
Abstract. The results of a theoretical investigation of the
efficiency of degassing of the near-surface region of a mate-
rial exposed to laser radiation are presented. The case of a
low volume concentration of the monodispersed gas phase
representing microbubbles of size no greater than 10 lm is
considered. The principal parameters are revealed which
determine the regimes of the egress of gas bubbles from a
laser-produced melt, and analytical formulas are obtained
for estimating the process rate. The analytical results are
compared with the results of two-dimensional numerical
simulations which include the laser heating of a solid sam-
ple, its melting, the development of thermocapillary melt
convection, and the escape of gas bubbles from the melt.
The analytical and numerical results are found to be in good
agreement.

1. Introduction
One of defects occurring frequently in welding materials is
microscopic gas pores, which significantly impair the quality
of a welded joint and, hence, the durability of weld-fabricated
structures. There exist different empirical ways to eliminate
the defects of this kind: the use of a gas-forming fusing agent
at the ends of the edges of a construction to be welded [1],
laser remelting of welded joints [2], and other techniques.

However, a radical solution of the problem is unfeasible
without gaining a qualitative understanding of the physical
processes that occur in the molten pool and quantitative cri-
teria to allow making a trustworthy prediction of the result.
This work is devoted to a theoretical study of the dynamics
of the egress of gas microbubbles from a melt produced by
laser irradiation of a metal surface.

2. Theoretical analysis
A specific feature of laser action is attainment of high tem-
perature gradients in the melt. The bubbles in a molten pool
move under the action of the buoyancy force [3], due to their
entrainment by the hydrodynamic flow [4], and owing to
thermocapillary drift [5, 6]. The latter mechanism, which is

caused by the temperature dependence of surface tension
and the nonuniformity of heating of the bubble surface in
the absence of surface-active impurities, may play a decisive
role in the process of degassing of the laser melt.

The velocity of a steady-state thermocapillary bubble drift
for small Reynolds numbers was found in Refs [5, 6]. When a
material is melted by laser radiation, the regime of bubble
motion for large Reynolds numbers is usually realised because
high temperature gradients cause a significant nonuniformity
of heating of the bubble surface.

This regime was investigated analytically in Ref. [5] with-
out inclusion of the bubble-melt heat exchange and in Ref. [7],
taking this heat exchange into account.The velocity of the car-
rier phase was assumed to be uniform and the temperature
gradient to be constant. In reality, the inclusion of thermoca-
pillary convection leads to complex nonuniform distributions
of the temperature and the melt velocity.

In particular, the temperature gradient under laser irradi-
ation is directed from the periphery to the centre of the molten
pool. At the same time, the thermocapillary flow of the melted
material in the near-surface layer occurs, as a rule, from the
centre to the periphery, while in the benthal region, it occurs
in the opposite direction. As a result, the forces act on a gas
bubble in one direction near the bottom and in different direc-
tions in the near-surface region. Therefore, the type of motion
of a gas bubble in the molten pool is substantially determined
by the parameters of laser radiation.

The dynamics of laser degassing may be conventionally
divided into three stages: formation of bubbles in the melt,
their floating up and passage through the melt surface. The
first and partly second stages were studied in Refs [1, 8], while
the last stage was never analysed. A gas bubble passes through
the melt surface not instantaneously and, if the degassing is to
be effective, the characteristic residence time t � of a gas bub-
ble in the near-surface region should exceed the characteristic
passage time. Otherwise the convective flows of the melted
material would carry the bubble to the pool periphery where
it can either be carried deep into the melt or fixed as a pore
during solidification of the melt.

To estimate t �, we consider the motion of a single bubble
and neglect its effect on the motion of the melt, which is valid
for small bubble dimensions and a low concentration of the
gas phase. Then, the motion of the gas bubble is described
by the equation [9]:

4
3
pr3brb

dUb

dt
� Ffr � Ftc � Far � Fam, (1)

where rb, rb, and Ub are the bubble radius, its density and
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velocity, respectively; Ffr is the frictional force acting on the
bubble in the melt; Ftc is the thermocapillary force; Far is the
buoyancy force; and Fam is the associated mass force. The
frictional force Ffr acting on the bubble in the melt has the
form [10]

Ffr �
4
3
pr3brbG�Uf ÿUb�,

(2)

G � 3
8
Cfr

rf
rb

1
rb

��UfÿUb

��,
where Cfr is the friction coefficient; Uf and rf the flow veloc-
ity of the carrier phase (the melt) at the location of the bubble
and the carrier phase density, respectively. Here, we analyse
first of all the motion of microbubbles with rb < 0:1 mm. In
this case, the bubble motion under laser melting of a metal
is characterised by a small Weber number We � rbrf (Uf ÿ
Ub)

2=s5 1 (where s is the surface tension coefficient of the
melt) and the bubble is spherical. For Reynolds numbers 1 <
Reb< 500, the friction coefficient is described by the formula
Cfr � 48(1ÿ 2:2=Re0:5b �=Reb (in the subsequent estimates, we
used the approximation Cfr � 48=Reb), and for Reb 5 1, by
the relationship Cfr � 16=Reb, where Reb � 2rbjUf ÿUbj=v
[10]; v is the coefficient of kinematic viscosity.

The thermocapillary force Ftc has the form [5]

Ftc � F0pr
2
bg

qT
qr

. (3)

Here, qT=qr is the temperature gradient at the location of the
bubble; g � jqs=qT j; F0 � 4 for Reb > 1, and F0 � 3 for
Reb 5 1.

The buoyancy force Far and the associated mass force Fam
are determined by the expressions [10]

Far �
4
3
pr3brf

�
dUf

dt
ÿ g
�
, (4)

Fam �
2
3
pr3brf

�
dUf

dt
ÿ dUb

dt

�
, (5)

where g is the gravitational acceleration.
To analyse the bubble motion near the free melt surface,

the velocity of melt motion and the temperature gradient in
the near-surface region should be estimated. For this purpose,
we will use the exact solution of the problem of thermocapil-
lary melt convection for a Gaussian intensity distribution in
the focal spot [11]:

Uf�r� �
�

2Cg
r2f vCf

�1=2�W
r20

�1=2

r,

(6)

qT
qt
�r� � ÿ

�
8C 3

r2f gvC
3
f

�1=4�W
r20

�3=4

,

where W is the intensity of laser radiation absorbed by the
surface; r0 is the characteristic dimension of the Gaussian
distribution; Cf is the heat capacity of the melt; and C � 0:35
is the constant of the analytical solution. Substituting expres-
sions (2) ^ (6) in Eqn (1) and taking into account that
rb 5 rf , we obtain the equation of bubble motion in the
near-surface melt layer:

d2r
dt 2
� 18tÿ1m

dr
dt
�
�
6tÿ1=2m tÿ3=2u

ÿ 18tÿ1m tÿ1u ÿ 3tÿ2u

�
r � 0,

(7)

where

tu �
�

2Cg
r2f vCf

�ÿ1=2�W
r20

�ÿ1=2
(8)

is the characteristic convection time of the melt and tm �
r2b=v is the characteristic time taken to entrain a bubble in the
motion of the carrier phase.

From the solution of (7), which has the form r(t) �
C1 exp (t=t

�) � C2 exp (t=t
��), and the initial conditions, it fol-

lows that C1, C2, t
� > 0 and t �� < 0 [where 1=t � and 1=t �� are

the first and second roots of the characteristic equation of the
differential equation (7)] for arbitrary parameters of the laser
radiation and the bubble size. The estimate of the character-
istic residence time of a gas bubble at the melt surface t � gives

t � � tm
9
��1� B�1=2 ÿ 1

� ,
(9)

B � 1
81

�
3
�
tm
tu

�2

ÿ 6
�
tm
tu

�3=2

� 18
�
tm
tu

��
.

Two limiting cases may be considered in the analysis of (9):
quick (B5 1 or tm 5 tu ) and slow (B4 1 or tm 4 tu ) en-
trainment of a bubble in the near-surface melt convection.
In the former case, the time t � is independent of the bubble
size and is equal to the characteristic convection time of the
melt: t � � tu. In the latter case, the time t � also does not
depend on the bubble size but is slightly shorter than the
characteristic convection time: t � � 3ÿ1=2tu � 0:577tu.

Hence it follows that, for a developed thermocapillary
melt convection, no parameters of laser radiation exist at
which a gas bubble moves towards the centre of the molten
pool in the near-surface region when the temperature gradient
points toward the centre of the focal spot. For a thermocapil-
lary convection, the escape of a gas bubble from the melt may
be hindered if the bubble residence time t � at the melt surface
is shorter than the characteristic time tout of the bubble pas-
sage through the melt surface.

Consider the efficiency of degassing of a molten pool with
a low volume concentration a0 of the gas phase in a sample
(a0 5 1) for laser radiation parameters typical for melting.
Let the bubbles of the gas phase be of the same size. Then,
the number Nb of bubbles in the melt at the melting stage
varies according to the equation

dNb

dt
� a0

dV
dt
ÿNb

t
,

where V (t) is the volume of the molten pool; t is the cha-
racteristic residence time of a gas bubble in the melt. The first
term on the right describes the arrival of gas bubbles to the
pool of liquid due to melting of the solid phase, and the
second term describes the escape of bubbles from the molten
pool through the free surface. In view of the relationship
Nb � a(t)V (t), the variation in the volume gas concentration
in the melt may be represented in the form
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da
dt
� �a0 ÿ a� 1

V
dV
dt
ÿ a

t
. (10)

The total residence time t of a gas bubble in the melt is com-
posed of the drift time tint of a bubble from the bottom of the
pool to the surface and the time tout of passage of a bubble
through the free surface: t � tint � tout. Let the characteristic
time tout depend on the bubble size and the physical charac-
teristics of the melt surface which are invariable throughout
the lifetime of the melt. The characteristic time is tint �
h(t)=uint, where h(t) is the time-dependent depth of the pool
of the melt and uint is the vertical bubble velocity.

Note that for a0 5 1, the dependence of the thermal prop-
erties of the sample on the concentration of the gas phase may
be neglected. Then, in the initial stage of melting, the volume
of the melt increases proportionally to time, the proportion-
ality coefficient depending on the parameters of laser radia-
tion and the thermal properties of the sample, i. e.,

1
V�t�

dV
dt
' 1=t

for different regimes of laser irradiation. Using this relation-
ship, consider two limiting regimes of the egress of bubbles
from the melt.

For tint 5 tout, Eqn (10) can be rewritten in the form

da
dt
� a0 ÿ a

t
ÿ a
tout

.

This expression for tout � const is easily integrated and, for
the initial conditions a(t � 0) � a0, we obtain

a�t�
a0
�
�
1ÿ exp

�
ÿ t
tout

��
tout
t

. (11)

Note that the degree of degassing of the pool of the melt
depends, under the assumptions made, only on the time of
passage of a bubble through the melt surface and is indepen-
dent of the parameters of laser radiation, even though the
formation rate and the volume of the pool of melt depend on
these parameters.

For tint 4 tout, we will use the correlation relationship for
the melt depth in the initial stage of melting h(t) � t 1=2. Then,
the characteristic time a bubble takes to float from the bottom
of the pool to the surface is estimated as

tint �
hmax

uint

�
t

tmax

�1=2

� bt 1=2, (12)

where hmax is the maximum depth of the pool of melt
attained by the end of the radiation pulse of length tmax.
Furthermore, early in the melting the vertical bubble velocity
uint is close to the drift thermocapillary velocity udr, because
the vertical component of the thermocapillary force exceeds
the buoyancy force by several orders of magnitude:

uint � udr � D
rb
rfv

g
W
k
, (13)

where k is the thermal conductivity coefficient; D � 1=3 for
Reb 4 1 and D � 1=2 for Reb 5 1 [5]. In view of the assump-
tions made above, Eqn (10) is written as

da
dt
� a0 ÿ a

t
ÿ a
bt 1=2

. (14)

With the initial condition a(t � 0) � a0, the solution of
Eqn (14) is given by the expression

a�t�
a0
� b 2

2t

�
exp

�
ÿ 2t 1=2

b

�
� 2t 1=2

b
ÿ 1
�
. (15)

Compare now analytical expressions (11) and (15) with the
results of two-dimensional numerical simulations which
include laser radiation heating of a solid sample with a low
concentration of the monodispersed gas phase, its melting,
the appearance of thermocapillary convection, and the
motion and the escape of gas bubbles from the melt.

3. Numerical results
To model the two-phase convection of the bubbles-melt het-
erogeneous mixture, we used a computation scheme based on
a continuous representation of the carrier medium and dis-
crete representation of the dispersed phase. The bubble mo-
tion was simulated by Eqns (1) ^ (5). The melt was assumed
to be a viscous incompressible heat-conducting liquid whose
dynamics was described by the continuity and Navier ^
Stokes equations in the Boussinesq approximation taking
into account the forces which the gas bubbles exert on the
heat carrier [10]:

qZ
qt
� div ZUf � 0, (16)

qUf

qt
�Uf gradUf �

� ÿ 1
rf

grad p� 1
Z
div�Zv gradUf� �

Fv

Zrf
,

(17)

qZCfrfT
qt

� div�ZCfrfTUf� � div�ZkefgradT� � FT , (18)

where Z � 1ÿ a is the volume fraction of the melt; Fv and FT
are the terms that take into account the momentum and heat
exchanges between a unit volume of the melt and the gas
bubbles, respectively; kef is the effective thermal conductivity
coefficient of the melt-gas bubbles mixture; and p is the
pressure in the liquid.

The equation for the temperature distribution in the solid
phase has the form

Csrs
qT
qt
ÿ div�kef gradT� � 0, (19)

where Cs and rs are the heat capacity and the density of the
solid phase, respectively. The solid-melt phase transition and
the boundary conditions are taken into account in a conven-
tional way like, e. g., in Ref. [12]. In the present calculations,
we neglected the terms describing the interphase exchange
because of a low volume concentration of the gas phase. In
addition, we also neglected the dependence of thermal prop-
erties of the sample on the gas phase concentration.

The numerical model developed to correctly describe the
degassing of the pool of melt upon thermocapillary convec-
tion under laser irradiation is based on the well known
Lagrange ^ Euler technique of solution. The Navier ^ Stokes
equations for a viscous incompressible liquid (16) ^ (18) and
the equation for the temperature of the carrier phase (19)
are solved by the Euler method on an immobile difference
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grid. The Lagrange method is employed to solve the Boussi-
nesq ^Oseen equation (1) for the motion of a gas bubble in
the melt. In this case, the physical parameters determined
on the Eulerian difference grid,which are required to calculate
the motion of a Lagrangian particle (a bubble), are interpo-
lated at the location of this particle. This method of
solution simulates with good accuracy the motion of the
gas bubble in the pool of melt and was previously employed
in the calculations of heat transfer through a liquid layer in
bubbling [13].

Below, we present the results of calculations for the laser
radiation with a Gaussian intensity distribution in the spot, a
beam radius r0 � 0:1 cm, and a pulse duration tmax � 0:1 s for
an absorbed radiation power P0 � 500 W. The thermal
parameters of the sample were assumed to be temperature-
independent: rf � 7:8 g cmÿ3, Cf � 0:56 J Kÿ1 gÿ1, k �
0:4 W Kÿ1 gÿ1, v � 5:5� 10ÿ3 cm2 sÿ1, g � 0:35 dyn Kÿ1

�cmÿ1, a melting point of 1730 K, and a specific phase tran-
sition energy of 2184 J cmÿ3. The initial distribution of gas-
filled pores was assumed to be uniform over the entire volume
of the sample while the pore size was varied in the calculations
from 0.1 to 10 mm. We used in the numerical simula-tions a
nonuniform rectangular difference grid, which had
100� 100 cells and was thickened upon approaching to the
free surface to more precisely approximate the boundary con-
ditions, and 3500 discrete particles describing the motion of
gas bubbles. The characteristic time tout a gas bubble takes
to pass through the melt surface was varied in the calculations
from 10ÿ2 to 10ÿ4 s.

The calculations showed that for short t, the flow has a
conventional single-vortex structure: in the near-surface layer,
the melt moves from the centre to the periphery and in the
benthal region in the opposite direction. In this case, the char-
acteristic residence time of a gas bubble in the near-surface
region of the melt correlates well with the theoretical estimate.
The characteristic time tu calculated by formula (8) is, for the
given parameters of the problem, 6:6� 10ÿ4 s. As a result, in a
time tout � 10ÿ4 s, the gas bubbles, having reached the sur-
face, had time to escape from the melt prior to being pulled
by the flow to the periphery of the pool. In a time
tout � 10ÿ2 and 10ÿ3 s, the reverse situation was realised:
the drift to the periphery occurred faster than the escape
from the melt.Consider in greater detail the degassing dynam-
ics of the pool of melt for different bubble dimensions.

Bubbles 10 mm in radius. In the calculations, the phase of
sample heating lasts, to the onset of melting, till the moment

tmelt � 0:0106 s, which is in good agreement with formula
(15). By the end of the laser pulse, the calculated depth of
the pool of melt attains hmax � 230 mm. For tmelt < t <
tmelt � tout, the bubbles are accumulated on the free melt sur-
face and next, for t > tmelt � tout, the bubbles escape from the
pool. An estimate of the floating velocity for the bubbles of
this size gives uint � 100 cm sÿ1 for the values of the physical
parameters selected. In this case, the maximum time attained
by the end of the laser pulse is tint � hmax=uint � 2:3� 10ÿ4 s
and, hence, for tout � 10ÿ2 and 10ÿ3 s, the dynamics of the
egress of gas bubbles from the melt should be described by
expression (11). Fig. 1a gives a comparison of the numerical
calculations with the analytical dependence (11), which dem-
onstrates the validity of the above assumptions.

Bubbles 1 mm in radius. The floating velocity for the bub-
bles of this size is uint � 10 cm sÿ1. As a result, the maximum
tint � 2:3� 10ÿ3 s, and the gas bubble egress for tout�10ÿ2 s
should be described by expression (11) as before. However, for
tout � 10ÿ3 s, the time tint � bt 1=2 changes during melting
from tint < tout in the initial stage of the egress of bubbles
to tint > tout at the end of the laser pulse. In this case, the sol-
utions (11) and (15) cannot be used formally. However, if we
recall that the total time of the egress of bubbles from the melt
is t � tint � tout and substitute the averaged value tint � tout in
this relationship, we obtain the approximate dependence:

a�t�
a0
�
�
1ÿ exp

�
ÿ t
2tout

��
2tout
t

. (20)

A comparison of the numerical calculations with dependence
(11) for tout � 10ÿ2 s and with dependence (20) for tout �
10ÿ3 s (Fig. 1b) confirms the assumption made above.

Bubbles 0.1 mm in radius. For bubbles of this size, Reb 5 1,
and therefore the floating velocity is uint � 1:5 cm sÿ1, while
formula (12) gives the coefficient b � 5.10ÿ2 s1=2. The maxi-
mum tint � 1:5� 10ÿ2 is comparable to tout � 10ÿ2 s;
hence, by analogy with the previous case, approximate expres-
sion (20) is to be used to describe the dynamics of the escape of
bubbles from the melt. For tout � 10ÿ3 s, the characteristic
time tint � bt1=2 exceeds tout throughout the temporal range
ö from the moment at which the bubbles commence to escape
from the melt to the end of the laser pulse. In other words, the
dynamics of the egress of bubbles should be described by
expression (15). These analytical dependences are given in
Fig. 1c and demonstrate good agreement with the correspond-
ing numerical calculations.

a=a0

6 5

a=a0

4 3

a=a0

2

1

a b c
0 0.02 0.04 0.06 0.08 t

�
s

0.2

0.4

0.6

0.8

1.0

0 0.02 0.04 0.06 0.08 t
�
s

0.2

0.4

0.6

0.8

1.0

0 0.02 0.04 0.06 0.08 t
�
s

0.2

0.4

0.6

0.8

1.0

Figure 1. Numerical (circles and triangles) and analytical (curves) calculations of the time dependences of the volume concentration of the gas phase in the
pool of melt for gas bubbles with a radius 10 (a), 1 (b), and 0.1 mm (c) for tout � 10ÿ2 (1, 3, and 5 ) and 10ÿ3 s (2, 4, and 6 ). The analytical calculation was
made by formulas (11) (1 ^ 3 ), (20) (4 and 5 ), and (15) (6).
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The relationships between the characteristic times tint and
tout are conveniently collected in Table 1 for all versions of the
calculations.When comparing the analytical dependences and
the numerical calculations given in Fig. 1, it is pertinent to
note that they diverge to some extent by the end of the laser
pulse for bubbles with rb 4 1 mm. This is caused by the in-
volvement of bubbles in the convective motion of the melt
which is enhanced with decreasing the bubble radius.

The melt velocity is relatively low in the centre of the pool
and is high at the periphery that harbours the centre of the
vortex of convective melt motion. As a result, the motion
of a bubble is nearly rectilinear near the pool centre and is
determined by the thermocapillary force acting on the bubble.
The closer to the periphery of the pool of melt, the more com-
plex the bubble motion, because a progressively increasing
frictional force acts on the bubble in addition to the thermo-
capillary force. A bubble that finds itself at the melt surface is
carried to the periphery to reside there till its escape from the
melt. However, there exists a critical region near the vortex
centre which a bubble cannot, once it enters the region, escape
even for t4 tint, with the result that a fraction of the bubbles
find themselves as if `locked' in the melt.

Fig. 2a gives the instantaneous distribution of the bubbles
of radius rb � 1 mm at the end of the laser pulse obtained by
numerical simulation. One can easily see the bubbles that have
not escaped from the melt, which reside near the centre of the
thermocapillary vortex.They are precisely the primary reason
why the results of analytical estimates of the egress of bubbles
from the melt disagree with the numerical calculations for
small-sized bubbles for long times t (Figs 1b and c).

However, these bubbles amount to only several percent of
their initial number. We emphasise that this efficiency of
removing microbubbles is due to the fact that they are sub-
jected to a strong thermocapillary force in the direction of
the laser beam. Given for comparison in Fig. 2b is the instan-
taneous distribution of the bubbles with the same dimensions
as in the case of Fig. 2a, though with neglect of the thermo-
capillary force. The concentration of gas bubbles in the
melt is substantially higher than in the previous case and
amounts to 0:88a0 at the end of the laser pulse. The velocity
of thermocapillary flow at the periphery of the pool of
melt is high, the frictional force between the bubbles and
the melt exceeds the buoyancy force and hinder the escape
of the bubbles from the pool. In the calculations, a similar sit-
uation was observed for the bubbles of size 0.01 mm and below
even taking into account the thermocapillary force.

4. Conclusions
Therefore, the laser degassing of surfaces is efficient for
microbubbles with rb 5 0:1 mm. Our analysis showed that
a gas bubble in the near-surface region moves, for any pa-
rameters of laser radiation, from the centre of the pool of
melt to the periphery. Our analytical model yielded the
principal degassing-determining condition ö the relation-

ship between the characteristic bottom-to-surface bubble
drift time tint and the characteristic time tout of the passage
of a bubble through the melt surface. For tout 5 tint, the
egress of the gas phase from the pool of melt is determined
only by the time tout and is independent of the parameters of
laser radiation. For tout < tint, the egress of the gas phase
from the pool of melt strongly depends on the dynamics of
the sample melting and, hence, on the parameters of laser
radiation.
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