
Abstract. The properties of frequency conversion of Bessel
light beams (BLBs) in nonlinear crystals are studied theo-
retically and experimentally. New possibilities and pros-
pects of the development of methods for nonlinear optical
frequency conversion using BLBs are discussed. The second
harmonic generation (SHG) is studied under the conditions
of critical and noncritical phase matching. The longitudinal
and transverse phase matching is analysed in detail upon
SHG and sum frequency generation in BLBs. The concept
of azimuthal width of phase matching caused by the longi-
tudinal and transverse wave detuning is introduced, and its
value is calculated for collinear and p-vector interactions.
The regime of azimuthally matched interactions is selected,
which is realised when the azimuthal phase matching width
is small. A correlation of the azimuthal BLB components
caused by these interactions is predicted. It is shown that
azimuthally matched BLBs are characterised by a signifi-
cant increase in the overlap integral and by nonlinear inter-
actions that do not destroy their spatial structure.

1. Introduction
The study of Bessel light beams (BLBs) has been initiated
quite recently [1 ë 4]. Initially, they attracted attention due
to their so-called raylike property [1]. This property lies in
the fact that a change in the amplitude-phase proéle of a
BLB propagating in a free space is caused only by its énite
transverse size. For this reason, the near-axis part of the
beam experiences minimal diffraction distortions. More-
over, a screening of the central region of the BLB produces
a compensating radial energy êux, which restores the
transverse proéle of the beam. These speciéc features of the
BLB are unique and they can be used in various éelds of
optics, spectroscopy, laser physics, and for studying the
interaction of light with a matter.

In the last years, nonlinear optics of BLBs has been exten-
sively developed [5 ^ 22]. At present, many known nonlinear
optical effects, which have been earlier investigated for Gaus-

sian beams, were observed using BLBs. The self-interaction
[5], generation of the second [6 ^ 8, 19, 21] and third [9 ^11,
15] harmonics, SRS [12, 16, 17], and parametric frequency
conversion of light [13, 14, 18, 20, 22] have been investigated.
It has been shown that the main feature of the nonlinear opti-
cal frequency conversion of Bessel beams is a dominant role
of vector interactions. This feature follows from the structure
of the spectrum of spatial frequencies of the BLB, which rep-
resents, as is known, a circular cone in the wave vector space.

Despite quite extensive studies of frequency conversion of
BLBs, some important questions concerning the advantages
of BLBs and their future applications remain unclear. These
issues are especially urgent because nonlinear optical fre-
quency converters available at present, which use Gaussian
and super-Gaussian laser beams, are quite diversified, highly
efficient, and reliable.The aim of this paper is not only to gen-
eralise the results concerning the features of frequency
conversion of BLBs but also to reveal new possibilities and
prospects of nonlinear optics of Bessel beams.

2. Longitudinal phase matching
in three-frequency interaction of Bessel beams
In the case of BLBs, in contrast to Gaussian beams, not
only collinear but various vector interactions within cones
of the wave vectors of the beams can be involved in non-
linear optical processes. However, in the general case, dif-
ferent vector interactions have different eféciency. The efé-
ciency is limited by a number of factors, the érst one being
the fulélment of the condition of longitudinal phase mat-
ching.

Consider the wave detuning Dkz � k2ez ÿ k1oz ÿ k1ez (Fig.
1a) in the general case of the three-wave oe-e interaction of
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Figure 1. Geometry of the three-wave mixing of BLBs (a) and phase mat-
ching of the transverse components of the wave vectors (b). The Z-axis is
located either in the principal plane of a uniaxial crystal or in one of the
three principal planes of a biaxial crystal.



type II in a uniaxial crystal or in a principal plane of a biaxial
crystal. By expanding the longitudinal components k1o;ez and
k2ez of the wave vectors in a series over small transverse com-
ponents qm, we obtain, under the conditions of critical phase
matching, the following expression for Dkz:

Dkz � DkG � b2q2x ÿ b1q1ex ÿ
q22
2k2e
� q21o
2k1o

� q21e
2k1e

; (1)

where DkG � k2e ÿ k1oÿ k1e is the wave detuning for
Gaussian beams propagating along the BLB axis; b1 �
qk1ez=qq1ex; and b2 � qk2ez=qq2ex are birefringence angles;
q2 is the BLB conicity parameter at the double frequency.
Hereafter, we will call the transverse components qm the
BLB conicity parameters. To correctly describe the three-
wave interaction, it is necessary to introduce detuning also
for transverse components (see section 5 and Fig. 1b):

Dq � q2 ÿ q1o cosDjo ÿ q1e cosDje: (2)

In the case of SHG by Bessel beams with the same con-
icity parameters q1, expressions (1) and (2) will take the form

Dkz � DkG � b2q2x ÿ b1q1x ÿ
q22
2k2e
� q21
k1o

; (3)

Dq � q2 ÿ 2q1 cosDj. (4)

Thus, for Dj � 0 and Dq � 0 , the collinear phase matching
is realised and the relation q2 � 2q1 takes place. For Dj �
p=2 , the vector phase matching of the oppositely oriented
plane-wave BLB components (p phase matching) is realised
and q2 � 0. When 0 < Dj < p=2, a variety of types of vec-
tor phase matching is realised.

By introducing the BLB conicity angles gm by means of
the relations sin g1o;e � q1o;e=k1o;e and sin g2 � q2=k2e and
assuming these angles to be small, we obtain from (4) for
Dq � 0

Dkz � DkG ÿ k1o
�
g22 ÿ1=2�g21o � g21e�

� b1g1e cosj1x ÿ 2b2g2 cosj2x
�
: (5)

Expression (5) describes the wave detuning as a function
of azimuthal angles j1x and j2xof the plane-wave BLB com-
ponents at the fundamental frequency and the second
harmonic (Fig. 1b). These angles are not independent but
related by the expression j2x � j1x � Dje (Fig. 1b). For
the collinear phase matching, Djo � Dje � 0, and for p
phase matching, Djo � Dje � p. The ultimate detuning (5)
for collinear and p phase matching are realised when
j1;2x � 0 and 1808:

Dk�z coll � DkG � g1k1o�2b2 ÿ b1�; (6)

Dk�z vect � DkG � k1og
2
1 � k1og1b1: (7)

One can see from expressions (6) and (7) that the range of
variation of the wave detuning is determined by the aniso-
tropy angles b1;2 and also depends on the parameter DkG.

Thus, the wave detuning in an anisotropic crystal depends
on the azimuth. The azimuthal dependence of detuning
results in the general case in the violation of a cylindrical sym-

metry of the distribution of the second-harmonic intensity.
This is important first of all for the interaction of the collinear
type at which the SHG of BLBs is possible.

The coherent lengths for linear and p-vector interactions
can be calculated from the known wave detuning from the
condition Dk�z L � �p as

L�coll �
p

jDkG � g1k1o�2b2 ÿ b1�j
;

�8�

L�vect �
p

jDkG � g1k1o�g1 � b1�j
:

It follows from (8) that to achieve the maximum coherent
length in the case of collinear interaction, one should set
DkG � 0. At the same time, for the vector interaction, the
choice of the nonzero detuning DkG is optimal.

As an example, consider the numerical estimate of the
coherent lengths for SHG in a Nd:YAG laser in a KTP crys-
tal, for which b1 � 0.2028 and b2 � ë 0.2688 [23]. Assuming
the conicity angle of a BLB at the fundamental frequency out-
side the crystal to be 18, we obtain Lcoll � 5 mm for DkG � 0.
To increase the coherent length in the case of p phase match-
ing, we should set DkG � 0:4 mmÿ1. In this case, the mini-
mum length Lvect proves to be equal to� 3 mm and the mini-
mum length Lcoll is also equal to � 3 mm. Therefore, in a
KTP crystal of thickness � 3 mm, both collinear and p-inter-
actions will occur within the angular width of the longitudi-
nal phase matching. In a crystal of a greater thickness, the
axial symmetry of the interaction can be achieved, as follows
from (8), by decreasing the conicity angle g1.

The coherent length (8) also depends on the interaction
type. For the oo-e interaction in uniaxial crystals, one should
set b1 � 0 in expressions (8). In this case the p-vector inter-
action proves to be axially symmetric, whereas the col-
linear interaction will be, as before, inhomogeneous in the
azimuth. In strongly anisotropic crystals, such as BBO, for
which b2 � ÿ3:187 8 [23], the coherent length Lcoll is small,
and to increase it, the conicity parameter g1 should be decre-
ased in a proper way.

Consider now the SHG for Bessel beams propagating in
the direction of noncritical phase matching. In particular, for
uniaxial crystals, this is the direction of the 908 phase match-
ing, while for biaxial crystals ^ the direction coinciding with
crystallographic axes. As an example, consider the type I
interaction in a KNbO3 crystal having the symmetry mm2.
A BLB at the fundamental frequency polarised along the
direction X2 jj a propagates along the axis X2 jj b and excites
the second harmonic with polarisation directed along the X3-
axis (Fig. 2). At room temperature (22 8C), such phase
matching takes place near a wavelength of 982 nm, and at
181 8C, at 1.064 nm [24].

For small angles g in the vicinity of the X1-axis, the refrac-
tive indices of the fast (N�) and slow (Nÿ) waves have the
form

N��j1� � N3 � g2d13 sin
2 j1;

(9)

Nÿ�j1� � N2 � g2d12 cos
2 j1;

where d13 � N 3
3 �N ÿ23 ÿN ÿ21 �=2, and d12 � N 3

2 �N ÿ22 ÿN ÿ21 �=2;
N1;2;3 are the principal refractive indices of a KnbO3 crystal
along crystal optic axes X1, X2, and X3 (Fig. 2). Because N1
> N2 > N3, we have d12 > 0 and d13 > 0:
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The phase matching condition for the type I collinear
interaction,when the slow wave at the fundamental frequency
excites the second-harmonic fast wave, taking into account
(9), has the form

Dkz�l;j1� � DkG�l� � 2k0g
2

��d13�l� sin2 j1 ÿ d12�l� cos2 j1�; (10)

where DkG(l) � 2k0�N3(l=2)ÿN2(l)�. Expression (10) al-
lows one to determine the wave detuning for any azimuthal
angle j1 within the wave vector cone for BLBs. The type of
the azimuthal dependence Dkz strongly depends on the sign
of detuning DkG for a Gaussian beam. In the wavelength
region where DkG > 0, the maximum detuning is achieved
for j1 � p=2. For DkG < 0, the detuning is maximum at
j1 � 0:

For KNbO3 at room temperature, we have, according to
the Sellmeyer formulas [23], DkG � 0 at the wavelength l10 �
982:1 nm. In this case, for l < l10, the detuning DkG is pos-
itive, while for l > l10, it is negative. In the wavelength region
l < l10, the minimum coherence length corresponding to the
angle j1 � p=2 is Lleft � l=4jN3�l=2� ÿN2�l� � g2d13j; for
l > l10, the minimum coherence length Lright � l=4jN3�l=2�
ÿ N2�l� ÿ g2d12j corresponds to the angle j0 � 0. Fig. 3
shows the dependences of coherence lengths on l in the vicin-
ity l � l10. One can see that Lcoh rapidly decreases with in-
creasing wavelength detuning from l10. For example, the
inequality Lcoh > 3 mm takes place in the wavelength range
981:76 < l < 982:34 nm.

Therefore, in a given interval of width � 0:7 nm, the col-
linear phase matching is realised for all azimuthal angles.The
generation of an azimuthally homogeneous second-harmonic
field outside this range becomes impossible.

A similar consideration can be performed, for example,
for a LBO crystal, for which N1 < N2 < N3 in a system of
crystal optic axes X1 jj a;X2 jj c;X3 jj b. A fundamental fre-
quency BLB linearly polarised along the X3-axis and
propagating along the X2-axis will generate a second-har-
monic BLB polarised along the X1-axis. The type I phase
matching will be satisfied at room temperature at the wave-
length about 551 nm [23]. The wave detuning can be
calculated from expressions (9) and (10) by making replace-
ments N3 ! N1, N1 ! N2, and N2 ! N3.

Finally, the noncritical phase matching for Bessel beams
in uniaxial crystals is realised upon their propagation along
the direction of the 908 phase synchronism. To find the

wave detuning in this case, one should set d12 � 0, d13 �
N 3

e (N
ÿ2
e ÿN ÿ2o )=2 in (9) and (10), and to measure the angle

j1 from the optic axis direction.

3. The azimuthal width of phase matching
for collinear and vector interactions
Along with known characteristics of the SHG in Gaussian
light beams such as the angular and spectral width of phase
matching, the azimuthal width of phase matching plays an
important role in nonlinear optics of BLBs. The necessity of
introducing this SHG characteristic is explained by the fact
that the change dj in the azimuthal angle between the
interacting plane-wave BLB components (Fig. 1) results in
a change in the wave detuning Dkz(dj).

Let us calculate the azimuthal width of phase matching
for SHG.Consider first the interaction under conditions close
to the collinear phase matching. The geometrical parameters
of the problem correspond to Fig. 1 if we set Djo;e � dj and
j2x � j2. The longitudinal wave detuning and the transverse
phase matching condition can be written in the form

Dkz�j2; dj� � 2k0N�2�g2;j2� cos g2

ÿk0�Nÿ1�g1;j2 ÿ dj� �Nÿ1�g1;j2 � dj�� cos g1; (11)

2N�2�g2;j2� sin g2 ÿ �Nÿ1�g1;j2 ÿ dj�

�Nÿ1�g1;j2 � dj�� cos dj sin g1 � 0; (12)

where N�2 � N�(2o); Nÿ1 � Nÿ(o); and N� are given by
expressions (9).

The expansion of (11) and (12) in the vicinity of the azi-
muthal angle of the second harmonic j � j2 at the fixed
angle g1 gives Dkz as a function of j2 and dj in the form

Dkz�j2; dj� � Dkz�j2� � k0N2g
2
1�dj�2; (13)

g

j1 X2jja

X1jjb

X3

Figure 2. Orientation of the BLB at the fundamental frequency in a
scheme of noncritical phase matching upon the SHG.
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where Dkz(j2) is deéned by expression (10); g1 is the BLB
conicity angle outside a crystal. Expression (13) relates the
wave detuning to the average azimuthal angle j2 of each
pair of the plane-wave BLB components and the angle dj
between them. One can see that the contribution to the
wave detuning caused by the nonzero value of dj is always
positive, so that the behaviour of the total detuning in (13)
will strongly depend on the sign of Dkz(j2).

As shown above for a KNbO3 crystal, the sign of the func-
tion Dkz(j2) depends on the wavelength. For this reason,
vector interactions with dj 6� 0 will increase detuning in
the wavelength region where Dkz(j2) is positive. Therefore,
in this case, the maximum value of dj will be restricted, as
a rule, by the condition of longitudinal phase matching.
When Dkz(j2) is negative, interactions with dj 6� 0 will
decrease the detuning. In this case, the maximum value of
dj will be restricted by the condition of transverse phase
matching (see also section 5).

By setting DkzL � p in (13), we obtain the expression for
the azimuthal half-width djcoll, which corresponds to collin-
ear interactions

djcoll �
1

g1
������
N2
p

�
l1
2L
ÿ Dkz�j2�

k0

�1=2

: (14)

Expression (14) allows one to determine the maximum
angle between the plane-wave BLB components generating
the second harmonic within the angular width of phase
matching. This expression shows that vibrational phase
matching is noncritical with respect to the azimuthal angle.
In the wavelength region where the longitudinal detuning
is nonnegative, the maximum angle djcoll is realised for
Dkz � 0. The numerical estimate with parameters L � 1
cm, g1 � 28, and N2 � 2:25 gives, according to (14), djcoll
� 88.

The azimuthal half-width djvect of phase matching for the
p-vector interaction can be found in a similar way:

djvect �
1
g1

�
2l1
L

N3�2o�
N 2

2 �o�
�1=2

: (15)

One can see from expression (15) that the p-vector inte-
raction is also noncritical with respect to the azimuthal
angle. In addition, in contrast to (14), djvect is independent
of the azimuthal angle. The estimate made for the same
values of parameters gives djvect � 158. Therefore, the
spread angle of the azimuthal interaction for vector phase
matching is greater than that for scalar phase matching.

4. Temperature tuning to phase matching
in a LiNbO3 crystal
Unlike Gaussian beams, Bessel beams possess a property of
self-tuning to phase synchronism. The self-tuning can be
realised by using the dependence of the wave detuning on
the azimuthal angle between pairs of the interacting plane-
wave BLB components, which was considered above.
Therefore, the wave detuning can be compensated by
changing the geometry of the vector interaction.

The self-tuning was earlier studied for the third harmonic
generation in gas media [9]. In crystals, this effect can be
observed upon SHG in the geometry when the BLB axis coin-
cides with the direction of noncritical phase matching. In this
case, it is necessary to change birefringence of a crystal by

applying some external fields. Consider, for example, the tem-
perature self-tuning in a uniaxial lithium niobate crystal when
the BLB axis coincides with the direction of the 908 phase
matching.

The conditions of the longitudinal and transverse phase
matching for SHG have the form

no1 cos g1 � n2�g2� cos g2;
(16)

no1 sin g1 cosj � n2�g2� sin g2:

Taking into account that for small conicity angles g1 and
g2, the refractive index for the extraordinary wave is n2(g2) �
ne2 � dg22 cos

2 j, where d � n3e2(n
ÿ2
e2 ÿ nÿ2o2 )=2, equations (16)

take the form

cos2 j � n2e2 ÿ n2o1 cos2 g1
n2o1 sin2 g1

; cos g2 �
no1
ne2

cos g1. (17)

It follows from (17) that at the temperature T1, when
ne2(T1)=no1(T1) � cos g1, we have j � 908, i.e., the p-vector
phase matching is realised upon SHG. At the temperature
T2, when ne2(T2�=no1(T2) � 1, we have j � 0 and the collin-
ear interaction is realised. Therefore, as the temperature
varies in the range from T1 to T2, a variety of vector interac-
tions is realised, i.e., the self-tuning to phase matching occurs.

The self-tuning to phase matching was experimentally
realised for frequency doubling of a 1.064-mm Nd:YAG laser
in a LiNbO3 crystal of length 2 cm. A BLB at the fundamen-
tal frequency had the conicity angle in air equal to 2.58. As the
crystal temperature was varied, the interaction changed from
the p-vector interaction at t1 � 60 8C to the collinear inter-
action at t2 � 67 8C. The second-harmonic field in the far-
field zone at temperature t2 represented an axial beam of
the Gaussian type.

As the temperature was decreased, along with the axial
beam a BLB was generated, which produced a circular inten-
sity distribution in the far-field zone. The ring radius
increased with decreasing temperature and became maximal
at the temperature t � t1. In this case, the intensity of the cen-
tral maximum decreased to zero,whereas the total conversion
efficiency during the temperature tuning remained approxi-
mately constant. In accordance with the calculation by
formulas (17) using the Sellmeyer formulas [23], all types
of the interactions, from collinear to p-vector, were realised
within the temperature interval from 60 to 67 8C.

5. Transverse phase matching in SHG
by Bessel beams
We assumed above by considering the longitudinal phase
matching that the so-called transverse phase matching is
simultaneously realised [20 ë 22], when the mismatch of the
transverse components of the wave vectors is zero. In the
general case, there exists a énite transverse mismatch, which
should be taken into account in the description of the
interaction of BLBs. This is theoretically explained by the
non-orthogonality of Bessel functions J0(qr) with different
values of the parameter q at a énite interval.

The physical possibility of the interaction between BLBs
when the transverse components of the wave vectors are not
conserved is explained by the fact that these components are
not coupled to the BLB momentum. Unlike the longitudinal
phase matching, the transverse phase matching is independ-
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ent of the crystal length and anisotropy and is determined
only by the transverse size and the conicity angles of BLBs.
The transverse phase matching is formally manifested in the
dependence of the overlap integrals on the ratio of the con-
icity parameters of BLBs involved in the nonlinear process.

Fig. 4 shows the typical dependences of the overlap inte-
gral for SHG on the conicity parameter q2 of the second
harmonic for different numbersMr of rings in the fundamen-
tal frequency BLB.One can see that the overlap integrals have
two maxima whose location does not depend on the number
of rings for large Mr (Mr 5 10). One of the maxima corre-
sponds to q2 � 2q1, and the second, to q2 � 0. As Mr
decreases, both these maxima approach each other and at
Mr � 1 merge into one maximum at q2 � 1:2q1. This limiting
case with one central maximum corresponds approximately
to the interaction of Gaussian beams.

By using plots of the overlap integrals versus the number
of rings,we calculated the width dq2 of the function g

2(q2;Mr)
for different values of Mr. The width dq2 proved to be virtu-
ally independent of Mr. The FWHM is described by the
expression dq2 � p=RB (where RB is the BLB radius). This
corresponds to the azimuthal angle

djt�Mr� �Mÿ1=2
r : (18)

Expression (18) is the azimuthal half-width of transverse
phase matching, which is analogous to the half-width (14) of
longitudinal phase matching introduced above. Let us com-
pare the longitudinal (djlong) and transverse (djt) mis-
matches for specific parameters of the SHG scheme. Fig. 5
shows the dependences djlong and djt on the number of rings
in the fundamental frequency BLB. We assume that Dkz(j0)
in (14) is zero and take into account the relation g1 �Mrp=RB
between the conicity angle and the number of BLB rings.

One can see that the number of possible channels of vector
interactions for a small-diameter BLB under typical experi-
mental conditions is restricted because of the longitudinal
mismatch. As the diameter and the number of rings of the

BLB are increased, the number of channels of vector interac-
tions is restricted by the transverse mismatch. It is also
important to note that the azimuthal width of phase matching
for the BLB with a sufficiently great number of rings
decreases and the inequality djt 5p can be achieved. In
this case, the regime of vector interactions approaches the
azimuthally matched regime [20, 22].

6. Theoretical model of three-wave mixing
of BLBs
An increase in the role of vector interactions in nonlinear
optics of BLBs is caused by the conical structure of their
spatial frequency spectrum. It is important to note that the
structure of the spatial spectrum in Bessel beams is optimal
and is far simpler than that in Gaussian beams. This opens
up new possibilities for the theoretical analysis of interac-
tions of BLBs and for controlling the regime of their non-
linear interaction. In particular, an analytically solvable
model of the three-wave mixing can be constructed, which
will explain its basic features for low and medium conver-
sion eféciencies. Consider this question in more detail for
SHG of the oe ë e type.

Let us represent the field strength at the fundamental fre-
quency inside a crystal in the form

E1o;e�r; z� � A1o;e�z�j0�q1r� exp�ik1oz;ezz�; (19)

where q1 � k0g; k1oz;ez � k1o;e ÿ q21=2k1o;e, and

j0�q1r� �
J0�q1r����

p
p

RBjJ1�q1RB�j
for r < RB,

(20)

j0�q1r� � 0 for r5RB

is the normalised Bessel function, so that the integral over
the beam cross section is

2p
�RB

0
j20�q1r�rdr � 1:

g2�q2�
�
107mÿ2

b

a2

1

3

0 0.5 1.0 1.5 q2=q1
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g2�q2�
�
106mÿ2

0

Figure 4. Dependences of the square of the overlap integral on the conicity
parameter for the second harmonic forRB � 40 (a) and 200 mm (b) and the
number of ringsMr � 2 (a) and 20 (b).
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Figure 5. Dependences of the azimuthal phase matching width caused by
the transverse (djt) (1 ) and longitudinal (djlong) (2 ) detuning on the
number of rings of the BLB at the fundamental frequency for RB � 40 (a)
and 200 mm (b). The crystal thickness L � 5 mm.
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Therefore, the fundamental radiation éeld in a nonlinear
crystal is assumed to be localised within a cylindrical region
of radius RB. Hence, upon mixing of the BLBs at the
fundamental frequency, the oe! e interaction results in the
formation of the longitudinally homogeneous éeld at
frequency 2o with nonlinear polarisation and the transverse
proéle � J 2

0 (q1r).
Expression (19) for the fundamental frequency field is

valid if a change in its transverse structure during nonlinear
conversion can be neglected. The conversion efficiency and
the azimuthal width of phase matching caused both by the
longitudinal and transverse mismatch play a decisive role
in this case. If the azimuthal width of phase matching
dj0 5 p, the regime of azimuthally matched interactions is
realised and distortions of the transverse structure of the
BLBs are minimal even for the high conversion efficiency.
In the case of a large azimuthal width (broadband interac-
tions), a variety of vector interactions occur in the crystal,
whose competition results in the distortion of the fundamen-
tal frequency field profile and in an increase in the efficiency
of nonlinear process. Therefore, expression (19) is valid for
azimuthally matched interactions and also for the interac-
tions that are broadband over the azimuthal angle for low
conversion efficiencies.

Let us represent the second-harmonic field amplitude as
the Fourier ^ Bessel series

E2�r; z� �
XM
m�1

A2mj0�q2mr� exp�ik2mzz� , (21)

where q2mRB � (mÿ 0:25)p are zeroes of the Bessel fun-
ction; k2mz � k2 ÿ q22m=2k2. Therefore, expression (21) rep-
resents the expansion over the modes of a cylindrical region
of radius RB.

Using expressions (19) and (21), we obtain the following
truncated equations for complex amplitudes A1o and A1e at
the fundamental frequency and the second harmonic ampli-
tude A2m

dA1o

dz
� is1oA

�
1e

XM
m�1

gmA2m exp�iDkzmz�;

dA1e

dz
� is1eA

�
1o

XM
m�1

gmA2m exp�iDkzmz�; (22)

dA2

dz
� is2gmA1oA1e exp�ÿiDkzmz�;

where s1o;e � 4p2deff=ln1o;e; s2 � 8p2deff=ln2 are coefécients
of nonlinear coupling; n1o;e and n2 are the refractive indices
at frequencies o and 2o; deff is the effective quadratic
nonlinearity; and Dkzm � k2mz ÿ k1oz ÿ k1ez are the wave
detuning. The overlap integrals of the interacting éelds are
described by the expression

gm � 2p
�RB

0
j20�q1r�j0�q2mr�rdr �m � 1; 2; :::;M�: (23)

It follows from (22) that the introduction of the normalised
Bessel functions allows one to describe the generation of
harmonics and subharmonics by the same overlap integrals.

Equations (22) take into account the presence of phase
mismatches, which depend on the mode number m. In the

general form, this system can be investigated only numeri-
cally, which is of no interest. More interesting are the
following particular cases, in which the specific features of
BLBs are manifested:

(1) The interaction is azimuthally matched, so that only a
single conversion channel m0 can be taken into account. In
this case, the overlap integral (23) has a sharp maximum
at m � m0, and only one term should be retained in the
right-hand side of equations (22), which reduces these equa-
tions to the form used in the plane-wave approximation. It is
known that the corresponding system can be solved exactly
for an arbitrary conversion coefficient.

(2) The interaction is broadband over the azimuthal angle
and the wave detuning Dkzm are approximately the same. In
this case, the system of equations (22) is solved in the specified
intensity approximation [19]. Assuming jA1oj2 � jA1ej2 �
jA1j2=2, we obtain the following equations for the partial
amplitudes a2m � A2m exp (iDkzz)

d2a2m
dz2

ÿ iDkz
da2m
dz
� ÿs1s2gmjA1j2

XM
s�1

gsa2s

�m � 1; 2; :::;M�; (24)

where s10 � s1e � s1.
By multiplying each of the equations (24) by gm and sum-

ming their left- and right-hand sides, we obtain the following
differential equation for the function B(z) � PM

m�1 gma2m:

d2B�z�
dz2

ÿ iDkz
dB
dz
� K 2B�z� � 0; (25)

where the parameter K is determined by the sum over all
generated modes of squares of the overlap integrals:

K �
��

Dkz
2

�2

� s1s2jA1j2
XM
m�1

g2m

�1=2
: (26)

The solution of equation (25), taking into account the
boundary conditions A2m(0) � 0 has the form B(z) �
B0 sin (Kz). By substituting B�z� into (24) and determining
the constant B0 from (22) we obtain

A2m �
4pis2P1gm exp�ÿiDkzz=2�

cn1K
sin�KL�; (27)

where L is the crystal thickness and P1 � cn1jA1j2=8p is the
fundamental frequency éeld power.

By using (27) and expression P2 � cn2
P

m jA2mj2
�
8p the

second harmonic power, we obtain the total SHG efficiency

Z � P2

P1
� P1

2P0

XM
m�1

g2m
sin2�KL�

K 2 ; (28)

where

K �
��

Dkz
2

�2
� P1

P0

XM
m�1

g2m

�1=2
;

P0 �
cn21n2l

2

128p5d2
eff

is the effective parameter having the dimensionality of
power.
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One can see from (28) that the SHG efficiency is substan-
tially determined by the overlap integral gm of the partial
BLBs with the pump beam and by the total number M of
the generated modes.

7. Experiment

7.1. SHG in Bessel beams

To study vector interactions of Bessel beams, experiments
were performed on SHG in a KTP crystal in the oe! e
interaction regime [19]. A crystal of thickness L � 3 mm
was oriented in the XY plane at the angle j � 238 to the X-
axis in the direction of the type II collinear synchronism for
Gaussian beams. A scheme of the experimental setup is
shown in Fig. 6. Radiation from a 1.064-mm Nd:YAG laser
passed through a diaphragm of diameter D � 4 mm and
represented a super-Gaussian beam with a divergence of
y4 0:8 mrad, a pulse duration of 5 ns, and an energy of
4 mJ.

The spatial and energy characteristics of the second har-
monic radiation were studied. It was found that the spatial
profile of the second harmonic strongly depends on the ori-
entation of the fundamental radiation BLB axis with
respect to the phase matching direction. When the beam
axis coincided with the phase matching direction, the inten-
sity distribution of Gaussian beams was axially symmetric.
The spatial structure of the radiation field in the far-field
zone exhibited a central maximum and a concentric ring
(Fig. 7), the ring radius being coincident with the radius of
the ring for radiation at the fundamental frequency. Upon
deviation of the BLB axis by the angle Dj, the axial symmetry
of the second harmonic field was destroyed; and when the
value of Dj was sufficiently large, SHG was observed only
in the axial beam.

The measurements of the divergence of the axial beam
revealed its dependence on the longitudinal coordinate. In
the central zone, i.e., for 6 cm< z < 10 cm, the divergence
was approximately 1.7 mrad. Near the axicon and also
near the BLB focus, the divergence increased up to 2.5 ^
3 mrad.

The energy parameters of the second harmonic radiation
were measured for a super-Gaussian beam at the fundamen-
tal frequency with a fluence of 25 MW cmÿ2. The total
conversion efficiency nonmonotonically depends on the lon-
gitudinal coordinate and its maximum value is � 21%
(Fig. 8). The efficiency of conversion to the axial beam sim-
ilarly depends on the longitudinal coordinate. In the absence
of an axicon, the conversion efficiency for a super-Gaussian
beam was � 7% for the same intensity of the fundamental
radiation. Note that a relatively low conversion intensity
for a super-Gaussian beam is explained by the fact that its
focusing to a crystal is not optimal.

The experimental results well agree with the above theo-
retical model of SHG and with the calculations of lon-
gitudinal and transverse phase matching for BLBs. As follows
from sections 2 and 5, the channels of vector interactions can
be limited both by the longitudinal and transverse mismatch
of the fields.

In the experiment discussed, a super-Gaussian beam was
converted to a BLB using an axicon made of a glass with the
refractive index n � 1:5. The angle at the axicon base was
a � 28. Therefore, the conicity angle of the BLBs being
formed was equal to 18, whereas the angular width of the lon-
gitudinal phase matching for the oe! e interaction in a KTP
crystal was � 28. Thus, the possible vector interactions in the
crystal were mainly restricted by the transverse phase match-
ing conditions.

To specify these conditions, note that a BLB was formed
behind the axicon in the interval 0 < z < zf , where zf �
2RB=g is the focal length of the BLB of radius RB. In experi-
ments, the focal length of both BLBs at the fundamental freq-
uency was � 12 cm. The radius of the beams at the distance
equal to a half the focal length was approximately 1 mm and
the number of rings in the beam was Mr � 33. The overlap
integral for these parameters of the beams has a characteris-
tic form (Fig. 4b) with two narrow maxima located at
q2 � 2q1 and q2 � 0.

By comparing these values of q2 with the conicity param-
eters q2m � 2q1 cos (jm=2) (where jm is the azimuthal angle

1

2 3 4 5

o

2o
6

a

Figure 6. Scheme of the experimental setup: (1 ) Nd:YAG laser; (2 ) diaph-
ragm; (3 ) axicon; (4 ) KTP crystal; (5 ) spectral beamsplitter; (6 ) power
meter.

Figure 7. Spatial structure of the second-harmonic field in the far-field
zone upon mixing of two Bessel beams.
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Figure 8. Dependences of the total SHG efficiency (1 ) and the efficiency
of conversion to the axial beam (2 ) on the distance from an axicon.
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between the transverse projections of the wave vectors of
BLBs), we found that the circular field and the axial beam
observed in the experiment are caused by p-vector and collin-
ear interactions, respectively. In reality, along with these
interactions, the interactions adjacent to them (within the
width of the maxima of the overlap integral) are also realised.

Thus, the spatial structure of the second-harmonic field is
determined by the dependence of the overlap integrals on the
mode index m or the conicity parameter q2m of the BLB at the
double frequency, which depends on the mode parameter. It
follows from expression (18) that the azimuthal width of
phase matching is djt � 108. Therefore, a few (� 2ÿ 4) sec-
ond harmonic modes can be generated within each maximum
of the overlap integrals.

The SHG efficiency can be calculated from expression
(28). For the KTP crystal cut under study, deff� d15 sin

2jpm
� d24 cos

2 jpm and, according to [23], d15 � 1:9 pm Vÿ1 and
d24 � 3:4 pm Vÿ1. By substituting the values of n1 and n2
from [23] and the fundamental harmonic BLB parameters
P1 � 8�105 W and RB � 1 mm into (28), we obtain Z � 0:19,
in good agreement with the experimental value Zexp � 0:21.

Using expressions (27) for the partial amplitudes A2m, we
can calculate the transverse profile E2(r) of the second-har-
monic field:

E2�r� �
X
m

A2m j0�q2mr�: (29)

The transverse distribution of the second-harmonic inten-
sity at the crystal output, which was calculated by formula
(29), represents the interference structure with a narrow
central maximum and a few weak side maxima [19]. This
spatial structure of the éeld is also established inside the
crystal at a small distance from its input face.

Therefore, upon SHG in partial Bessel beams, the inter-
ference spatial redistribution of the second-harmonic inten-
sity takes place. Namely, a predominantly destructive inter-
ference is realised at the beam periphery, whereas at the
beam centre, the constructive interference occurs.

In other words, the second-harmonic intensity is trans-
ferred efficiently from the beam periphery to its centre. It
is interesting that a similar result can be obtained by assum-
ing that SHG takes place predominantly at the central part of
the BLB, where the field intensity is maximal. In this case, the
depletion of the field energy at the beam centre can be com-
pensated by its supply from the BLP periphery, similarly to
the known linear effect of the reconstruction of the transverse
profile of a BLB behind an opaque screen.

7.2. SHG upon mixing of Bessel and Gaussian light beams

Along with SHG by purely Bessel beams, of interest is the
study of the interaction between Bessel and Gaussian
beams. To elucidate the properties of such interaction, we
studied SHG for a neodymium laser in a KTP crystal of
thickness 3 mm. A comparative analysis of SHG of the type
II was performed for three variants (channels) of mixing of
the fundamental frequency beams: (1) two Bessel beams, (2)
Bessel beam and Gaussian beam, and (3) the general case of
the interaction of Bessel and Gaussian beams of both
polarisations.

Because the crystal thickness was small, the longitudinal
phase matching took place both for collinear and vector inter-
actions. The BLB pulse energy WB � 10:8 mJ was fixed,
whereas the Gaussian beam pulse energy WG was varied
between � 2:6 and 27 mJ. The study of the dependence of

the conversion efficiency Z2o on the total radiation energy
at the fundamental frequency showed that the SHG efficiency
for the oG1 � eG1 ! eG2 interaction proved to be higher than for
the mixing of Gaussian and Bessel beams. At the same time,
for the oB1 � eB1 ! eB2 interaction for the above-mentioned
energy of BLBs, the SHG efficiency ZB2o � 12%, which is
higher than the conversion efficiency ZG2o � 9 for the Gaus-
sian beam of the same energy.

Fig. 9 shows the transverse intensity distribution in the
far-field zone for the second interaction channel. The sin-
gle-ring structure of the second-harmonic field suggests
that the noncollinear phase matching takes place upon
SHG. The phase matching of this type is realised upon the
interaction of the plane-wave components of a Gaussian
beam, which are localised near its axis, with all Fourier com-
ponents of a cone of the wave vectors of the BLBs.
Comparison of Figs 9 and 7 shows that the radius of the cir-
cular field for the second interaction channel is two times
smaller than that for the first channel. This means that the
conicity angle of the second-harmonic radiation upon mixing
of Bessel and Gaussian beams is two times smaller than the
conicity angle of the BLB at the fundamental frequency. This
result completely agrees with the calculation of the transverse
phase matching condition for the interaction channels under
study.

Fig. 10 shows the dependence of the integral of overlap of
Bessel and Gaussian beams on the ratio q2=q1 of the conicity
parameters. The calculation was performed in accordance
with experimental conditions for a BLB of radius 1.7 mm
and the conicity angle of 0.28 and a Gaussian beam of radius
1.2 mm. The study showed that the maximum overlap inte-
gral is realised for the second-harmonic BLB of radius
� 1 mm. One can see from Fig. 10 that the transverse spatial
matching is realised at q2 � q1.

Figure 9. Far-field spatial structure of the second harmonic generated
upon mixing of Bessel and Gaussian beams.
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Figure 10. Square of the overlap integral of Bessel and Gaussian beams as
a function of the conicity parameter of the second-harmonic BLB.
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Note also that the angular width of the transverse match-
ing for the interaction in the second channel is greater than in
the first channel.This results in an increase in the width of the
circular field in the far-field zone upon mixing of Bessel and
Gaussian beams. As the radius of the Gaussian beam
decreases, the number Mr of rings of the BLB that overlap
with the Gaussian beam also decreases. In this case, the struc-
ture of the overlap integral is conserved down to Mr � 2,
however, the width of the maximum increases. This results
in the increase in the width of the second-harmonic circular
field. In the limiting case of the overlap of the Gaussian beam
with one central maximum of the BLB, the circular structure
of the second-harmonic field disappears and the generation of
the axial beam of the Gaussian type takes place.

Therefore, to produce vector interactions upon SHG by
Bessel and Gaussian beams, the longitudinal and transverse
phase matching should simultaneously take place. This con-
clusion is followed from the above theoretical treatment and
is confirmed experimentally.

We also studied the general case of SHG by exciting Bes-
sel andGaussian beams of both polarisations in a crystal.The
transverse distribution of the second-harmonic intensity rep-
resented in the general case two rings, which corresponded to
two types of transverse phase matching for the oG1 �
eB1 ! eB2 ; o

B
1 � eG1 ! eB2 and oB1 � eB1 ! eB2 interactions, and

a central maximum related to the oG1 � eG1 ! eG2 and oB1�
eB1 ! eG2 processes. An interesting feature of this SHG regime
is the possibility of the interference of nonlinear processes for
the oG1 � eB1 ! eB2 and oB1 � eG1 ! eB2 interactions. In particu-
lar, we observed the interference quenching of the second-
harmonic radiation when the directions of polarisation of
the beams made an angle 458 with the XY plane of the
KTP crystal.

8. Generation of the sum frequency
by Bessel light beams
The sum frequency generation (SFG) by Bessel beams was
observed in an Y -cut KTP crystal [26]. The sum frequency
was generated due to the oe ë o interaction upon the
addition of a BLB from a Nd:YAG laser (l1 � 1064 nm)
polarised along the X -axis and a BLB from a Ti:sapphire
laser (l2 � 808ÿ 830 nm) polarised along the Z-axis. Upon
mixing of the two BLBs, the generation of blue emission at
the sum frequency polarised along the X -axis was observed.

A scheme of the experimental setup is similar to that
shown in Fig. 6. An acousto-optically Q-switched Nd:YaG
laser emitted 120-ns light pulses simultaneously at l1 �
1064 nm and at the second harmonic. The output power
was 100 mW at both wavelengths and the pulse repetition
rate was 1 ^ 3 kHz.

The green emission from a neodymium laser was used
to pump a Ti:sapphire laser, which emitted 5-mW pulses tu-
nable in the wavelength region l2 � 808ÿ 830 nm. Gaussian
beams at frequencies o1 ando2 were focused with a spherical
lens in such a way that their diameters in the input plane of an
axicon were approximately 200 mm.

The axicon with the refractive index n � 1:5 and the angle
at the base a � 58 transformed Gaussian beams to Bessel
beams. A KTP crystal of size 3� 3� 5 mm was placed at
a distance of 0.5 mm from the axicon. When the axicon
was absent, the sum frequency was generated in an Y -cut
KTP crystal under the conditions noncritical phase matching
for the wavelengths 1064 and 808 nm [27]. The dependence of

the conversion efficiency on the wavelength l2 is compared in
Fig. 11 with the efficiency of SFG by Gaussian beams (in the
absence of the axicon).

The spatial structure of the beams was analysed in the
focal plane of the lens using a CCD camera placed 60 mm
behind the axicon. Figs 12 a ^ c show the Fourier spectra
of the BLB from a Nd:YaG laser and Ti:sapphire laser,
and of the emission at the sum frequency, respectively. The
circular intensity distribution suggests that the beams have
the Bessel structure, a small ellipticity being caused by the
anisotropy of a KTP crystal in the XZ plane. It should be
emphasised that the radius of the emission ring at the fre-
quency o3 coincides with radii of rings at frequencies o1
and o2. By tuning the wavelength of a Ti:sapphire laser,
we obtained the maximum SFG efficiency at l2 � 808:5 nm.

The theoretical description of SFG can be conveniently
performed by representing the sum frequency field as a super-
position of the fields of mode Bessel beams. Then, the field
strengths of two BLBs with frequencies o1 and o2 propaga-
ting along the Y -axis and polarised along the X - and Z-axes
have the form [see also (19)]

E1;2�r; y� � A1;2�y�j0�q1;2r� exp�ik1;2yy�: (30)

The mixing of differently polarised BLBs due to the type II
oe ë o interaction in a crystal results in the formation of a
cylindrically symmetric éeld of nonlinear polarisation at the
frequency o3 with the radius RB equal to the radii of BLBs
at frequencies o1 and o2.

Let us represent the sum frequency field E3(r; y) as the
expansion in the modes of the cylindrical region of radius RB:

E3�r; y� �
XM
m�1

A3m�y�j0�q3mr� exp�ik3myy�; (31)

where q3m � (mÿ 0:25)p=RB. By using (30) and (31), we
can obtain the truncated equations for complex amplitudes
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Figure 11. Dependences of the sum frequency intensity on the wavelength
of aTi:sapphire laser upon mixing of Gaussian (1 ) and Bessel (2 ) beams.

a b c

Figure 12. Spatial Fourier spectra of light beams at the wavelengths 1064
(a) and 808.5 nm (b) and of the sum frequency radiation (c).
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A1,A2, and A3m, which are similar to (22), with the overlap
integral

gm � 2p
�RB

0
j0�q1r�j0�q2r�j0�q3mr�rdr: (32)

The conversion efficiency Z3 � P3=(P1P2)
1=2 (where P1;2

is the power of the interacting waves), in the specified inten-
sity approximation and for the same wave detunings
Dkmy � Dky , is described by the expression

Z3 �
�P1P2�1=2

P0

XM
m�1

g2m
sin2�KL�

K 2 ; (33)

where

K �
��

Dky
2

�2

�
�
l3P1

l2P0
� l3P2

l1P0

�XM
m�1

g2m

�1=2
:

As in the case of SHG, the sum frequency radiation is gen-
erated in the general case simultaneously in many channels.
However, the actual efficiency of conversion to different
channels is different because the corresponding overlap inte-
grals and wave detunings are different. We calculated the
overlap integrals by formula (32) using not rigorous mathe-
matical Bessel functions but the amplitude-phase distribu-
tions of the fields at the fundamental frequencies behind the
axicon, which were preliminary calculated with the scheme
parameters corresponding to the given experiment.

Fig. 13 shows typical field intensity distributions at two
distances from the axicon. One can see that because of the
sharp focusing of the field, the Bessel beams contain a small
number of rings. Fig. 14 shows the dependences of the
squares of overlap integrals for the wavelengths l1 � 1064
nm and l2 � 808:5 nm on the mode index of the sum freq-
uency BLB. In both these cases, the overlap integrals have
two maxima. The width of the maxima is approximately
equal to three mode indices lying in the regions m � 3ÿ 5
and 20 ^ 22. Therefore, two groups of the modes with these
mode indices make the dominant contribution to the SFG.

To determine the physical nature of the maxima, we con-
sider the phase matching conditions for transverse com-
ponents of the wave vectors (see also Fig. 1b)

q1 cos�Dj1� � q2 cos�Dj2� � q3m; (34)

q1 sin�Dj1� ÿ q2 sin�Dj2� � 0:

If the azimuthal angles Dj1;2 � 0, then we énd from (34)
that mcoll � �q1 � q2�RB=p, while for Dj1 � Dj2 � p, we

have mvect � �q1 ÿ q2�RB=p. By substituting parameters q1;2
and RB into these formulas, we obtain that mcoll � 21 and
mvect � 3, in good agreement with the position of the maxi-
ma of overlap integrals (Fig. 14). This means that the érst
group of sum frequency modes is generated due to the inte-
ractions that are close to the p-vector interactions, while the
second group of modes is generated due to almost collinear
interactions. The behaviour of the overlap integrals des-
cribed above is virtually the same over the entire range of
the wavelengths l2.

The efficient SFG is possible only when both the trans-
verse and longitudinal phase matching take place. If the
longitudinal phase matching is satisfied for both groups of
modes, then the radiation at the fixed sum frequency will rep-
resent two BLBs with different conicity angles. In this case,
the intensity distribution in the far-field zone will represent
two rings. The ring of a larger diameter is caused by collinear
interactions, while the ring of a smaller diameter is caused by
p-vector interactions.

Using the Sellmeyer equations for a KTP crystal, we can
show that, for the axicon with the angle equal to 58, the lon-
gitudinal wave detuning for collinear interactions vanishes at
l2 � 809 nm. This result exactly corresponds to the genera-
tion of a circular beam due to collinear interactions, which
was observed in the experiment (Fig. 12). In this case, the
conicity angle of the beam coincides with the conicity angles
of BLBs at fundamental frequencies. A small width of the cir-
cular field of the Fourier spectrum means that the sum
frequency radiation can be sufficiently accurately approxi-
mated by a single-mode BLB.

The wavelength of the longitudinal phase matching for p-
vector interactions proves to be equal to 825 nm. However,
unlike collinear interactions, vector interactions have not
been observed in our experiments. To understand the reason
for the absence of the second ring, we studied the structures
of the field and the overlap integral behind the axicon
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Figure 13. Distributions of the field intensity 1 (a) and 6 mm (b) behind an
axicon.
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Figure 14. Dependences of the square of modulus of the overlap integral
on the mode conicity index of the BLB at the sum frequency for distances
2 (a) and 3.5 mm (b) from an axiconwithRB � 90 mm, g � 2:58, l1 � 1:06,
mm, l2 � 0:8085 mm.
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(Fig. 14). One can see from the comparision Figs 14a and 14b
that the maximum of the overlap integral corresponding to
the p-vector interaction decreases upon moving away from
the axicon.

In addition, at the distance z > zf=2, from the axicon
(where zf � 3 mm), the region occupied by the BLB de-
creases, whereas the region occupied by a diverging conical
beam correspondingly increases. Note that collinear interac-
tions continue within the conical beam, whereas p-vector
interactions cannot occur. For this reason, vector interactions
are suppressed in our experiments. It follows from the above
discussion that the contribution from vector interactions will
increase with increasing focal length of the BLB. This is
achieved by decreasing the refraction angle of the axicon
and also by decreasing the degree of focusing of the incident
beams.

The conical structure of the spatial frequency spectrum of
BLBs facilitates their application for conversion of multifre-
quency laser radiation. For this purpose, the relation between
the wavelength of the longitudinal phase matching and the
conicity angle is used. In the case of collinear phase matching,
this relation has the form

sin2 g � �N ÿ2y �l2� ÿN ÿ2z �l2��ÿ1

] ��l21l23�l1l2Nx�l3� ÿ l2l3Nx�l1��ÿ2 ÿN ÿ2z �l2�
	

(35)

and is plotted in Fig. 15. One can see that the wavelength of
collinear phase matching monotonically increases with
increasing conicity angle of the BLB. Because the conicity
angle can be changed using a simple optical scheme, this
method for generating the tunable sum frequency radiation
is of practical interest.

The SFG can be also obtained by mixing the beams with a
spatial Fourier spectrum consisting of several cones (N-cone
BLBs). The N-cone BLBs can be produced by using a simple
scheme consisting of several axicons in series with different
apex angles. One of the axicons should have a relatively large
angle a0, while the other axicons should have small angles
Da, 2Da, : : : , NDa. The axicons are separated by half focus
lengths. One can easily verify that each subsequent axicon
will double the number of cones of the spatial frequency spec-
trum of the field produced by a preceding axicon. Therefore,
the output field will be a 2N-cone BLB.

Let us illustrate the application of the multicone BLB for
the case when one of the fields is quasi-monochromatic at the
frequencyo1, while the other field is multimode with frequen-
cies lying in the interval o02 ÿ o002. We assume that BLBs at
these frequencies are formed in such a way that the quasi-
monochromatic beam is multicone, whereas the broadband

beam is single-cone. As the conicity angle of one of the beams
changes, the frequency at which the longitudinal phase mat-
ching is realised also changes. This means that each of the N
BLBs at the frequency o1 will interact with the multimode
BLB within some spectral range Do, which is determined
by the widths of the longitudinal and transverse phase mat-
ching.

As a whole, a set of N beams will cover the spectral range
of width�NDo. This method will be efficient if the spectrum
of one of the fields is discrete and the number N is relatively
small, because the splitting of the initial beam results in the
N-fold decrease in the power of partial BLBs at the frequency
o1. This means that the method of splitting of the broadband
beam into N Bessel beams with different frequencies is more
efficient than the method of splitting of quasi-monochro-
matic beam. However, this method requires the use of a
comparatively complex device of the axicon type with the
wavelength-dependent refraction angle.

Note that we have observed this effect in the experiments
on mixing of the beams from a neodymium laser and aTi:sap-
phire laser when the input face of a KTP crystal was located
near the axicon focus [26]. In this case, the transverse dimen-
sions of the overlap of the fields are small, and Bessel beams
contain 2 ^ 3 rings. The Fourier spectrum of such beams
exhibits additional rings and a central maximum, i.e., the
beams can be classified as multicone beams. Correspond-
ingly, the sum frequency field was also multicone, with the
frequency shift on passing from one cone to another.

9. Azimuthally correlated BLBs
We studied above theoretically and experimentally the SHG
and SFG by Bessel beams. The main attention was paid to
the properties of nonlinear conversion caused by various
vector interactions that are speciéc for BLBs. Another very
important problem concerning the nonlinear optics of BLBs
is the eféciency of nonlinear frequency conversion of these
beams and its comparison with the frequency conversion
eféciency for Gaussian beams.

It seems that the study of this problem using conventional
approaches, i.e.,without the nontrivial use of the BLB specific
properties, will not allow one find the regimes of nonlinear
frequency conversion of BLBs whose efficiency would be
higher than that for the Gaussian beams. The exception is
the case of small conversion efficiencies (the linear SHG
regime) for which it was established that the use of BLBs pro-
vides the efficiency that is 50% higher compared to Gaussian
beams [8, 29].

To analyse the general case of an arbitrary SHG effi-
ciency, we compare the overlap integrals for beams of both
types.We will describe the Gaussian field strength by the nor-
malised function

EG�r;w� �
exp�ÿr2=2w2����

p
p

w
:

Then, the overlap integral for the SHG has the form

gG�w2� �
2w2

w2
1 � 2w2

2
:

For w2 � w1=
���
2
p

, the function gG�w2� takes the maxi-
mum value equal to 1=

���
2
p

w1. For the beam of radius 50
mm, we obtain gG � 1:4� 104 mÿ1. To obtain the maximum

g
�
8

8
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4

2

0
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�
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Figure 15. Dependence of the BLB conicity angle corresponding to the
collinear phase matching on the wavelength of aTi:sapphire laser.
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value of the overlap integral in the case of BLBs, one should
use the beams with a small number of rings. In this case, the
minimum number of the BLB rings at which the Fourier spec-
trum retains its circular structure is equal to two. In this case,
it is possible to obtain the value of gB � (0:3ÿ 0:4)gG by
choosing the appropriate radius of the beam.

Therefore, the optimal focusing of Gaussian beams allows
one to obtain the greater value of the overlap integral com-
pared to that obtained upon focusing of BLBs. In this
sense, the nonlinear optical efficiency of Gaussian beams is
higher than that of BLBs, which is also confirmed by the
numerical calculations performed in Ref. [29]. Comparison
of the SHG efficiencies based on the analysis of the overlap
integrals is correct when these integrals do not change be-
cause of nonlinear amplitude-phase distortions of the trans-
verse profiles of the beams.

There is reason to assume that BLBs are the most stable
namely to nonlinear distortions.This is explained by the non-
locality of frequency conversion of BLBs, which is manifested
in the dependence of the nonlinear optical process on the spa-
tial Fourier components of the BLB rather than on the local
intensities, as in the case of Gaussian beams. In this case, the
predominantly nonlocal SHG of Bessel beams will occur with
decreasing azimuthal width of the phase matching.

As follows from the results presented in previous sections,
in the case of the BLB, the azimuthal width can be obtained at
which the fields generated within a crystal are single-mode.
The single-mode condition is more easily satisfied in various
intracavity schemes. The generation of single-mode BLBs in
connection with the parametric frequency conversion was
discussed in Ref. [22] and was called azimuthally matched.
Below, we will show that the beam overlap integrals consid-
erably increase due to the establishment of the azimuthally
matched interaction.

Let us consider, for example, the SHG and study the fac-
tor r in the nonlinear polarisation at the double frequency,
which depends on the transverse coordinate,

p2�r� � J 2
0 �q1r�: (36)

Let us transform (36), by introducing the function in the
cylindrical coordinate system, which is analogous to a plane
wave in the Cartesian system

c1�r;j� � exp�iq1r cosj�: (37)

This function is the azimuthal or angular spectral compo-
nent of the BLB, because the angular superposition of the
functions (37) within the range 0ÿ 2p is the BLB amplitude

J0�q1r� �
1
2p

�2p
0

c1�r;j�dj: (38)

By using the azimuthal spectral components (37), we
rewrite (36) in the form

p2�r� �
1
2p

�2p
0

p2�r;j�dj; (39)

where

p2�r;j� �
1
p

�p
0
c1�r;jÿ Dj�c1�r;j� Dj�d�Dj�: (40)

The structural feature of the function p2(r) is that it can be
treated as a result of two successive averagings. At first, the
product of the spectral components c1(r;jÿ Dj)c1(r;j�
� Dj) is averaged over the azimuthal angle Dj [formula
(40)] and then the result is averaged over the angle j [formula
(39)]. Note here that the absence of a weight function depend-
ing on Dj in the integrand in (40) could be treated as a
consequence of the equal probability of the mutual orienta-
tion of the azimuthal components at the fundamental
frequency. However, as was shown above, the angle Dj
between the plane-wave components of the BLB at the fun-
damental frequency is not arbitrary in the process of gene-
ration of a subharmonic under the conditions of selection of
the types of vector interactions. This angle is determined by
the phase matching conditions, and in the case of collinear
phase matching under study, is close to zero.

Therefore, the equilibrium mutual orientation of the azi-
muthal components of BLBs at frequencies 2o and o is
established because there is no selection of the vector inter-
actions. And vice versa, the selection of vector interactions
produces the nonequilibrium mutual orientation of the azi-
muthal components of BLBs. In the latter case, the for-
mation of nonlinear polarisation can be correctly described
by introducing the corresponding weight function m11(Dj)
into (40):

p2�r;j��
�p
0
m11�Dj�c1�r;jÿ Dj�c1�r;j� Dj�d�Dj�: (41)

The function m11(Dj) represents the probability density
for the mutual orientations of the plane-wave components
of the BLB at the fundamental frequency, which differ by
the angle Dj. In a particular case of the nonselective interac-
tion, one should set m11 � 1=p [formula (41)].

The introduction of the probability density function is
equivalent to the assumption that at the stage of vector inter-
actions upon SHG, there appears the autocorrelation of the
azimuthal orientation of the plane-wave components of
BLBs at the frequency o within some range of angles dj.
As dj decreases, the probability density function m11(Dj)
narrows down. The limiting case dj! 0 corresponds to
the azimuthally matched interaction. This limiting regime
can be described mathematically by assuming that

m11�Dj� � d�Dj�; (42)

where d(x) is the delta function. By substituting (41) into
(42) and integrating, we obtain

p2�r;j� � c1�r;j�c1�r;j�: (43)

Expression (43) corresponds to some pure state in which the
average value represents a product of the spectral compo-
nents. By substituting (43) into (39) and integrating, we ob-
tain

p2�r� � J0�2q1r�: (44)

Therefore, the nonlinear polarisation at the double fre-
quency for the azimuthally matched BLB at the fundamen-
tal frequency is proportional to the first power of the Bessel
function rather than to the product of two Bessel functions.
Because the spatial profiles of the nonlinear polarisation and
the second harmonic field coincide, the overlap integral (23)
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will be maximal: g2 �
�������
W2
p

=W1; where

W1;2 � pR2
B�J 2

0 �q1;2RB��J 2
1 �q1;2RB��.

As was shown in Ref. [28], where the mutual azimuthal
matching of the BLBs at the fundamental and double fre-
quency was considered, the overlap integral for the subhar-
monic generation is g1 � 1=

������
W
p

2. The product of the overlap
integrals, which determines the total SHG efficiency, is
g1g2 � g2B � 1=W1. It was shown above that a similar para-
meter for Gaussian beams is g2G � 1=2w2

1. The ratio of the
squares of the overlap integrals, taking into account the ex-
plicit expression for the power integral W1 is

g2B
g2G
� 2w2

1

pR2
B�J 2

0 �q1RB� � J 2
1 �q1RB��

: (45)

Let us find the ratio (45) in the case of equal diffraction
lengths ZG;B of the Gaussian and BLB beams. Assuming that
ZG � 2kw2

1 and ZB � 2RB=g and using asymptotic approxi-
mations for Bessel functions, we find from (45), virtually
without loss of generality, that g2B=g

2
G � 1. Therefore, the ef-

fective overlap integrals for the azimuthally matched BLBs
are equal to maximum overlap integrals for Gaussian beams.
In this case, because of the coincidence of the spatial struc-
tures of the nonlinear polarisation and the generated field,
one should expect that nonlinear distortions in the case of
BLBs will be substantially weaker than for Gaussian beams.

10. Conclusions
The study of the frequency conversion of laser radiation in
Bessel light beams showed that the speciéc features of the
application of BLBs compared to Gaussian beams are
related to the fundamental difference between the spatial
frequency spectra of these beams. Because of the conical
structure of the spatial spectrum of BLBs, it is possible to
realise and control various vector interactions in them.

We have found the limitations imposed by the longitudi-
nal wave detuning on the azimuthal symmetry of nonlinear
optical processes in the general case of biaxial crystals under
the conditions of critical and noncritical phase matching.We
have studied the transverse phase matching, which are man-
ifested in the dependence of the overlap integrals on the
parameters of interacting BLBs. The role of the longitudinal
and transverse phase matching has been studied in detail for
the SHG in a Nd:YAG laser and SFG for Nd:YAG and
Ti:sapphire lasers.

It is shown that the advantage of BLBs is the possibility of
generation of tunable radiation at the sum frequency. The
wavelength tuning is performed by varying the conicity of
the fundamental frequency beam. The possibility is shown
of the efficient generation of the second-harmonic BLB tun-
able over the conicity angle due to the self-tuning of vector
interactions to the longitudinal phase matching. This effect
was experimentally observed for the SHG in lithium niobate
with the temperature-tunable phase matching angle.

The azimuthal phase matching width caused by the lon-
gitudinal and transverse wave detunings is calculated. The
regime of azimuthally matched interactions is separated,
which is realised in the case of a small azimuthal phase
matching width when the generated beams are approximately
single-mode BLBs. It is predicted that the establishment of
azimuthally matched interactions results in the appearance

of matching between the azimuthal components of the
beams. The overlap integral for the azimuthally matched
beams is greatly increased and their spatial structure is not
destroyed upon their interaction.

The BLBs are promising for cascade frequency doubling
and mixing for obtaining the UV radiation. Upon tuning to
the p-vector phase matching, the second-harmonic radiation
represents an axial beam, while radiation at the fundamental
frequency represents a circular beam. As a result, these beams
are spatially separated and there is no need in the frequency-
selective elements, whose fabrication for the UV region
involves significant technological difficulties.

Of interest is the study of the nonlinear frequency con-
version of BLBs with the wave front dislocations. The BLB
frequency doubling and summation permits the controllable
generation and destruction of dislocations [30], which shows
promise for realisation of logical and arithmetical operations.
The higher-order BLBs can be obtained by the recent method
[31] using biaxial crystals, which also can be applied for the
transformation of the Bessel function order.
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