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Compression of a Gaussian pulse in two-mode
periodic optical waveguides with a complex refractive index

1 O Zolotovskii, D I Sementsov

Abstract. Using a FM Gaussian pulse travelling in a two-
mode periodic optical fibre as an example, it is shown that
dispersion parameters caused by the complexity of the
refractive index substantially affect the pulse dynamics. In
particular, the imaginary part of the effective dispersion
enables one to compress a pulse in an amplifying medium
without its initial frequency modulation.

Structures with a strong linear coupling between unidirec-
tional waves travelling there attract interest because of a
multitude and a variety of effects observed upon prop-
agation of short optical pulses. The presence of these effects
suggests that such structures can be used to control para-
meters of optical radiation. Among these structures are
tunnel-coupled optical fibres [1,2], media with gyration
[3,4], etc.

Of particular interest are fibres possessing periodicity
along their length, where strong interaction between unidirec-
tional modes is realised [5—7]. The analysis of linear and
nonlinear regimes of transformation of optical modes in a
periodic two-mode optical fibre with a real refractive index
shows that such fibres have unique dispersion properties
[8—10], which enables the efficient compression of a pulse
travelling in a fibre and formed by its modes.

Real fibres have a rather low loss that, however, can affect
their dispersion characteristics. Also of particular interest are
amplifying optical fibres, which found a wide application as
effective fibre amplifiers of laser radiation [11,12].

Because of this it seems important to study the effect of
the complexity of the refractive index and of related absorp-
tion or gain on dispersion properties of a periodic optical
fibre and the transformation of optical pulses in it. Here,
we report the results of our study of these problems.

Consider a periodic two-mode optical fibre whose dielec-
tric constant is a complex quantity and depends on the
coordinates as

e(r,z) = go{1 — f(r)[1 4+ ycos(2nz/A)]}. D

Here, ¢ = ¢( +ie( is the dielectric constant of the fibre
axis, with |¢”| < |eg| for real fibres; f(r) is the function
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describing the distribution of optical nonuniformity over
the fibre section; y < 1 is its modulation degree and A is the
period of optical nonuniformity along the fibre.

To find the imaginary part ¢” of the dielectric constant,
we neglect the small quantity ye (), which eliminates modula-
tion of ¢” along the fibre. The complexity of the dielectric
constant leads to the complexity of mode propagation con-
stants ; = f; — iff], where |B7] < |B]] (j = 1,2). The field
in the fibre can be represented as a superposition of the fields
of two eigenmodes of the fibre with the unperturbed dielectric

constant
ZZ

where e; are unit polarisation vectors of modes; R;(r) are
profile functions describing the mode field distributions
over the fibre section; and w is the carrier frequency of the
wave packet injected into the fibre. Taking into account the
complexity of mode propagation constants, the time enve-

lopes of mode amplitudes have the form

E(t,r,2) i (r)expi(wgt — fjz) +ccl, (2)

o (t,z) = A(t,z) exp(—f z). (3)

Efficient coupling between the modes travelling along the
fibre is obtained in the case of their phase matching at the
carrier frequency. Taking into account the fibre periodicity
and the complex nature of propagation constants, the cou-
pling conditions are determined by the relations
&'(w9) =0, 8"(wg) = 0, 3(w) = By () = By (@) — 2m/A. (4)
In the region of parameters where phase-matching con-
ditions are nearly fulfilled (v = wg), coupled wave equ-
ations for the time envelopes of modes in a pulse, written in
terms of the running time t =7 — z/u (u~' = (0f/dw), and
2 = B, + B»), have the form

04, 104, d\ o4, . .
P e —ig1y A4, exp(idz),
®)
o4y 104y Oy .
o toor 2 oa - ondien(-i).
Here 1/v = (uy — up) /20, = (0B, fow)," and d (azﬁ /

o’ )o are the mode group VGIOCIty and the mode materlal
dispersion;
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are intermode coupling coefficients, which are determined
by the overlap integrals of the profile mode functions; k
=w/c; w and ¢ are the frequency and speed of light in
vacuum, respectively.

The initial time envelopes of mode amplitudes for a pulse
at the input of the fibre are determined by its excitation type
and can be represented in the form 4;(2,0) = 4;¢(?). The
most frequently used excitation types are the one-mode exci-
tation, with 4;, # 0 and A4,y = 0 (or vice versa), and the two-
mode excitation, with 4,q = Y A;,. If = +1, we have sym-
metric or antisymmetric fibre excitation. The time function
for a FM Gaussian pulse is

$(r) = exp [ — (1 +iogr)r*/253), ¥
where 7, is the pulse duration at the fibre input and o is the
degree of frequency modulation.

In the case of strong intermode coupling, when |A1\ +
|A2| = const with a high accuracy on the length L, = 1/|g]|
of intermode beats and |o»| & |03 = |o]| there, the solution
of system (3) can be represented in the form

Ay = ay (v, 2) exp[(iq — 6/2)z] + ay(1, z) exp[(—ig — 6/2)z],
Ay = na (7, z) expl(iq + 6/2)z] ®)

—x'ay (1, z) exp|(—ig + 6/2)z].

Here, a; are the amplitudes slowly varying with the coor-
dinate z; f = 1,2;

- (2q + 5)1420 — 20'/110
(2 —6)A1p — 204y

©)

is a parameter determined by the initial fibre excitation
conditions; and ¢ = (02 + 52/4)1/2. The pulse formed by the
interacting modes represents a superposition of partial
pulses whose amplitudes, in view of (5) and (8), satisfy the
equations

d /§0a; iD;d
ﬂ_ﬁﬂ_l_fﬂzo’ (10)
0z 2quv Ot 2 o
where
-1’ 2
D, =d 1-9 11
oA + 2vg ( pU) (an

is the effective dispersion of the corresponding partial pulse;
d=(dy+d)/2;p=(d, — d;)/2. Because of (8), the initial
conditions for the amplitudes of partial pulses a,(z,0) =
aro¢(1) take the form

1 0 o
apo =75 [AIO + (*l)f(Z]Alo +5A20>]-

For the initial conditions presented above, the solutions of
equations (10) can be represented in the form

(12)

(14 iocor%)r_q (13)

B “12
4(0:2) = andy eXp{i 2034,

where

Er=1— (09— ir&z)DfZ; T =1+ (—1)/ 6z/2qv.
Thus, the general solution of system of equations (5) with
initial conditions (12) can be represented in the form of
system (8), i.e., as a simple superposition of noninteracting
partial pulses whose dynamics is totally described by
relations (13).

In the case of complete phase matching (6 = 0,% = —1),
the effective dispersion of partial pulses is determined by the
expression

(- l)f

Df:D.} /2| |

"
iD =

=d +-—" [”+2(_—1)f

pt B

and the solution of equations (10) is written in the form

"2

To 12 T
ap = <—> ayo exp {i(ﬂf—l—(l—}—s )= 2
Tuf ’ 271

l /AV
_M] (15)

2
2‘Cuf

Here, v/ =t —z/u'; <" =u"z/u'"*; arg=0.5(4,p + (- 1)/ x
Ayy) are initial pulse amplitudes. The pulse durations are
determined by the expression

. (1-b, )2+b22 1/2
R R EA

(16)
where

by = aDf — 1" Df’s by = 0D} — 15" Df;

(biotgTs + by)z — 09Th
14 (dof(z)b2 — b])Z

Sf:

In the case of symmetric or antisymmetric two-mode
excitation of an optical fibre, which are important in practice,
the total pulse formed by two modes is represented only by
one of the partial pulses (8)—(10). In this case, its duration
becomes equal to the partial-pulse duratlon (1 = 1p), the
intensities of mode components [; = |.o/ /| are 1dentlca1
and the intensity of the total pulse is determined by the
expression

’ 2
1= <T—O>Ioexp {—Z(HI/—AI)Z—(TizAz) ,
T T

p

(17)

where = |A10|2 + |A20|2§ A =(1+5) /IZ/T;%Z% 4y =st”.
Below, we will analyse precisely this type of excitation,
and because of this, we omit the subscript f in (17) and in
further formulas.

Taking into account (15), the condition of compression of
the wave packet injected into the fibre (dt,/dz),_o <0 is
given by the inequality
1D/ > 0.

20(01'(2)Df’ + (oc%rg — (18)

In this case, the length on which a pulse reaches a minimum
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duration (the compression length) is determined by the
expression
|D' + ayt5D"|
|D| ’

Li=- (19)

%
(1+%5)D"
and the minimum pulse duration is

D'* 4+ D" /4 2 27291/2
Tiin = T0 {W] [(1=byLg)" +b5L5] 7. (20)
In the limiting case of the zero imaginary part of the
refractive index (i.e., D" = 0), we have

2 2
s = 1_0/%7‘[(547 Tmin = 1701/2 (21)

D'1+ %o To (1 + OC%'L'S)

Similar relations describe the behaviour of a pulse in a
single-mode optical fibre with material dispersion d [13].

It follows from these relations that, in the general case, the
complexity of the dielectric constant of a fibre material leads
to the presence of both the imaginary part of the propagation
constant and the imaginary components of the group velocity
and the effective dispersion, which, in turn, cause a shift of the
carrier frequency of a wave packet and a decrease in the
damping parameter.

The analysis made for absorbing fibres shows that the
effect of ¢” on their transformation and dispersion properties
is insignificant. Indeed, present-day optical fibres have the
absorption coefficient « = 28" < 10~ m™!, and its presence,
according to (17), leads only to a small decrease in the pulse
intensity on rather large lengths. For the imaginary compo-
nents of the group velocity and the effective dispersion of
a typical silica fibre with loss, we have the estimates
u” =~ @p" Jow)yu'?) ~u'*p" Jwy < 10> ms ! and [D”| ~
©*B" Jow®)y ~ B Jw} ~ 107 —107** s> m™'. In this case,
u' ~10°ms " and [D'|~ 1072 s m .

Because u” and |D"| are so small, the effect of absorption
on the pulse dynamics is insignificant, and, therefore, we will
cinsider below only dispersion properties of an amplifying
fibre made, for example, of a neodymium glass [14].

Let a pulse be formed by a combination of LP;y and LP,
modes of a fibre core. In this case, we have 81 = 45 = 81
with a high accuracy. For active fibres of this kind, 28" (w)
represents the linear gain and can be defined by the relation
[15]

" N [0 Aw 1!
2w = pN[”Isat*(Aw, ’

(22)
where Aw = w — w, is the detuning from the induced-
transition frequency; w, and p are the frequency of the
induced transition and its cross section; N is the concen-
tration of active particles in the absence of lasing; Aw; is the
spectral line width; and I, is the saturation intensity. In
amplifying optical fibres, the imaginary part D” of the
effective dispersion is equal to the imaginary part d” of
material dispersion with a high accuracy because the cases
of most interest (when |D”| = |D’|) satisfy the inequality
|d"| > 2/[v'v"a|, and, therefore, D" ~ (3°B" /0w?),. As a
result, we have

D// _ ﬂ 1+ IO/Isat B 3(Aw2/Aw1)
AT 1+ I/l + (Ao /Aory)]’

(23)

In what follows, we assume that I, > I,. When
|Aw| = Aw;/+/3, the parameter D" changes its sign, which
substantially determines the character of pulse transforma-
tion. For typical parameters of a neodymium glass p/N =~
102 -10°m™" and Aw; ~ 10" 57! [14], we have |D"| ~
1072* s> m~!. Because the imaginary component of the effec-
tive fibre dispersion is so large, this parameter should have a
substantial effect on the radiation dynamics in amplifying
fibres.

Let us analyse in greater detail some scenarios of pulse
behaviour in the case of complete phase matching and find
the dependence of the pulse duration and the conditions
under which pulse compression takes place on the parameters
of a fibre and radiation injected into it.

(1) Let o = 0, i.e., a pulse at the fibre input has no initial
frequency modulation of phase. In this case, as follows from
(18), compression is also possible provided D, < 0. The com-
pression length and the minimum pulse duration are deter-
mined by the relations

1
1452140|:1—721/2:|7
(1477 (24)

1/2

Tmin = \/ETO |:(1 + ’72)1/2 - 11| ! )
n

where LS =13/|D"|;n=|D"/D'|. If n>1, then T, ~
70(2/ 17)1/ . Fig. 1 presents the dependence of the normalised
pulse duration on the reduced length z/L, for n = 1,2, 10,
and 100. One can see that each value of 5 is characterised
by the minimum pulse duration 7.,(1), and when the
length tends to L, the pulse duration tends to infinity for
all n.

Tp/TO

4N

0 0.25 0.50 0.75 z/Ly
Figure 1. Dependences of the reduced pulse duration 7,/7y (for a pulse
without initial frequency modulation) on the normalised coordinate z/L

forn = 1(1),2(2),10(3), and 100 (4).

In the general case, one should take into account for
z & L, the dispersion terms of third and higher orders, which
makes it possible to avoid an infinite pulse spread on a finite
length. It is possible to obtain D’ < 1072° s> m™! and, con-
sequently, # =~ 100 by choosing the fibre parameters (its
thickness and profiles of refractive indices of a core and a
cladding). For the initial pulse duration 7y ~ 10 ps and the
imaginary part of the effective dispersion of a partial pulse
in an amplifying medium|D"”| ~ 107** s> m~!, the normal-
ised length is Ly ~ 100 m.
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(2) Let oy # 0, i.e., we have a FM pulse at the fibre input.
In this case, compression can be obtained for D" > 0 as well
(in particular, at the carrier frequency w = wg, which is char-
acterised by the maximum gain of a wave packet). If D’ = 0,
i.e., if the contributions of the real parts of the material and
intermode dispersion to the effective dispersion compensate
one another, the compression condition has the form

(313 — 1)D" > 0. (25)

From this, it follows that compression is obtained for \oc0|r(2)
>1and D" >0 and |ag|t < 1 and D” < 0. In this case,

2
T =1 ( 2|org |7 )
min — “0 2 4 .
oyt + 1

Fig. 2 presents the dependences of the normalised com-
pression length L;/L, and the minimum pulse duration
Tmin/To ON the parameter |og|cg. D” > 0 corresponds to the
region |oc0|r% > 1, and D" < 0 corresponds to the region
log|tg < 1. As the parameter |og|tj is increased, pulse
compression is enhanced in the region D” > 0, and when
this parameter is decreased, it is enhanced in the region
D" < 0. If oy =0, ‘supercompression’ takes place at the
length Ly = L, i.e., Ty, — O.

L= 75 Jorg|7d — 1

—_0Polto ™~ 26
D" adrd 41" (26)

Tmin/‘[07 LS/LO

1.0-DN<0 D" >0

Tmin /TO

0.5

0 1 2 3

1
2
lotg |7

Figure 2. Dependences of the reduced compression length L/ L, and the
minimum pulse duration 1., /7y on the rate of frequency modulation at
the fibre input |o|23.

(3)Let D' + 0gr3D” = 0.1f D" < 0, this case also leads to
‘supercompression’, i.e., the situation when 7, — 0. In this
case, the pulse duration is determined by the expression

1, = o[l + D" (1 + 093)2] "2, 7

from which follows that the minimum duration (z, — 0) is
obtained on the compression length

Ly = Lo(1 +ogrg) (28)

Note that in the wavelength region z = L, one should take
into account, as in the case of an infinite pulse spread
(Fig. 1), dispersion parameters of third and higher orders.

Fig. 3 presents the dependences of the normalised pulse
duration 7,/7) on the reduced length z/L; obtained for
D"/D’ = —1 and different values of the frequency modula-
tion. Curve 3 corresponds to ‘supercompression’, i.e., for
z=Ly/2, 1, — 0. For this relationship between the disper-

Tp/TO

1.5 -

0 0.25 0.50 z/L,

Figure 3. Dependences of the reduced pulse duration 7,/7, (for a pulse
with initial frequency modulation) on the normalised coordinate z/ L, for
D"/D" = —1and |ug|ts = 0(1),0.5(2),1(3),1.5(4),and 1.75 (5).

sion parameters, one obtains the compression length L, for
each value of the parameter «,7j on which the pulse duration
reaches a minimum and the length Ly, on which a pulse
becomes infinitely long. For z > L,, equations (5) have no
solutions, which also shows that one should take into account
for these lengths higher approximations of the dispersion
theory.

Consider a Nb-doped two-mode step silica fibre with
pN ~ 0.1 m™~!, coreradius ry = 107> m,y = 2 x 107>, period
A ~ 303 um providing phase-matching of LPy; and LPy,
modes at the operating frequency wy = 1.239 x 101 57!
[16], w, ~ 1.24 x 10" 57!, and Aw; ~ 10'> s™!. Then, a fre-
quency-unmodulated Gaussian pulse with duration 75 =
10! s at the input is compressed by a factor of ten on the
fibre length z = L, &~ 100 m.

It is reasonable to assume that systems using coupled uni-
directional waves in media with complex dispersion para-
meters and gain can produce a considerable pulse compres-
sion. However, presently available data on periodic amp-
lifying optical fibres are insufficient for obtaining — with a
high accuracy — estimates of the parameter # required for
determining the maximum potentialities of the compressors
considered here. Nevertheless, we note that self-modulation
in such fibres, in contrast to self-phase modulation in media
with the refractive index possessing nonlinearity in intensity,
appears for the input radiation intensity as low as is wished.

Our analysis shows that the dispersion parameters asso-
ciated with the complexity of wave numbers of radiation
travelling in an optical fibre are able to cause compression
of an optical pulse without initial frequency modulation in
a linear medium. This situation is radically different from
the standard situation when the inclusion of dissipative prop-
erties of a medium is reduced to an additional linear term
introduced into the wave equations. The presence of this
term in the linear approximation of a medium, neglecting
the complexity of dispersion parameters, leads only to an
additional exponential increase (or decrease) in the amplitude
of a pulse travelling along a fibre and has no effect on its dura-
tion. We showed that it is possible in principle to obtain
‘supercompression’, i.e., an extremely strong compression
of a wave packet on a relatively small fibre length. Because
of a strong intermode coupling, which is caused by the perio-
dicity, the initial conditions of radiation injection strongly
affect the effective fibre dispersion and, therefore, the pulse
dynamics.
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Our results show that periodic optical fibres offer much
promise for the development of high-efficiency devices for
controlling laser radiation.
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