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Propagation of ultrashort pulses
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through a nonresonance quadratically nonlinear medium
in the unidirectional wave approximation

E V Kazantseva, A I Maimistov

Abstract. The propagation and interaction of ultrashort pul-
ses in a nonresonance quadratically nonlinear medium is
considered. A stationary solution was found analytically.
It was demonstrated numerically that pulses with an energy
much lower than the energy of a stationary pulse decay un-
der the influence of dispersion during propagation, whereas
pulses with an energy higher than the energy of a stationary
pulse disintegrate into a series of pulses moving like stati-
onary ones. The effect of additive and multiplicative ampli-
tude modulation on the pulse propagation was investigated.
Stationary pulses were shown to be stable upon weak modu-
lation and in collisions with each other.

1. Introduction

The last decade has seen a vigorous mastering of the range
of femtosecond electromagnetic radiation pulses [1—11]. One
way to attain these pulse durations is to compress the initial
pulse employing fibre-grating compressors [1—3]. By this
means, for instance, 6-fs pulses were obtained [2]. Another
way to produce femtosecond pulses is to generate them
directly in laser systems [4 —8]. Sartania et al. [4] succeeded
in generating 20-fs pulses with an energy of 1.5 mJ and a rep-
etition rate of 1 kHz. The subsequent compression of these
pulses using a fibre-prism compressor yielded 5-fs pulses
with an energy of 0.5 mJ. Jung et al. [6] demonstrated the gen-
eration of 6.5-fs pulses with an average power of 200 mW and
a repetition rate of 86 MHz by a Ti: sapphire laser. The para-
metric wave interaction, the self-focusing and the self-modu-
lation, and also the coherent transient processes in the field of
femtosecond pulses were considered in Refs[9 —11].

Achievements in the field of generation of ultrashort radi-
ation pulses (USPs), make the analysis of their propagation in
nonlinear dispersion media in the context of different
medium models a topical problem. A natural foundation
for all the theories are Maxwell’s equations. They are comple-
mented with either the constitutive equations that determine
the evolution of radiation-induced polarisation and currents
in the medium [12—17] or with the Schrodinger equation for
the electrons that interact with the external electromagnetic
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field [18, 19]. Because the explicit analytical results can be
obtained only rarely, different approximations are widely
used, which permit the problem to be simplified and analyt-
ical expressions to be derived.

Among the numerous models of a nonlinear medium
invoked to investigate the propagation of an USP pulse, we
mention the medium with a cubic nonlinearity [20, 21], in
which the nonlinear response was determined using the Duff-
ing model. As noted in Ref. [22], for a more precise descrip-
tion of the dispersion of the nonlinear refractive index it is
necessary to use a model of at least two coupled oscillators.
In subsequent papers, the interaction of USPs with dielectric
media was considered using models of two [23, 24] and three
[25] coupled oscillators. Note also the paper by Belenov et
al. [26], who pointed out the role of the electronic-vibrational
(Raman) interaction in the formation of the nonlinear res-
ponse of the medium to the action of USPs.

Therefore, within the framework of classical physics, the
nonlinear properties of an isotropic dielectric can be
described by the Duffing model (or an anharmonic oscillator
with a cubic anharmonicity) for coupled electrons and by the
Placzek model [27] (or the Bloembergen—Shen model [28])
used to describe Raman scattering, like in Refs [23 —26].
The next step in the generalisation of these models is taking
into account the vector nature of electromagnetic radiation
and the passage to the model of an anharmonic oscillator
with two degrees of freedom [29 - 31].

In anisotropic nonlinear media, the potential energy of
bound electrons is not an even function of the electron dis-
placement from the equilibrium position. Therefore, the
Duffing model should be replaced by a model of an anhar-
monic oscillator with a quadratic nonlinearity (the
quadratic Duffing model). This model was employed in
Refs [31, 32] to describe the propagation of an USP of arbi-
trarily polarised radiation in a quadratically nonlinear
medium with or without dispersion. Like in media with a
cubic nonlinearity, one would expect here a generalisation
of a purely electronic model by taking into consideration
the Raman-type interaction (like in Refs [23 —28]) with the
inclusion of the medium anisotropy and the vector nature
of the electromagnetic field.

An important and yet simple approximation can be
obtained by assuming that electromagnetic waves propagate
only in one of the possible directions [33]. The condition of
unidirectional waves reduces the order of the wave equation
without introducing limitations on the pulse length, which
was shown in detail in Refs [12, 20, 33, and 34]. It is impor-
tant that this approximation does not use the concept of a
quasiharmonic nature of this wave. (Naturally, there exist sit-
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uations where this approximation is known to be inappro-
priate, e. g., waves in periodic or scattering media.)

In this paper, we study the propagation and interaction of
ultrashort pulses of linearly polarised electromagnetic radia-
tion, which have one or several oscillations of the electric field
intensity in a medium characterised by a nonlinear response
and dispersion.

2. Basic equations of the model

Under the assumption that the polarisation vector retains
its direction, the propagation of a linearly polarised plane
electromagnetic wave is described by the scalar wave
equation
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where P is the polarisation of the medium. The problem is
simplified if the USP propagation is considered in the unidi-
rectional wave approximation [12, 33, and 34]. In this case,
instead of Eqn. (1), the simpler equation
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is used.

To calculate the polarisation P, the model of the medium
should be adopted. We will use the anharmonic oscillator
model — the quadratic Duffing model, which was considered
in the description of parametric processes in quadratically
nonlinear media [35-37]. It is assumed that electrons are
located in a potential well and oscillate with the frequency
w, about its equilibrium position under the action of the
external field. Let X be the displacement from the equili-
brium position averaged over the ensemble of all bound
electrons. Then, following Bloembergen [37], the equation
of motion can be written as

X 2 = E(z,1) 3)
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where K, is the anharmonicity constant and m =
3m/(¢+2) is the effective electron mass. The oscillation
damping is neglected here, assuming the duration of the
USP-electron system interaction to be much shorter than
the relaxation time of the system. The polarisation of the
unit volume of the medium is defined as P = n,eX, where
n, is the atomic number density.

It is convenient to pass to new dimensionless variables
{=x/L and t=wy(t—z/c) and fields § = E/A4, and
q = X /X, by using the normalisation parameters
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where o, = (4mn,e? /mef)’l/ 2 is the plasma frequency. In
the dimensionless variables, Eqns (1) and (2) take the form
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The passage from the wave equation (1) to the approxi-
mate equation (2) has been described in a number of pa-

pers [12, 20, 33, and 34]. However, there is good reason to
discuss once again the condition for the validity of this pas-
sage. Let us introduce the characteristic variables 7 = ¢ — z/c
and Z =1+ z/c. For P =0 (or for P = yE, where the sus-
ceptibility y is a constant), the wave equation (1) has solu-
tions in the form of the waves traveling either along the char-
acteristic 7' = const or along Z = const (or along the charac-
teristics T =t — z/c' and Z = t + z/c’, where ¢’ is the veloc-
ity of light in a dispersion-free medium with the susceptibility
7). This picture breaks down when P is nonzero (or the medi-
um is dispersive and/or is nonlinear). Let us make the formal
substitution P — ¢P and expand E, B, and P in powers of ¢
assuming this parameter to be small:

E=EYT)4+¢EVNT,Z)+2EX(T, 2)+. ..,
Q)
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By substituting these expansions into the wave equation (1)
and collecting the terms of the same order of smallness in &,
we can easily see that equation (2) arises in the first order in
¢, 1.e., the unidirectional wave approximation is equivalent
to replacing expansion (5) by the expression

E(T,Z) = EO(T) +:E"(T, 2). (©6)

The polarisation of the medium results in a change in the
characteristic of a stationary wave but does not rule out the
propagation of variable-profile waves, i.e., the transient
waves. Here, the concept of a quasiharmonic wave is not
invoked: no limitations are imposed on the rate of variation
of the electric field strength E(T,Z) = E (t,z). The criterion
for the validity of approximation (6) is the smallness of the
parameter ¢ (which is a measure of smallness of the polarisa-
tion effect). To explicitly determine this parameter in the
case under consideration, we may proceed as follows. Like
in Eqns (4), we pass to variables ¢ = wyz/c and § = wyt
and to fields & and ¢. Then, the system of equations (1)
and (3) takes the form

%6 d%¢ w,\>0%q o2
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It is now evident that the (w, /w0)2 ratio serves as a
parameter which is a measure of the influence exerted by
polarisation on the wave propagation. Therefore, the para-
meter ¢ in expansion (5) may be defined as 2¢ = (wp/wo)z.
Upon reducing expansion (5) to expression (6) and rever-
ting to the initial dimensional variables, we obtain the sys-
tem of equations (2) and (3). Hence, the condition for the
validity of the unidirectional wave approximation is the
requirement that (cup/wo)2 < 1. In what follows this con-
dition is assumed to be fulfilled and we investigate the solu-
tions of the system of equation (4).

3. Stationary solitary wave

As a simple example of solving this system, we consider the
solution that describes the propagation of a stationary
solitary wave. Let & and ¢g depend only on the variable
n=1t—"{_/a=wy(t—z/V), where V is the propagation
velocity of a stationary electromagnetic pulse, and
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stationary solutions of Eqns (4). This system of equations
can be solved, taking into account that the relation

& =aq ()

follows from the first of Eqns (4). The second equation
takes the form

d*q

an’ (10)

+(1—a)g+q¢*=0.
Solutions of this equation that satisfy the boundary

conditions

%ﬂo for n — too, (11)

g — 0 and a

are possible only for o > 1. A solution of this kind is

q=3(o— 1)sech® [} (o — 1)1/211]. (12)
By using (9), we obtain
& =3a(o— l)sechz[%(oc— 1)1/2;7] (13)

A similar stationary solution of the system (1) and (3) can
be found for comparison without using the unidirectional
wave approximation. This exact solution is found in the
same way as (12) and (13). Assuming that & and ¢ depend
exclusively on the variable 1 = wy(t — z/ V'), we can rewrite
Eqn (1) in the form of an ordinary second-order differential
equation. By integrating this equation twice taking the boun-
dary conditions (11) into account, we obtain

(14)

where & = Vz(wp/wo)z(cz— ¥2)~!. This relationship is
similar to (9). Therefore, the final solution of the system
of equations (1) and (3) determines the stationary pulse of
the electromagnetic field

& =3 - l)sechz{%(&— 1)‘/2;7}, (15)
which differs from expression (13) in only the definition of
the parameter o. Attempts to analytically find more general
solutions have not met with success. Subsequent investi-
gations of the propagation and interaction of waves in a
quadratically nonlinear medium using the model under
consideration in the unidirectional wave approximation
were carried out numerically.

4. Numerical treatment of the propagation
of electromagnetic radiation pulses

To study the solutions of system (4) numerically, we will
write it in the form:
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Since Eqn (16.1) contains only the derivative with respect to
the { coordinate, while Eqn (16.2) only with respect to t, we
can use any methods of numerical integration of ordinary
differential equations by applying it in turn to Eqn (16.1)
and to Eqn (16.2). Here, we used the predictor-corrector
method to solve Eqn (16.2) over the entire t-axis and the
fourth-order Runge—Kutt method to integrate Eqn (16.1)
by one step in the (-axis.

We adopted the following initial and boundary condi-
tions:

(¢,7) = lim p({,t)=0.

|t|—00
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T|—00

With these boundary conditions, two integrals can be
found:

OO
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When the stationary solution (13) characterised by the
parameter o =5 (i.e. &y(r) = 3OSCCh2(‘L')) was selected as
the initial condition for &, this pulse was shown to propagate
without distortion up to the coordinate value { = 130, which
would be expected. This may also serve as a test of the code
for numerical solution of the system of equations (16).

The solutions of system (16) for small-amplitude initial
pulses exhibit a dispersion spreading of the initial pulse
accompanied by the formation of harmonic waves. If a pulse
with an energy exceeding that of a stationary pulse enters the
medium, it will break down into a series of pulses, each prop-
agating, like stationary pulses, with a velocity of its own.

Completely integrable evolutionary nonlinear equations
are characterised by the elastic interaction of stationary soli-
tary waves, which are solitons in this case. The system (16)
under consideration is unlikely to belong to the class of com-
pletely integrable systems. Nevertheless, a collision of two
stationary pulses having different propagation velocities
has shown them to be rather stable in collisions. We also con-
sidered a collision of two pulses produced in the decay of a
pulse with the initial field profile &y(t) = 3Osech2(r/2). A
pair of solitary waves originated after the collision. The prop-
agation velocities of the waves were changed but their ampli-
tudes and lengths were conserved within the limits of compu-
tational error.

Of considerable interest is the stability of nonlinear waves
with respect to continuous perturbations, e. g., to a regular
modulation of the envelope. It is known that solitons with
this modulation can transform back to pulses with a smooth
envelope. However, when the modulation is deep enough, a
soliton may decay and turn into spreading wave packets.

We considered two types of amplitude modulation by a
harmonic wave — the additive and multiplicative ones. In
the former case, a stationary pulse was found to propagate
against the background of a continuous harmonic wave
and to preserve its shape. Because of the dispersion and non-
linearity of the medium, a harmonic wave decays into low-
amplitude wave packets, which spread out during their prop-
agation. A stationary pulse of the higher intensity remains
unmodulated and propagates independently of weak har-
monic wave packets. A consideration of the evolution of
the Fourier spectrum of a modulated stationary pulse reveals
that the low-frequency part of the spectrum, which corre-
sponds to the smooth stationary pulse, is very weakly
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changed. The peak in the spectrum at the frequency of the
additive harmonic wave is somewhat broadened and gradu-
ally decreases with the distance travelled through the medi-
um. Fig. 1 shows the evolution of a modulated signal and
its spectrum for the initial profile:
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Figure 1. Evolution of a stationary pulse and its spectrum upon the addi-
tive modulation of the pulse amplitude by a harmonic wave.

&o(1) = 30sech?(t + 5) + sin(57).

A pulse with an energy twice as high as that of a station-
ary pulse was previously found to decay into two pulses that
behave like stationary ones. It turned out that the additive
modulation by a harmonic wave did not prevent the decay.
Note that the evolution of the spectrum of a modulated
powerful pulse is more complex. Apart from the separate
peak corresponding to the harmonic wave, the low-frequency
part of the spectrum acquires modulation. This modulation is
caused by the interference of the Fourier transforms
Fy (ot 5) of the two signals with durations ¢, and ¢, pro-
duced upon the decay of the powerful initial pulse, and
propagating with velocities v; and v,, respectively. The Four-
ier transform of the sum of these pulses is

F(w,{) = tF)(wt;) exp(inl/v,) + t,F>(wt,) exp(iol/v,).

The power spectrum is proportional to |F(w)|2, which
results in the appearance of an interference term propor-
tional to cos[w(v;' — v 1)¢]. Fig. 2 shows the decay of the
pulse with the initial profile
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Figure 2. Decay of a pulse, having an energy exceeding that of a stationary
pulse, into separate pulses.

=20

0k .
0 2 4 6 8 t 0 5 10 15 o

-30 1 1 1 1 1

Figure 3. Stability of the envelope shape and of the spectrum of a pulse
with the initial profile &(t) = 30sech?(t — 5) cos (107).

&o(t) = 30sech?((t + 5)/2) + 2 cos(157)

upon the additive modulation.

The case of multiplicative modulation of a stationary
pulse was considered by the example of solution of the system
of equations (16) with the initial profile of the form

&o(1) = 30sech? (1) cos(Q1),
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where @ is the normalised modulation frequency whose
values were selected in the range from 10 to 30. An initial
pulse of this type was found to behave like a stationary one;
however, it remains to be modulated. Its spectrum is
localised in the vicinity of the modulation frequency, as in
the case of a quasiharmonic signal (Fig. 3).

Fig. 4 shows the evolution of a weak signal with the initial
profile

&o(1) = 30sech?(7) sin(2.5t — 5),

modulated by a harmonic wave.
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Figure 4. Decay of a weak pulse modulated by a harmonic wave.

During its propagation, a modulated weak signal experi-
ences dispersion spreading (as does an unmodulated signal
having an energy lower than that of a stationary pulse)
and turns into a quasiharmonic solitary wave with a slowly
varying envelope.

5. Discussion

We have considered the simplest model of a nonlinear
medium which was used previously to determine the res-
ponse of a quadratically nonlinear medium [37, 38] (see also
Refs [31, 35, and 36]). Within the framework of this model,
Garrett and Robinson [38] and Miller [39] defined a quan-
tity referred to as the Miller index, which allows one to
express the nonlinear susceptibilities in terms of the linear
ones. For several materials (KDP, CdS, Te, GaAs, etc.), the
Miller index varies within an order of magnitude [39], and
its average value can be calculated using the anharmonic
oscillator model (2) for a specific choice of the anharmo-
nicity constant (Yariv [35] found that i, ~ —1.64 x 104
m~! s72). This justifies the choice of the model discussed
above to describe the evolution of electromagnetic pulses in
the media where the main contribution to the nonlinear
response is due to electrons. A natural generalisation of the
model should be analysis of the electron-vibrational inter-
action [23, 26] and consideration of the evolution of the
polarisation vector of the electromagnetic wave [31].

The unidirectional wave approximation used here greatly
simplifies the problem from the point of view of numerical
solution of the system of equations for the pulse propagation,
but at the same time it imposes limitations on the range of

validity of the results. The unidirectional-wave criterion dis-
cussed in the Introduction is fulfilled (as already noted in Refs
[33, 34]) in low-density media. Therefore, the results obtained
do not apply in the case of dielectrics and semiconductors.
The role of appropriate media may be played by impurities
in a dielectric matrix, a molecular layer on the surface of a
dielectric, or a system of microcrystallites (quantum dots),
provided that their spatial density is low. The anisotropy
required for the quadratic nonlinearity of this gas-like
medium may be caused by either an external field (electric,
magnetic) or a substrate, when surface electromagnetic waves
are considered. Quasi-one-dimensional dielectrics and semi-
conductors (e.g., polyacetylene) that contain low-density
impurities can serve as media in which the unidirectional-
wave criterion is fulfilled.

An investigation of the simple model of short-pulse prop-
agation through a quadratic medium, performed in the
unidirectional-wave approximation, showed the existence
of a one-parameter family of stationary solitary waves corre-
sponding to USPs. A numerical simulation of the propaga-
tion revealed that collisions of two stationary pulses do
not lead to their decay. Pulses of higher intensity (different
from the stationary ones) were found to decay into several
separate pulses traveling with velocities of their own. These
pulses retain their individuality throughout the distance in
which numerical integration of the system of equation (16)
was performed.

Collisions of two pulses, both stationary ones and those
produced in the decay of one high-intensity pulse, are asso-
ciated with a phase shift of each of the colliding pulses.
The summary phase shift is not an integral of motion, as
would be the case with true solitons. Moreover, the pulse
propagation velocities are changed upon the interaction,
even if only slightly. Therefore, the stationary pulses discov-
ered in this work are not solitons in the rigorous sense of the
word, even though they exhibit a rather high degree of stabil-
ity. It is valid to say that we have arrived at just one more
example of so-called robust solitons discussed in Ref. [40].

In the context of the model under consideration, one
would expect the solitary waves in quadratically nonlinear
media to behave in this manner when the following circum-
stances are taken into account. From Eqns (4) it follows
that there exists a ‘potential’ ¢({,7) such that

_0¢ _0¢
= 16U ="%
Substitution of these expressions into the second equation
(4) gives

ap 0p (oY & P
a*&i(a?) +8126§_0.
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From Eqns (17) and (18) follows the equation for the
normalised coordinate of an anharmonic oscillator:

dq 0Og g 0
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This equation resembles the known Korteweg—de Vries
(KdV) equation [41]
0q 0Oq og g
b O A .
ot Myt =

but differs from the latter by the last term and, as a con-

(20)
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sequence, by the linear dispersion law. The stationary solu-
tion of the system of equations (16) coincides in form with
the soliton solution of the KdV equation while the I, and
I, integrals of motion coincide with its first two integrals.
Therefore, it is likely that the solutions of the system (16)
are close to true solitons while Eqn (19) forms the basis for
the development of the perturbation theory, which will
permit to approximately describe the evolution of USPs in
nonlinear media of the type considered in this work.
However, it should be borne in mind that the evolution
proceeds in the {-variable, unlike the case of a regularised
equation for long waves [42—44]

dq g dq 0q

e tac o aar

@n
and the case of the KdV equation (20), where the role of { is
played by the t variable.
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