3 '; (iii) the quantum yield of molecules to
the lower triplet state S; — T np = K3,/K3; and (iv) the
rate constant of the ss annihilation y. We assume that tempo-
ral, f(t/t,), and spatial, g(r/ry), distributions of laser
radiation, which also affect the saturation curve, are known.
Therefore, our model of photophysical processes leads to the
four-parameter inverse problem of saturation fluorimetry
whose solutions are parameters o3, 73,7 and yny.

At present, as our earlier studies showed [6], the satisfac-
tory accuracy (for real experimental errors of the input data)
can be obtained for one-, two-, and three-parameter prob-
lems. We will analyse the uniqueness and stability of solu-
tions namely for these problems. One can expect that the
dimensionality of solvable inverse problems will be increased
in the future. However, the approach based on reducing the
problem dimensionality by different methods (introduction
of generalised parameters, successive solution of the prob-
lems with artificially reduced dimensionality, etc.) is more
efficient.

An important step in the solution of inverse problems is
the proof of the uniqueness and stability of solutions. One
should study both theoretical and practical uniqueness and
stability. The theoretically stable solution can become unsta-
ble when the input data noticeably deviate from the exact
model dependence. In this case, the solution can considerably
differ from the real solution. Such instability is called practi-
cal because it can appear in real (and numerical) experiments.

The input data may deviate from the model fluorescence
saturation curve for two reasons: incorrect choice of the mo-
del of photophysical processes (for example, neglect of some
physical processes in molecules, incorrect values of fixed
parameters, including distributions f(¢/t,) and g(r/r,), etc.)
and large noise of the input data (i.e., a large error of the satu-
ration curve measurement).
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It is reasonable to introduce a concept of the threshold of
practical instability — the deviation of the input data at which
the solution strongly differs from the solution of an ‘ideal’
theoretical problem. As a criterion for practical instability,
we chose the deviation of the solution exceeding the specified
range of variation of required parameters.

The practical uniqueness means that the input data meas-
ured with some error correspond to a unique set of the
required parameters that satisfies to the practical stability cri-
terion. If the problem is practically unstable, its solution is
obviously not unique or does not exist. Thus, the practical
stability is a key question. This question is especially impor-
tant in inverse problems of nonlinear fluorimetry of COCs
because the specific feature and complexity of these problems
is that the saturation curves are smooth, without any extrema,
inflections, etc., and they are weakly ‘sensitive’ to photophys-
ical parameters [2, 6].

Note also that the practical stability substantially depends
on the solution algorithm of the inverse problem. The solu-
tions of inverse problems of saturation fluorimetry of
COCs obtained with the help of various algorithms [2, 5,
6, 10] suggest that the best practical stability is provided by
algorithms based on the method of artificial neural networks
(ANN) [11]. Here, we studied the practical stability of a sol-
ution of the inverse problem of saturation fluorimetry with
the help of ANN.

We solved our problem using a three-layer perceptron
[11] with 16 neurones in a hidden layer. The ANN was
trained using model saturation curves, which were calculated
for the following photophysical parameters: a5 = 1077 —
107" cm?, 13= 1—10nc, n; =102 =10"", yny = 10"—
10° s~!. These values of parameters are typical for solutions
of dyes and related compounds at concentrations between
10~ and 10~ M.

We used two variants of neural network training by
employing the saturation curves without noise and noisy
curves. In the first case [6], the neural network was trained
and tested by presenting theoretical ‘ideal’ saturation curves.
As shown in Ref. [6], the presentation of the curves with
experimental errors resulted in the development of practical
instability already at low noise. For this reason, we used the
noisy input data for the ANN training by presenting the noisy
saturation curves to the network along with ideal curves. The
saturation curves were made noisy using a random-number
generator with a uniform distribution. We specified the max-
imum noise, and to the network the curves were presented
with the noise amplitude chosen randomly from zero to max-
imum.

The criterion of the network quality and the root-mean-
square error of the reconstruction of parameters is the coef-
ficient of multiple determination

Z(J’i —5/1)2

R=1-t—— 3)

where y;,7,y are true, predicted, and mean values of the
parameter being determined in the chosen range of its var-
iation, respectively.

We observed a distinct correlation between the coefficient
R? and the root-mean-square error of reconstruction of para-
meters: the fall of R? to zero approximately corresponded to
root-mean-square errors of reconstruction of parameters

comparable to the range of their variation. This allowed us
to use the parameter R> as a factor of practical stability of
the solution of the problem by this method and consider
the equality R = 0 as a threshold of practical instability of
the inverse problem solution.

3. Uniqueness of a solution of the inverse
problem of saturation fluorimetry

The uniqueness of a solution of the inverse problem under
study has been rigorously proved in Ref. [8] for the satura-
tion curve represented in the form Np(F) and for a
rectangular space-time distribution of the exciting radiation
intensity. Although we did not prove the uniqueness of the
representation for I'(F ), we can assume in a qualitative com-
parison of our situation with the problem [8] the uniqueness
of solutions in the cases when the saturation factor I'(F) can
be obtained analytically. Unfortunately, in the case of an
arbitrary space-time distribution of the exciting radiation
intensity it is impossible to obtain an analytic expression
for I'(F). For this reason, we verified the uniqueness of the
reconstruction of three parameters (o3, 73, 1) in the case of
an arbitrary time distribution and a rectangular spatial dis-
tribution by numerically solving the inverse problem by the
ANN method.

We presented three saturation curves, which differed at
each point no more than by 0.5% (i.e., were virtually coinci-
dent by eye), to the neural network trained on the curves
without noise. These curves were calculated for different
sets of parameters {«, g3, yno}, Where o« = 13/1, (true param-
eters in Table 1). The results of presentation of the saturation
curves to the neural network are given in rows with noise 0
and 1% in Table 1. One can see that the network distinguished
these curves (both without noise and with the 1% noise) and
reconstructed photophysical parameters with an error of no
more than 19% (see the ‘root-mean-square deviation’ col-
umn), which is substantially lower than the difference in
the specified input data. Note that an extremely small differ-
ence between the saturation curves for the sets of apparently
strongly different parameters is explained by the fact that the
product 1365 is the same for all the three cases, while the
parameter yn, only slightly exceeds the parameter 73| and,
hence, the acting (rather than maximum) rates yn; of the
ss-annihilation are lower than the rate 73 .

This example illustrates (but does not prove rigorously)
the theoretical uniqueness of the inverse problem solution.
In addition, the obtained results demonstrate a high effi-
ciency of the ANN method for solving inverse problems.
We demonstrated once more the unique property of ANN
- their ability to learn by examples and not simply remember
but generalise the input data and to reveal the hidden regu-
larities in order to recognise the patterns.

4. Stability of a solution of the inverse problem
of saturation fluorimetry

As noted above, the real fluorescence saturation curves differ
from the calculated ‘model’ curves because of the random
measurement errors and possible deviations of photophysical
processes from the model used. In numerical experiments,
noise is simulated by a random-number generator, which
generates the numbers uniformly in a specified range (the
noise amplitude). A set of varied and fixed parameters and
parameters of the exciting radiation will be called the model.
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Table 1. Simultaneous determination of three photophysical parameters from model saturation curves by the ANN method.

Number of the
Root-mean-square

Root-mean-square Root-mean-square

saturation Noise (%) 73/ 18 o 013/ cm? o g/ s o
deviation (%) deviation (%) deviation (%)

curve
True 10 2281077 297-10

1 0 9.7 11.9 1.7-107"7 15 2.31-108 12.27
1 8.8 17.6 231-1077 186 2.64-10° 14
True 6 3.8-107"7 3.8-10°

2 0 6.3 11.9 42-107" 15 4410 12.27
1 17.6 228-107"7 186 29710 14
True 4 5.7-107" 4.88-10°

3 0 3.9 11.9 6.4-107" 15 59.10% 12.27
1 3.4 17.6 6.8-107"7 18.6 6-10° 14

We will study the solution stability with respect to the model
subjected to different variations.

4.1. Stability of a solution of the inverse problem of
nonlinear fluorimetry with respect to the input data noise

Using the ANN technique, we solved two two-parameter
({0'13,1'3,](32 =510 s_l,yno = 0} and {0'13, T3, K32 = 5107 S_l,
yng =510° s'}) and two three-parameter ({a3, 73,77, 71
=0} and {03, 13,77 = 0, yny} problems. The curves were cal-
culated using the following distributions of the laser pulse in

time and space
1 tanh(21) 412\ X
= = ") = —(4In2
10 =3 gl = (H22) expl-(am2)p7)
where © = t/t,;p = r/ry.

The calculations showed that the threshold of practical
instability of the solutions of two-parameter problems
upon the ANN training on the noiseless curves is achieved
for the 10-% input data noise for both parameters. The thresh-
old of practical instability for the three-parameter problems is
noticeably lower, and for the parameter o3 it is achieved

when the input data noise for two other parameters is 1
and 3 %. These results are illustrated in Fig. 2.
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Figure 2. Dependences of coefficients of multiple determination (for the
parameter o(3) on the noise of fluorescence saturation curves for two-
parameter {73,173, K3 = 5.107¢™!, yny = 0} (I1-3) and three-parameter
{613,73,117, 719 = 0} (4, 5) problems. The noise upon training was 0 (1, 4),
10 (2), and 50% (3, 5).

The ANN technique proves to be more efficient if the neu-
ral network is trained on the noisy fluorescence saturation
curves. The neural networks were trained for each of the
two- and three-parametric problems for the maximum noise
of the training input data equal to 10, 50, and 100%. Some of
the results (with the 10- and 50-% input data noise) are pre-
sented in Fig. 2. One can see that training on noisy data
substantially increases the instability threshold for the solu-
tions of inverse problems.

The obtained results distinctly demonstrate that when the
input data noise during the neural network training is large,
the parameters are better reconstructed from the noisy satu-
ration curves than from the noiseless curves. In this case, the
coefficient of multiple determination does not decrease
monotonically but has a maximum at some noise of the pre-
sented saturation curves. The input data noise at which the
coefficient R? has a maximum value increases with increasing
training noise.

One can see from Fig. 2 that the ANN training on noisy
curves allows one to increase the stability threshold for the
solutions of inverse problems with respect to the input
data noise in two- and three-parameter problems up to
~ 15 and 5%, respectively, which corresponds to typical
errors of the real experiment. Therefore, if the preliminary
information on the input data error is available, the neural
network training optimised to this noise is possible.

4.2. Stability of a solution of the inverse problem of non-
linear fluorimetry with respect to variations in the model

We considered first the practical stability of the problem
solution with respect to variation in one of the model param-
eters. We solved the following two-parameter problems: {73
= const, 13,47, Y1y = 0}7 {6137 T3 = const, 7, yny = 0}7 {6137
13,17 = const, yng = 0}, {63, 73, n7 = 0, yng= const}.

We solved these problems using the ANN technique by
training networks on the noiseless input data. Then, we calcu-
lated the sets of fluorescence saturation curves in which the
value of the fixed parameter was successively varied within
its entire range. These sets with noises 0.1 and 3% were pre-
sented to the trained networks. Fig. 3 shows some of the
dependences of the coefficient of multiple determination
R* on the parameter determining the model (which takes
fixed values in our case).

These dependences represent resonance curves with a
maximum at the same value of the parameter for which
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Figure 3. Dependences of the coefficient of multiple determination R? for
73 (a) and K3, (b) on the parameter o3 determining the model of photo-
physical processes for the neural network trained for 613 = 51077 cm?
and the input data noise equal to 0 (/), 1 (2), and 3% (3).

the network was trained. We found that when o3 and 75 were
fixed parameters of the model, the practical instability of the
solution appeared when these parameters differed from the
true ones by 30%. In models defined by parameters y1 and
yny, the practical instability of the solution appeared at sub-
stantially greater deviations of these parameters from their
values for which the network was trained. These results
should be expected, because in the ranges of variation of
a13, T3, and yny chosen by us, the parameters o3 and 13
affect the shape of saturation curves in a greater degree
than 5, and yny.

Unfortunately, the coefficient of multiple determination
R? can be determined only in numerical experiments, when
many curves with known parameters can be calculated. How-
ever, the study of the stability of the inverse problem solution
with respect to variations in the model can be used for a cor-
rect choice of the model of photophysical processes in real
experiments. If the experimental fluorescence saturation
curve of some organic compound is presented to a set of neu-
ral networks that were trained for various models (with
different numbers of variable and fixed parameters), then,
because of the resonance properties of the solution, the net-
work that was trained for the model most adequately
describing the physical processes proceeding in this organic
compound will give the more reasonable response (more rea-
sonable parameters).

Another way to change the model is to increase the num-
ber of parameters being determined. First, we considered a
two-parameter inverse problem {3, 13,77=0, yny = 0}.
Then, we added to this model either parameter n, or yn,
as unknown parameters. From the physical point of view,
the consideration of a new parameter should not effect the
initial parameters and the accuracy of their measurement.
After the addition of the quantum yield 7, to the triplet state
of the rate yn,) of the ss-annihilation, the criterion of the sol-
ution stability with respect to the model variation is the
invariability of parameters o3 and 73 and the accuracy of

Table 2. Root-mean-square errors of measurements of parameters
013,73 and 1, in solution of two- and three-parameter problems using
ANNS trained on the noiseless input data.

Two-parameter
Three-parameter problem

Noise problem
(%)
813 (%) 313 (%) 8013 (%) 813 (%) Sy (%)
0 13 14 12.3 16 18
1 13 18 13 19 21
3 14.8 20 - 21 -

their reconstruction determined from the two-parameter
model.

One can see from the results presented in Table 2 that the
quality of the reconstruction of parameters g3 and 73 in the
three-parameter problem (after an addition of #) remained
quite high. This shows that solutions of inverse problems of
saturation fluorimetry are stable to the model variations
caused by the addition of parameters.

5. Conclusions

Analysis of the study of the uniqueness and stability of
solutions of inverse problems of saturation fluorimetry of
organic compounds showed that modern mathematical
methods allow one to determine photophysical parameters
from saturation curves with sufficiently high accuracy.
Note that two or three (possibly, even more in the future) pho-
tophysical parameters, which have been conventionally
measured with different instruments, are determined simulta-
neously by the same method using only a laser spectrometer
for saturation fluorimetry. Therefore, saturation fluorimetry
represents a fundamentally new approach to the fluorescence
diagnostics of complex organic compounds, which opens up
new possibilities in the solution of applied problems in diag-
nostics of organic complexes and of many fundamental pro-
blems concerning the mechanisms of photophysical proces-
ses. The results obtained in this paper confirm once more
the known postulate of the theory of inverse problems [9]
according to which the successful solution of these problems
substantially depends on the volume of a priory information.
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