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Structural chaos in reversible spontaneous emission of moving atoms

S V Prants, V I Yusupov

Abstract. It is proved analytically and numerically that,
under certain conditions, the reversible spontaneous emis-
sion of two-level atoms moving in a high-Q resonator and
described quantum-classically can be chaotic in the sense of
the exponential sensitivity with respect to the initial con-
ditions. The wavelet analysis of the vacuum Rabi oscilla-
tions showed that this chaos is structural. The numerical
estimates showed that a Rydberg atom maser with a super-
conducting microwave resonator operating in a strong cou-
pling mode is a promising device for detecting mani-
festations of the dynamic chaos in the reversible spontane-
ous emission.

1. Introduction

The spontaneous emission of excited atoms proceeds differ-
ently in a free space and an electromagnetic resonator. A
continuum of the field modes of the free space vacuum
causes the irreversibility of spontaneous emission, which is
manifested in the exponential decrease in the probability of
finding an atom in the excited state with the exponent con-
taining the Einstein coefficient 4 [1]. A change in the density
of field modes in the resonator or near surfaces results in
changes in the rate and spectrum of spontaneous emission
and causes the radiative shift of the atomic levels with respect
to these characteristics in a free space.

E M Parcell was probably the first to pay attention to this
fact in his note published in 1946 [2]. Since then both an
increase in the spontaneous emission rate in resonance cav-
ities (see, for example, Refs [3—5]) and its suppression in
nonresonance cavities (see, for example, Ref. [6]) have been
observed for atoms of different types in different frequency
regions.

However, in cavities with a comparatively low Q-factor,
spontaneous emission does not change qualitatively, being
irreversible as in a free space. Owing to efforts of many
experimenters, the quality factor Q of cavities, in particular,
microcavities was increased to ~ 10° and more. For such O-
factors, a constant of the interaction of an atom with a vac-
uum field (the single-atom vacuum Rabi frequency )
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exceeds the spectral width w./Q of the cavity modes, where
o, is the dominating frequency mode. For Q) > w./Q (the
so-called strong coupling limit in the cavity electrodynamics),
the cavity field spectrum exhibits a distinct singularity near
the atomic transition frequency, and periodic energy transfer
can occur between the atom and the field, i.e., spontaneous
emission becomes reversible.

This phenomenon, which is also called vacuum Rabi
oscillations, has been observed on microwave transitions of
Rydberg atoms in a metal cavity of a centimetre size [7], opti-
cal cavities [8], and on excitonic transitions in semiconductor
microcavities [9]. Such experiments open up attracting oppor-
tunities for controlling spontaneous emission and creating the
threshold-free microlasers operating on exciton polaritons in
semiconductor microcavities with quantum wells. A brief
review of theoretical and experimental papers on spontane-
ous emission of atoms at rest in cavities was presented in
Ref. [10].

This paper is devoted to the theory of reversible sponta-
neous emission of two-level atoms moving in an ideal cavity
with the vacuum field. We proved that vacuum Rabi oscilla-
tions described using a combined quantum-classical app-
roach could be chaotic even in a single-mode cavity. This
means that, under certain conditions, an ensemble of moving
two-level atoms interacts with a single cavity mode in a corre-
lated and coherent way (in the absence of any external energy
sources and sources that destroy coherence) and emits and
absorbs light chaotically (in the sense of the exponential sen-
sitivity of reversible spontaneous emission to variations in the
initial conditions).

The spectrum of such a signal is substantially nonstation-
ary because of the existence of at least three time scales
related to the modulation of the vacuum Rabi frequency
caused by the spatial inhomogeneity of the cavity mode;
energy exchange between atoms and the cavity; and the mis-
match between the atomic resonance and the cavity mode. A
typical chaotic signal of reversible spontaneous emission con-
sists of the short-lived, high-frequency components closely
spaced in time and of the low-frequency components closely
spaced in frequency. To reveal the structure of this chaos, we
will use the wavelet analysis, which represents a multiscale
method that provides good resolution both in frequency
and time.

Note that a problem of the dynamic chaos has its own his-
tory in quantum electrodynamics. As early as 1964, an
aperiodic behaviour of the quantum oscillator model has
been found [11]. Later [12], the equivalence was proved
between the semiclassical equations for a single-mode two-
level laser and the hydrodynamic Lorentz system represent-
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ing a classical model of a strange attractor. The comprehen-
sive literature is available on the problems of instability and
dynamic chaos in lasers (see reviews [13, 14]). As for the
quantum oscillators with moving particles, the nonlinear
dynamics of a single-mode beam maser with a homogeneous
field directed along the propagation direction of molecules
has been investigated in Ref. [15] using a two-level model.
The authors [15] found numerically the regions of bistability,
multistability, and chaotic pulsations.

The majority of papers in this field consider the genera-
tion of stimulated emission in the presence of relaxation,
i.e., the open dissipative systems with a decreasing phase vol-
ume. We emphasise here that in this paper we formulated and
considered a physical problem of coherent spontaneous emis-
sion of excited atoms moving in an ideal cavity, without any
external energy pumping. The corresponding system of clas-
sical equations of motions is the Hamiltonian (conserving the
phase volume) and nonautonomous (because of the inclusion
of the spatial structure of the cavity mode) system.

2. Theory of reversible spontaneous emission of
two-level atoms moving in an ideal cavity

Consider a single-mode very high-Q cavity. We restrict our-
selves to a one-dimensional case and assume that a variation
in the electric field strength of a standing wave along the x-
axis is described by a spatial function f(x). A monoenergetic
cloud of N two-level atoms or molecules, which do not
directly interact with each other, is admitted to the cavity
with the velocity v and moves along this axis. The spatial
inhomogeneity of the standing wave modulates the interac-
tion energy of the atoms with the selected cavity mode, i.e.,
the vacuum Rabi frequency becomes time-dependent:

Qo f(x) — Qo f(vt) = Q(2).

The simplest Hamiltonian describing such a situation is
the nonstationary operator [16]

+hQy(1) Y (a6), +a'6?), (1

where w, and w, are the frequencies of the atomic transition
and cavity mode, respectively; 6., is the Pauli operators; &
and a' are the creation and annihilation operators for pho-
tons in the selected mode, respectively. Along with the
approximations mentioned above, we also used the rotating
wave approximation and the Raman— Nath approximation
and assumed that the atomic cloud has a small diameter
compared to the standing wave wavelength. This allows us
to avoid unnecessary complications, keeping in mind our
main goal, and to reveal the nature of the appearance of
weak chaos in such a simple model of the interaction of
atoms with their own radiation field in the absence of any
external pump. The emission intensity of atoms is calculated
from the expression [17]
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where I; is the emission intensity of an isolated atom. The
first term in (2) describes usual spontaneous emission, whose
intensity is proportional to the number of atoms and the
density z of the population inversion of atoms. The second
term describes cooperative spontaneous emission with the
intensity that is proportional to the square of the number
of atoms and to the expected eigenvalue r of the operator of
quantum correlations of the atoms with each other.

Within the framework of the Hamiltonian approach,
which is valid for the strong coupling regime, the dynamic
equations are found from the Heisenberg equation by averag-
ing the operators over the chosen initial quantum state of the
atoms and the mode. It is known that a simple semiclassical
averaging, in which all the operator products are decoupled,
cannot describe spontaneous emission of completely excited
atoms because a combination of the state of atoms with the
zero mean dipole moment and the vacuum state of the cavity
field represents a stationary state of the corresponding semi-
classical system of equations (see, for example, [18]).

To initiate spontaneous emission in semiclassical models,
the start fluctuations of the dipole moment and (or) field are
required. It is also known [19] that averaging can be per-
formed by retaining atomic quantum correlations, which
are produced via the total emission field (it is assumed
that atoms do not interact directly with each other!). In
this case, the ad hoc fluctuations are not required for the
description of coherent spontaneous emission. The self-con-
sistent dynamic system of equations for the second-order
quantum correlators of the same dimensionality as the semi-
classical system, but describing reversible spontaneous
emission of moving atoms (see the Appendix), has the
form [20]

n=-Qu(t)v, z=2Qy(t)v, = (w— 1)y,

3)
z+1

F=—Qn(t)zv,0=(1 —w)u—QN(‘c)< +2r+2nz>,
where z, r, n, u, and v are the quantum averages of the inver-
sion operator 2= N ! >.; 6% and of the following bilinear
operators: ‘
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The averaging was performed over the factorised initial
quantum state of atoms and the field mode

[¥(0)) = [¥n(0)),10) - 4)

The derivatives in the system (3) are taken with respect to
the dimensionless time t = w,?, while the collective vacuum
Rabi frequency Qy (1) = Qy(t)v/N/w, and the normalised
mismatch o = w./w, represent the dimensionless controlling
parameters. The unitary property of the atomic evolution and
conservation of the total energy of the atomic-field system in
the case of neglecting any relaxation during the interaction
(i.e., it is assumed that the flight time of atoms through the
cavity is far shorter than the times of atomic relaxation
and the field decay) results in two conservation laws

2 4+4r=4NR(R+1), z4+2n=S5. (5)

Here, R is the cooperative number that numbers the atomic
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|R, M) Dicke states; M = Nz/2 changes in such a way that
M| < R < N/2 and is proportional to the energy of atoms.

It follows from Eqns (3) that, unlike the semiclassical
theory, a state with completely excited atoms injected into
a cavity with a vacuum field, i.e., the initial state of the system
of five equations (3) (zg =1, ny =ry = ug = vy = 0) is not
equilibrium in our model. Therefore, even when photons in
the resonance mode, atomic correlations, and polarisation
of atoms are absent at the initial moment, all these quantities
begin to oscillate with time because of the presence of the
term (z + 1)/N.

Therefore, weak quantum oscillations ~ 1/N represent a
source of spontaneous emission in our model. As time passes,
the quantum oscillations increase generally. Because our
model neglects the third-order and higher-order quantum
correlators, the range of its application is restricted by the
times at which quantum corrections of this order can be
neglected. While this time scale is comparatively great for reg-
ular vacuum Rabi oscillations, 74 ~ N, it substantially
decreases in the chaotic regime: rgh ~ ~'In N [21, 22], where
/ is the maximum Lyapunov index.

One can easily show that when Q, = const (i.e., when
atoms are at rest or flying in the direction along which the
cavity field can be considered homogeneous), the system
(3) acquires the additional integral of motion C =
2Qy u — (w — 1)z and is integrable in quadratures. The exact
solution for the atomic inversion density has the form

(1) =z1+ (22— 21)

21 172 Zp— 1
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Here z) 5 3 are the roots of a cubic algebraic equation, which
appears upon inversion of the elliptic integral, and z is the
initial value of z. Solutions for other variables can be readily
found using the integrals of motion of the system.

It follows from the form of equations (3) that they are inte-
grable in the case of the exact resonance for arbitrary
modulation f(zr) of the vacuum Rabi frequency, Quy(tr) =
Qy f (1), because the variable u becomes constant for
w = 1. In the limit of the exact resonance, exact solutions
can be found from the corresponding solutions for Q, =
const using the substitution t — [ f (7" )dx’. Therefore, vac-
uum Rabi oscillations of the resonance atoms moving
through a high-Q cavity with an arbitrary spatial mode con-
figuration are regular. This fact can be used to verify
numerical calculations. Prants et al. showed [18] by the
Mel'nikov method [23] that in the presence of an arbitrarily
small degree of modulation of the Rabi frequency in the semi-
classical atomic-field system with moving nonresonance
atoms, the so-called transverse intersections of the stable
and unstable manifolds of a hyperbolic singularity of this sys-
tem appear. A similar analysis of our model (3) showed that
the Mel’nikov function in the first order of the perturbation
theory in a small modulation parameter ¢ < Qy (Qn(17) =
Qy + esin(bwr) and b = v, /c is the ratio of the velocity of
atoms to the speed of light in vacuum) has the form

2
M(zg) = 2n(1 — w)(bw)

- cos(bwrty). 8
Q3 sinh[bon/(z3 — 21)1/29N} (bor) ®

This function characterises the distance (with sign) between
the above-mentioned perturbed manifolds at the moment
along the direction of the normal to the unperturbed homo-
clinic surface (see the description of homoclinic structures,
for example, in Ref. [24]).

It follows from the Mel’nikov function (8) that in the
absence of the exact resonance (w # 1) it has the infinite
set of simple zeroes over the variable 7,. Intersections of
the stable and unstable manifolds in the infinite set of homo-
clinic points form a complex homoclinic structure, which
generates in the vicinity of these points the transformation
of the phase volume of the Smale horseshoe type and results
in the Hamiltonian chaos in the reversible spontaneous emis-
sion of moving atoms even in the rotating wave
approximation and at an arbitrarily small degree of modula-
tion ¢ of the vacuum Rabi frequency. In the semiclassical
limit, a small stochastic layer is formed in the vicinity of
the separatrix of the unperturbed system, which expands
with increasing ¢ [18].

3. Wavelet analysis of vacuum Rabi oscillations

Let us analyse numerically the nonlinear dynamics of the
atomic-field system (3) in the presence of strong modulation,
which is chosen for definiteness in the form Quy(7) =
Qy sin (wb7) (i.e., the spatial structure of a standing wave
in the cavity is described by a simple sine). It is assumed
that the atoms entering the cavity are prepared (say, by
means of a laser m-pulse) in the completely excited state
|¥x(0)), =|N/2,N/2), and the cavity field is in the vacuum
state. In terms of the variables of our model, such a factor-
ised state is described by the 5-vector with co-ordinates
Zog = l,no :0,}’0 :O,MO :O,Uo =0.

Because in the experiments with moving atoms, excitation
of atoms is usually detected at the cavity exit, to illustrate the
signals of reversible spontaneous emission, we present in
Figs la—c the dependence z(t) for Qy =1, N = 10°, and
the mismatch o = 1.5 for different velocities b of the atoms
and Fig. 1d, the dependence z(t) for Qy =1, and » =0.1
for the exact resonance w = 1.

Note first of all that the dependence z(t) exhibits two spe-
cific features, namely, a delay of the first superradiance pulse
during which the interatomic quantum correlation is estab-
lished, and a characteristic periodic structure of the
regular signal caused by spatial modulation of the vacuum
Rabi frequency. The dimensionless period of this modulation
is 7, = n/bw, and its numerical estimates yield the values
~ 2090, ~ 209 and ~ 31.4 for the cases in Figs la, b, and
d, respectively. These values well agree with the correspond-
ing periods in Fig. 1.

The maximum Lyapunov index, which characterises the
dynamic chaos of a nonlinear system, was calculated to be
A = 0 (within the error of numerical calculations) for Figs 1a,
b, and d, which, as is known, suggests the quasi(periodic) type
of the corresponding dynamics. The signal in Fig. 1 not only
appears as chaotic but it is indeed chaotic because the corre-
sponding Lyapunov index is positive and equals ~ 0.1.

As the collective Rabi frequency Qp increases, i.e., the
number N of atoms in a cluster and (or) the monatomic vac-
uum Rabi frequency Qy increases, chaos is revealed for more
and more slower moving atoms. The maximum Lyapunov
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Figure 1. Inversion density oscillations of 10® moving atoms with the col-
lective Rabi frequency Qy = 1 for the velocity b = 0.001 (a), 0.01 (b) and
0.1 (¢c) andw = 1.5 (a—c) and 1 (the exact resonance, d).

index calculated for Q5 = 8.5 amounts to ~ 0.5 for the velo-
city of atoms v, ~ 1.5:10° m s~ (b =5-10"%) and w = 0.9.

However, the temporal type of chaos can be established
neither from the form of chaotic Rabi oscillations nor
from their Fourier spectrum. To determine the temporal
type of chaos, we performed the wavelet transform of the cor-
responding signal z(t) shown in Fig. lc:

00

2(t)pyp(r)dr, ©

—00

Wep) - |

where (1) = &~ $((x — f)/2); b = exp (ikor) exp ( — 7/2)
is the basis Morlet wavelet; « is a scaling coefficient; f is
the displacement parameter; and k&, is the fitting parameter.

The obtained two-dimensional matrix of numbers can be
represented as a two-dimensional pattern with axes « and ff in
which the absolute values of W are shown by black half-tones
(Fig. 2). The axes « and f correspond to the frequency and
time scales of the signal, respectively. Each point o, ff, at
the picture is a convolution of z(r) with the basis wavelet
¢ displaced by f, and extended by a factor of «,. Therefore,
W (a,p) contains information both on the time and frequency
properties of the signal, which allows one to analyse the signal
in more detail than with the help of the Fourier analysis (see,
for example, [25]).

Fig. 2 shows the result of the wavelet transform of the
chaotic signal z(t) for Qy =1, »=0.1 and w = 1.5. One
can see that the Hamiltonian chaos in the reversible sponta-
neous emission of atoms moving in a high-Q cavity is
transient in the sense that irregular oscillations occur during

Figure 2. Wavelet transform of the chaotic signal of vacuum Rabi oscilla-
tions shown in Fig. 1c.

a random time interval and then transform to regular oscil-
lations, which in turn transform to irregular oscillations,
etc. Fig. 2 shows a distinct quasi-regular structure of the
high-frequency components of the signal, with chaotic low-
frequency components that appear and disappear against
its background (black spots in Fig. 2).

The appearance and destruction in the reversible sponta-
neous emission of moving atoms is caused by the coexistence
of vacuum Rabi oscillations (doubly periodic in the reso-
nance limit) and the periodic modulation of the coupling
coefficient of atoms with the cavity mode. When the periods
of these processes become comparable in the absence of the
resonance (i.e., at a sufficiently great velocity of atoms), the
quasi-regular structure is changed by chaos even at compa-
ratively short time scales. For low velocities of atoms or in
the case of the exact resonance (for any velocities), the fre-
quency-time structure of the reversible spontaneous
emission is regular.

Fig. 3 shows an example of such a structure which repre-
sents the wavelet transform of the signal z(r) (shown in
Fig. 1d) in the case of the exact resonance between atoms
and the cavity for the same values of the other parameters
of the system as in Fig. 2. The regular Rabi oscillations
appear under resonance conditions due to the conservation
of the energy of interaction between atoms and the cavity
mode, which in turn is explained by the appearance of the
additional integral of motion C in the system in this limit.
The regularity the high-frequency and low-frequency compo-
nents of the signal is distinctly observed in its wavelet
transform.

4. Some numerical estimates

In principle, our model describes the interaction between any
two-level moving objects with a single emission mode. How-
ever, the validity range of the model pointed out at the
beginning of the Section 2 of this paper cannot be self-con-
sistent for any such objects and any range of the
electromagnetic waves. The Rydberg atoms moving in a
high- microwave cavity appear to be a suitable system for
the observation of manifestations of quantum chaos in rever-
sible spontaneous emission. The Rydberg atom maser can
operate in the regime for which the assumptions we used
in deriving basic Eqns (3) are valid. Below, we present our
estimates of the parameters of atoms and a cavity, which we
made for the experimental setup in the Paris Ecole Polytech-
nique [26].
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Figure 3. Wavelet transform of the regular signal of vacuum Rabi oscilla-
tions shown in Fig. 1d.

The frequency of transition between the neighbouring cir-
cular Rydberg levels of the rubidium atom with principal
quantum numbers 50 and 51 is w, /27 = 51.099 GHz and
the electric transition dipole moment is d = 1250 D. The
relaxation of excitation of these levels with maximum quan-
tum numbers of the angular and magnetic momenta occurs
only via a microwave transition to the nearest lower-lying cir-
cular state, so that the characteristic relaxation time is very
long (~ 30 ms). Because of a large distance between the
excited electron and a nucleus even a moderate electric field
is sufficient for ionisation of these atoms. This fact is used for
highly sensitive and selective detection of the states of atoms
emerging out the cavity.

The Q-factor of the niobium superconducting cavity at a
temperature of 1 K achieves ~ 10° — 1010, which corresponds
to the relaxation time ~ 10 — 100 ms of the cavity itself. The
typical monatomic vacuum Rabi frequency Q, equals ~ 10
—10° rad s~!. For such parameters of the atoms and cavity,
all the conditions of the very strong coupling regime
(2y > w./Q) and of the Hamiltonian dynamics (at least for
a few thousands of periods of collective vacuum Rabi oscil-
lations) can be assumed valid.

A great wavelength (~ 1 cm) and a low recoil energy of
the atoms, which accompanies the emission of microwave
photons, provide the validity of point models of Dicke and
Raman — Nath, respectively. In the chaotic regime of reversi-
ble spontaneous emission, the time scale of the quantum-
classical correspondence decreases logarithmically, and its
estimate tgh ~ (wai)_1 InN depending on the number of
atoms and the Laypunov index can vary from a few tens
to a few hundreds of periods of collective vacuum Rabi oscil-
lations.

5. Conclusions

Thus, we showed analytically and numerically the possibility
of the appearance of the structural dynamic chaos in the
reversible spontaneous emission of two-level atoms moving
inside a single-mode ideal cavity. We emphasise that this was
done within the framework of a model with the mixed quan-
tum-classical dynamics. Therefore, the validity of this result
is limited by a time interval of the quantum-classical corre-
spondence. The observation of manifestations of a classical

chaos in a such fundamental process of the interaction of a
matter with vacuum as spontaneous emission in real experi-
ments would shed additional light on the problem of
quantum-classical correspondence.
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Appendix

Let us introduce new operators A=a/VyN and A" =
a'/VN,S, =6 /N with the commutation relations (47, 4]
= 1/N[S+,S = 2S3/N[Si,S3} TS, /N(p = +,3), which
disappear in the macroscopic limit N — oo. The Heisenberg
equations for the bilinear combinations of new operators

A4, 8.8, it= A8, + A1S_, p=i(A'S_ — A3,) and the
atomic inversion density S; have the form

d ~in . d . .

g4 = ~2(1)VN; 5= Q(1)VN;

d - A A P

—(85,85_) = 2iQy(1)VN(S, 485 — A'8;5_),

dr

(A1)
d Lod .
gu_(wc wa)a &Z_(wc_wa)“

By averaging the polarisation operator, we will separate the
term that represents the quantum correlations of different
atoms [27] r =N (3, ,;6167) with summation over all
the pairs of different atoms

(5.5) N2<Z o f:aw>

i#j=1

1 1

=5y N(S;} + (). (A2)

By neglecting in the averaging all the quantum correlators of
the order higher than the second one, we obtain the closed
five-dimensional system of equations (3) for average values
n=(A'4), z=2(8;), u= (1), v=(d) and r = (7).
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