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Controlled optical structures in a nonlinear system
involving the suppression of low spatial frequencies

in the feedback loop

I P Nikolaev, A V Larichev, V I Shmal’gauzen

Abstract. A nonlinear optical system with spatially distribu-
ted feedback was studied both theoretically and experimen-
tally. The phase-to-intensity transformation in this system
was performed by a spatial filter capable of suppressing low
spatial frequencies. Hard excitation of stationary spatial
structures observed in this system was explained by an anal-
ysis of the phase space structure of the amplitude equations.
The developed theoretical approach, which uses a step-func-
tion approximation of the steady-state solution, allows one
to determine the main quantitative characteristics of the
generated structures. The basic properties of the response
of the system to external perturbations with various symme-
tries were investigated experimentally. The obtained exper-
imental data qualitatively agree with the results of the
theoretical analysis.

1. Introduction

Nonlinear optical systems with spatially distributed feedback
are interesting and promising objects of investigation. Possi-
ble applications, the most well-known of which is the high-
resolution wavefront correction [1, 2], and the opportunity to
consider the problem of self-organisation in optics [3, 4] have
stimulated the development of experimental investigations
[5—7] as well as theoretical models and methods for their
analysis [8 —10].

The nonlinear system with optical feedback can be reali-
sed with a liquid-crystal (LC) spatial light modulator (SLM)
[5, 6]. In an LC SLM, the incident plane light wave is reflected
by the internal dielectric mirror, thereby making it transverse
the LC layer twice. The reflected wave then goes through the
feedback loop and falls upon the photosensitive surface of the
LC SLM. The nonlinear phase shift that the initial wave
acquires in the LC layer is controlled by the distribution of
the radiation intensity in the feedback loop, which also rep-
resents the output radiation of the system. The feedback
loop produces the intensity distribution, which depends on
the phase modulation of the wave reflected by the modulator.
In this way, it performs a certain phase-to-intensity transfor-
mation.
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For most of the similar nonlinear optical systems inves-
tigated up to this moment, soft excitation is typical: The
generated structures can develop from initial fluctuations
of arbitrarily small amplitude. However, soft excitation is
not a universal property of such systems [8,11,12]. In con-
trast, the systems with hard excitation are sensitive to both
the amplitude and the spatial structure of external disturb-
ance; therefore, such optical systems may have applications
in optical devices for data processing.

In this work, we consider a nonlinear optical system with
spatially distributed feedback, which shows hard excitation of
optical structures. The system contains an amplitude spatial
filter that acts as a phase-to-intensity transformer. This filter
consists of a confocal 4f-system that contains a small opaque
disk in its Fourier plane, which masks the zero order of the
spatial spectrum of the feedback radiation. This phase visual-
isation system belongs to the ‘dark field’ class of devices [13].

2. Analysis of stability of the steady-state
solutions

The dynamics of the nonlinear phase modulation u(r, ) that
is acquired by the light wave reflected from the LC SLM can
be described by the relaxational Debye-type equation [1]

Ou(r, )

ot + u(r, t) = leAlu(ra Z) - leb(r7 t)' (1)

T

Here, 7 is the LC molecule relaxation time; /; is the diffusion
length that characterises the finite spatial resolution of the
LC SLM [14]; x > 0 is the sensitivity of the LC SLM; Iy (r, t)
is the intensity of the feedback field. The minus sign in front
of the last term of the equation corresponds to the decreasing
dependence of the phase shift acquired in the LC layer of the
modulator on the intensity of the light incident on the photo-
conductor [15, 16].

The intensity of the feedback field can be written in the
form

Ifb(rat) = Ioﬂg(h t)a (2)

where I, is the intensity of the incident wave; 7 is the overall
transmission coefficient of the passive optical elements of the
feedback loop; g is the dimensionless (normalised to 7)) feed-
back signal. For the system considered, we will define the
feedback factor as

K = nyl. (3)

The relationship between the functions g and u is determined
by the chosen method of the spatial filtering of the field
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having the complex amplitude ", which takes place in the
feedback loop. Suppose that our filter suppresses only the
zero Fourier component of this complex amplitude distribu-
tion, that is, subtracts from it its spatial average <e'“>. Equa-
tion (1) can therefore be rewritten in the form

Ou(x,t u Xt
T (at )+u(x7t) = dz%—l(g(x?[)’
“)
glx, 1) = |0 — <eiu(x,t)>|2.

Here, we restrict our consideration to the one-dimensional
case, r = {x}.

It is easy to verify that if the function u(x, ) is a sinusoidal
phase grating with spatial frequency vy, the intensity of the
feedback field will be modulated at the double frequency
2vgy. Therefore, a sinusoidal grating cannot be generated by
the con-sidered system since it is not a ‘self-sustaining pat-
tern’, as is, for example, a roll in the diffractional scheme [9].

Assume now that the phase modulation in the nonlinear
medium layer consists of two spectral components with mul-
tiple frequencies v, and 2v,. Then, we have for the two small
modulation amplitudes a; and a,

el = exp{ifa; (1) cos vox + as(1) cos 2vyx]}
~ 1 +1i[a; () cos vox + a, (1) cos 2vyx]. ®)

The complex amplitude 4., (x, 7) of the filtered field is
Agui(x, 1) = ifa; (t) cos vox + a(t) cos 2vyx], 6)

and, neglecting the spectral components of frequencies
higher than 2v,, the intensity of the filtered field is given by

g(x, t) = |A0ut(xv t)|2

2

2 2
t t
= M+ala2 cos vox—l—%costox—&- . (D

2

One can see that the distribution of the feedback field inten-
sity contains the terms of both the frequencies 2v, and v. It
is therefore reasonable to assume that these two harmonics
will develop cooperatively when the feedback loop is closed.

By inserting into Eq. (4) the feedback field intensity from
expression (7) as well as the phase modulation u(x,?) in the
form of a superposition of two harmonics with the time-
dependent amplitudes a; and a,, we obtain the system of
amplitude equations

‘Ct.ll = —ay; — Kalaz,

®)

14, = —a, — Kai )2.

Here, we use the weak diffusion approximation; we assume
condition vyly < 1 is fulfilled. The system of ordinary differ-
ential equations (8) has three singular points: the stable node
0,0 and two saddle points, v2/K,—1/K and —+v/2/K,
—1/K. Fig. 1 shows their arrangement in the phase space
aj, a,. Such configuration of singular points corresponds
to the hard excitation mode. This means that if the initial

amplitudes are small with respect to O(1/K), the system
‘slides back’ to the trivial solution. Conversely, if the initial
amplitudes lie in the other direction from the saddle surface,
they will grow until the nonlinear restrictive mechanism,
which is not accounted for in the reduced system (8),
comes into play.

ai

Figure 1. Qualitative picture of phase trajectories and singular points of
the reduced system (8).

The above analysis, however, allows us to explain the hard
excitation only qualitatively and does not provide any quan-
titative details. To verify the predictions of the above
approximate analysis, we investigated this problem numeri-
cally. Fig. 2 shows the steady-state solution of Eq. (4). The
boundary conditions were chosen to be periodic in accord-
ance with the plane wave approximation. One can see that
the shape of the phase grating is almost rectangular. This
means that its spectrum contains many harmonics, and,
therefore, the reduced system (8) is not adequate for obtain-
ing quantitative results.
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Figure 2. Steady-state solution of equation (4) for K = 3, vy/y = 0.1 and
the initial phase modulation uy(x) = cos vyx, vg = 10m.
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The period of the generated grating is defined exclusively
by the initial conditions because the suppression of the zero
Fourier component does not lead to any frequency selectivity.
The diffusion only contributes to smoothing of the steady-
state solution. Thus, the considered system can be character-
ised by hard excitation and the sensitivity of the steady-state
solution to the initial conditions.

3. The step-function approximation of the
steady-state solution

One can see from Fig. 2 that the generated structure can be
accurately described as a periodic sequence of zones where
the phase u(x) assumes one of the two ‘quantised’ values. In
the distribution of the feedback field intensity g(x), this cor-
responds to a periodical structure of dark (Z;) and bright
(X,) zones. If we neglect the existence of the transition zones,
the steady-state solution of Eq. (4) can be rewritten in the
form

u(x):{—MI,XEzl (9)

—Mz,x€22.

Then, the complex amplitude of the field at the filter input is

(10)

' [ exp(—iuy), xeZ,
Ain(¥) = {exp(fiuz), xeX,.
The spatial filtering results in the suppression of the zero
Fourier component, whose amplitude S, equals the average
value of the function 4;,(x),

So = aexp(—iuy) + (1 — o) exp(—iuy), (11)
where o is the relative area of the bright zones. From Eqs (10)

and (11), we obtain the following expression for the complex
field amplitude at the filter output

afe ™ — efil‘z), xeX,
(1—a)(e™ —e™), xeX,.

Aoul(x):Ain(x)stZ { (12)

Calculating the square modulus of these equations, we derive
the intensity distribution of the feedback field
2a°[1 —cos(uy —wy)]| = I, xeX,

= ’ ’ 13

g(x) {2(1 a1 - cos(uy — )] = I, xeZ, )

By inserting expressions (9) and (13) into Eq. (4) and neglect-
ing the diffusion term”, we obtain the following system of
nonlinear algebraic equations for the upper and lower ‘quan-
tised’ values of the steady-state phase

u; = 2Ko* (1 — cos Au),
(14)
uy + Au=2K(1 — ) *(1 — cos Au),

where Au = u, — u;. Note that the above calculations are
also valid for the two-dimensional case; therefore, we can
assume that u = u(r).

The system (14) contains three unknown variables: u;, Au,
and « and, therefore, we have to involve some additional argu-

*The diffusion term is important only in the transition zone, which we
neglect in this approach.

ments to solve it. For example, we can consider the energy
aspect of the problem. For sufficiently small initial phase
modulations, the system returns to the zero equilibrium posi-
tion (see Fig. 1). This means that the total energy of the light
wave is concentrated in the zero spectral order, which is
masked by the filter. The feedback loop is fully darkened
in this case.

On the other hand, if the initial phase modulation is suf-
ficient to excite a nontrivial solution, the amplitudes of the
spatially nonuniform components begin to grow. This leads
to a corresponding redistribution of the energy from the
zero order to the higher orders. Let us assume that this proc-
ess results in the establishment of the steady-state solution in
which the filter absorbs the minimal possible power. The inte-
gral power Py, of the feedback signal (which is normalised as
to satisfy Py, = 1 in the absence of the filter) can be easily
expressed in terms of Au by reshaping Eqs (11) and (14),

(1 — cos Au)* — (Au/2K)*

Pro =1 =508 = 2(1 — cos Au)

(15)

In this way, we can formulate the following procedure for
calculation of all unknown variables. For a given K, we find
the maximum of the function P (Au) and the corresponding
argument Au. Then, we express the quantities in which we are
interested through the following formulas, which are direct
consequences of Eqgs (13) and (14):

Au
=a(K,Au)=05————— 1
@ = oK, Au) = 0.5 4K (1 — cosAu)’ (16)
[2K(1 — cos Au) — Au)?
= Au) =
= uy (K, Au) 8K (1 — cos Au) ’ a7
B ~ [2K(1 — cos Au) + Au]’
uy = ur (K Au) = 8K(1 —cosAu) (18)
B ~ [2(1 — cos Au) —Au/K)?
I = I (K,Au) = 8(1 — cos Au) > (19)
B _ [2(1 - cos Au) + Au/K ]
12 —Iz([{7 Au) = 8(1 —C()SA],{) . (20)
. I, ; (rel. units.) uy 5 /rad
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Figure 3. Steady-state phase shifts and the feedback field intensities as
functions of the feedback factor.
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Relationships (16)—(20) are illustrated by the curves
shown in Fig. 3 and Fig. 4. One can see from these figures
that the critical feedback factor amounts to K, ~ 0.7, and
that for K < K, no solutions of the considered type can be
generated. For large values of K, we have the following
asymptotic behaviour of the parameters of the steady-state
solution: Au — n, Py, — 1,2 — 0.5, u;y - K —1/2, uy —» K
+n/2, [, = 1 —n/2K, I, — 1 +1/2K.
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Figure 4. Steady-state total power of the feedback field and the relative
area of bright zones as functions of the feedback factor. Squares represent
the experimentally measured power.

Note that the results of the step-function approximation
were fully confirmed by the numerical solution of Eq. (4) for
the case of weak diffusion (/3vy < 1). Thus, we corroborate
the intuitive assumption that the closed system tends toward
the state of the maximal possible rate of energy transfer from
the zero order to higher orders.

4. Experimental setup

The experimental setup is shown the Fig. 5. We used a 50-
mW helium-neon laser (/) (A = 632.8 nm) as the radiation
source. The laser beam was widened to a diameter of 4 cm by
the confocal system of the microscope objective (2) and the
objective (4). After reflection from the internal mirror of the
LC SLM (5), the beam was limited to a diameter of 1.2 cm
(the operating aperture of the modulator) and directed into
the feedback loop.

The feedback loop contains two identical objectives (3)
and (4) with the focal distance / = 70 cm and the spatial fil-
ter (6) that is centred on the optical axis. The filter consists of
a thin glass substrate, which has an opaque circle on it with a
diameter of 350 um, and an iris diaphragm, which is centred
on the circle to filter the high-frequency noise. The lower
bound of the spatial frequencies transmitted by this filter
equals approximately 25 cm ™!, which corresponds to a struc-
ture that contains 4 periods on a l-cm length; the upper
bound can be varied by adjusting the diaphragm diameter.
The image that is formed at the output plane of the spatial
filter is transferred by the optical fibre bundle (9) onto the
photoconductive layer of the LC SLM. Rotating the polariser
(8) varies the feedback factor.

10 B—=—=

13

Figure 5. Experimental setup: (/) He-Ne laser; (2) microscope objective;
(3)and (4) 4f-system objectives; (5 ) LCLV; (6 ) spatial filter; (7 ) LC pro-
jector; (8) polariser; (9) optical fibre cable; (10 ) objective of the detection
system; (/1) ground glass screen; (/2) CCD camera; (/3) photodetector.

The detection system consists of a CCD camera (/2),
which is connected to a PC via a frame grabber, and a photo-
detector (13). The camera detects the intensity distribution of
the feedback loop field Iy, which is formed by the objective
(10) on the ground glass screen (/1). The photodetector mea-
sures the total power of the feedback signal.

In the theoretical part of this paper, we assumed that the
external disturbance of the system produces some controlled
phase distribution, which plays the role of the initial condi-
tions at the moment of the feedback loop closing. How-
ever, it is hard to realise this situation experimentally because
inhomogeneities that are present in the LC SLM will desta-
bilise and destroy the structure created (because the auto-
nomous system does not possess a definite attractor). It is
therefore reasonable to turn our attention to the dynamics
of the non-autonomous system. The non-autonomous system
is realised whenever some permanent spatially-nonuniform
external disturbance is maintained after the closing of feed-
back loop. The external disturbance was produced by an LC
video projector (7), which projected a computer-generated
image onto the entry surface of the optical fibre bundle. In
this way, we could easily control the amplitude and the shape
of the external disturbance.

Consider now how the behaviour of the closed system
changes when an external optical field acts permanently on
it. This external field produces additional stationary phase
modulation of the wave reflected from the LC SLM. An anal-
ysis similar to that of Section 2 demonstrates that the qua-
litative behaviour of the closed system remains the same:
In order to initialise self-excitation, the amplitude of the
external additional phase modulation produced by the exter-
nal field must exceed a critical amplitude, which depends on
the feedback factor. However, this critical amplitude is much
smaller than that of the autonomous system. This can be
explained by the fact that the feedback loop now receives
a permanent inflow of energy rather than an initial boost,
as in the autonomous system.

The method of amplitude equations, in principle, allows
one to determine the threshold amplitudes for both the auton-
omous and the non-autonomous problems. However, in order
to attain the necessary accuracy of the results, one has to
include a large number of harmonics into consideration,
which leads to rather bulky calculations. It is therefore
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more reasonable to determine the threshold amplitude depen-
dences by means of numerical simulation.

The corresponding curves are shown in Fig. 6. The dashed
curve shows the threshold amplitude of a sinusoidal phase
grating, which represents the initial phase modulation in
the LC SLM, as a function of the feedback factor. The solid
curve corresponds to a permanently maintained grating of
the same form. One can see that the self-excitation thresholds
differ by a factor of 4 to 5 in these two situations.

af /rad |

K/rad

Figure 6. Numerically calculated dependence of the excitation threshold
on the feedback factor for vy/y = 0.1. The dashed curve represents an auto-
nomous system with the initial phase modulation of the form
ug(x) = a’ cos vox. The solid curve represents a non-autonomous system
with an additional stationary phase modulation of the same form.

For sufficiently large K, the threshold amplitude of the
external perturbation (in the non-autonomous configuration)
is negligible with respect to the steady-state phase calculated
in Section 3. Therefore, the dependences obtained by means
of the step-function approximation are also relevant for the
non-autonomous system, provided that the amplitude of
the external perturbation is not much larger than the thresh-
old amplitude.

5. The response of the closed system to various
external perturbations

To investigate the dynamics of the non-autonomous system,
we chose model objects of various symmetries, which were
projected onto the entry surface of the optical fibre bundle by
the video projector. This created a stationary ‘seed’ distribu-
tion of the phase of the wave reflected from the LC SLM.
Two of these model objects are shown in Fig. 7: a hexagon
(Fig. 7 a) and a set of equidistant concentric circles (Fig. 7 b).
The photographs of the feedback loop field distribution, also
shown in Fig. 7, are arranged as follows. The second row
corresponds to the opened feedback loop, the third and the
fourth rows, to the closed feedback loop. The two columns, in
which the photographs of the responses are arranged in, refer
to the respective objects.

Duplication of the spatial frequencies of harmonic com-
ponents of the phase distribution is a characteristic feature of
the phase-to-intensity transformation performed by our spa-

Figure 7. Images projected on the photoconductor of the LCLV (a, b) and
the photographs of the corresponding distributions of the feedback field
for the following values of the feedback factor: K = 0 (¢, d), K = 1.1 (e, f),
and K =3.2(g, h).

tial filter. This effect is clearly demonstrated in Fig. 7 d, which
shows that the number of circles increased by a factor of two
with respect to Fig. 7b. For the hexagon, this effect results
merely in the appearance of the halos around the spots of
the honeycomb-like structure.

When the feedback loop is closed, the characteristics of
the output image strongly depend on the feedback factor.
For K =0.7 (not shown in Fig. 7), the fraction of energy
that is redistributed from the zero spectral order into higher
orders is still too small. However, the incipient structure for-
mation is already discernible: The fundamental spatial freq-
uency begins to dominate the double frequency. For K = 1.1
(Figs 7 e and 7 f), the total power of the feedback signal is
substantially larger, and the image contrast is quite high.
For large values of K (Figs 7 g and 7 h), the contrast de-
creases and the area of the bright zones increases. These
properties of the generated structures are in qualitative agree-
ment with the theoretical dependences shown in Figs 3 and 4.

However, we observed some effects that were not
accounted for by theory in the experiments. In particular,
for large values of K, we observed distortion of the regular
structures that was imposed by the projected images. The
effect is most noticeable for ‘striped’ structures like the cir-
cles, which disintegrate into separate spots. Conversely, for
the structures that are spot-like from the beginning, we
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only observed a certain drift of the spots (due to diffusion of
charges in the photoconductor layer of the LC SLM) accom-
panied by distortion of their shape. These effects may be
related to the inevitable internal inhomogeneity of all LC
SLMs (of the affordable price range). Fig. 6 shows that,
for large values of K, the threshold of hard excitation is
very small; therefore, even minor changes in the modulator
parameters may result in the appearance of new spectral
components.

The normalised total power Py, of the output signal (15) is
the most conveniently measured quantitative characteristic of
the generated structures. The experimental values of Pp, aver-
aged over all the model objects are shown by squares in
Fig. 4. Note that the photodetector (/3) detects the power
of the beam before it passes through the polariser (8) that
controls K. In this way, parametric control of the power of
the output signal is realised.

If the projector is turned off, the output field remains dark
up to values of K ~ 2. A further increase in K results in self-
excitation of irregular structures that are triggered by internal
inhomogeneities of the modulator and other noise. In accord-
ance with the dependence shown in Fig. 6, the self-excitation
threshold can be crossed for K = 2 if the root-mean-square
deviation of the wave front at the nonlinear element output
amounts to ~ 0.031. This demonstrates predictability of
such effects in the systems based on LC SLMs.

6. Conclusions

Thus, we have managed to explain theoretically the hard
excitation of spatial structures in the nonlinear optical system
involving the suppression of low spatial frequencies in the
feedback loop. The analytical dependences of the main char-
acteristics of these structures upon the control parameters
have been derived. The experimental results qualitatively
agree with the predictions of the theoretical model.

The discrepancy observed in Fig. 4 can be explained by
the following major causes. For sufficiently small values of
K, this discrepancy is evidently caused by the action of the
stationary phase modulation created by the projected image.
This modulation results in transfer of a fraction of the energy
of the wave reflected from the LC SLM, into corresponding
spectral orders. For large values of K, this discrepancy is
probably caused by saturation of the modulator. For the sam-
ple used, the maximum light-induced phase shift amounts to
~ 2m; in addition, a part of the dynamic range (no less than
two radians) is lost due to the influence of the projected
image.

The LC SLM is therefore not capable of providing the re-
quired stationary phase shifts (see Fig. 3). Nevertheless, the
theoretical and experimental threshold values of K are in
good agreement, even though the experimental threshold
was determined less accurately due to nonuniformity of
both the LC SLM characteristics and the incident beam
intensity. We can thus conclude that, for quantitative des-
cription of the experimental data by means of the theo-
retical approach considered, the LC SLM must possess a
high spatial uniformity and a sufficient dynamical range.
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