Quantum Electronics 30(9) 799 —802 (2000)

©2000 Kvantovaya Elektronika and Turpion Ltd

PACS numbers: 32.70.Jz; 42.25.Bs
DOI: 10.1070/QE2000v030n09ABEH001815

On the normalisation of the observed spectral gain line profile
with increasing optical thickness of a substance layer

N S Bukhman

Abstract. It is shown that a spectral gain line narrows down
and its profile is normalised with increasing optical thick-
ness of a layer of the amplifying medium. As a result, the
gain line profile always becomes Gaussian, independently of
the true form factor of the line, when the thickness of the
active medium layer is sufficiently large. The normalisation
of the line profile is demonstrated for the lines with Lor-
entzian, Gaussian, and ‘time-of-flight’ profiles.

Consider a layer of substance of thickness z that amplifies
the light intensity with the gain a(w). If this gain is caused by
the population inversion of the levels involved in the spectral
transition at the frequency o, and the form factor of the spec-
tral line g(Q) (w = wy + Q), we have [1,2]

a(w) = a(wy + Q) = 2%g(Q). )]

Here, the true form factor g(Q) of the spectral line is nor-
malised to unity at the maximum [g(0) = 1] and oy = a(wy) is
the gain at the line centre. Then, the light intensity transfer
coefficient of a layer G(w, z) = exp[o(w)z] has the form [1]

G(o,2) = G(Q,¢) = exp[&g(Q)], 2

where ¢ = oz is the optical thickness of the layer.
It is obvious that the line shape observed in the absence of
nonresonance absorption is described by the function

P(Q,8) = G(2,¢) — 1 =exp[Eg(Q) — 1]

= [exp(f) - 1}}Y(Q7 5)9 (3)
where

P(Q,¢)  explig(Q)] -1
Q7 f = P
1.9 ®(0,8)  exp(¢) -1
is the observed form factor of the line normalised to unity at

the maximum and equal to zero away from the line centre

((0,8) = 1, y(£ 00,¢) = 0 for any ¢).
It is well known [1, 2] that because the transfer coefficient
G(Q,¢) of a layer depends exponentially on the true form fac-
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tor g(Q) of the line, the observed form factor y(,&) (4) will
coincide with the true one only for a small optical thickness
of the layer (¢ < 1) and, therefore, for a weak gain in the layer.
Then, by neglecting the terms of the order of &, we obtain

7(Q,¢) = g(Q). )

When the optical density of the layer is not small (£ ~ 1 or
¢ > 1) and, hence, the gain @¢(Q,¢) is large, the observed form
factor y(Q,¢) will differ from the true one. In particular, upon
collision broadening of the spectral line (the Lorentzian line
shape) and & > 1, the observed width of the spectral line will
decrease as ~ ¢~ /? with increasing optical thickness & [1].

The aim of this work is to emphasise the fact that an
increase in the optical thickness of a layer causes both the
narrowing of the spectral gain line and its normalisation.
As a result, the line shape tends to a Gaussian whose param-
eters are determined by the optical thickness of the layer ¢&
and the sharpness of the true form factor g(2) of the line
at the line centre g”(0). The observed form factor (Q,¢)
does not depend on the other parameters of the line in the
limit & — oco.

Indeed, by expanding the function In y(Q,£) into a series in
Q near the line centre (2 = 0) and retaining only the first two
terms of the expansion (quadratic approximation), we easily
obtain the following Gaussian approximation for the form

factor y(Q,&) (4)
oy

1@.9=e0| (5 ) Tenre

where QF = —8/¢"(0) and

} _ phense@r ()

AQy (&) = Qo{In B[l — exp(—£&)]/E}'? )

is the width of the observed form factor of the line at the 1/
level of its maximum. In particular, the full width at half
maximum (FWHF) y(Q,¢) of the observed form factor is

AQ, (&) = Qo f(8), (&) = {In(2)[1 —exp(=&)]/E}' (8)

For ¢ <1, we have f (&) = (1n2)1/2 ~ 1, and for &> 1,
f(©=1[(In2)/8'"”* <1.

It follows from the method of obtaining approximation
(6) that it can be used for any optical thickness & but only
for Q@ — 0 (with an accuracy to the terms quadratic in Q).
Nevertheless, the Gaussian approximation (6) becomes
asymptotically exact for very large optical thickness of the
layer &.



800

N S Bukhman

To prove this fact, note that it completely coincides with
the ‘non-probability’ part of the proof of the central limit the-
orem. The ‘non-probability’ part of the central limit theorem
can be formulated as a statement that the product of a suffi-
ciently large number of the characteristic functions of
independent random quantities (upon summation of the inde-
pendent random quantities, their characteristic functions are
multiplied) tends to a Gaussian function, which represents the
characteristic function of their normally distributed sum [3].

Now it is sufficient to note that G(Q,¢) = [G(2,1)]°, where
the function G(£,1) can be treated as a characteristic function
of one random quantity, while the function G(2,£) can be
treated as a normalised characteristic function of a sum ¢&
of random quantities. It follows from this that the condition
for the asymptotic accuracy of approximation (6) upon an
infinite increase in ¢ is the existence and negativity of the sec-
ond derivative of the true form factor at the spectral line
centre (a similar condition in the central limit theorem is
the existence of the dispersion of random quantities being
summed).

Leaving aside an analogy with the central limit theorem,
the asymptotic accuracy of (6) follows simply from the known
fact that the spectral gain line narrows down with increasing
gain. In this case, the observed form factor of the spectral line
7(2,£) becomes substantially narrower than the true form fac-
tor g(2) and its shape is controlled only by the central part of
the form factor g(2) rather than by its wings, resulting, taking
into account (4), in the Gaussian approximation (6). One
should not expect, for example, the normalisation of the ob-
served line shape in the case of the rectangular, trapezoid, or
triangular form factor of the line.

Let us specify expressions (6) and (7) for the three most
common true form factors: the Lorentzian (L), which is
caused by the collision or radiative broadening of the line,
the time-of-flight (T), which appears due to the limited
time of interaction of light with a substance, and the Gaus-
sian form factor caused by the Doppler broadening of the
line [1, 2]. In these cases, the true form factors and the param-
eter Q, = (— 8/¢"(0))"/? have the form

@ =[1+0o/m0) " of = a0y,
gr(Q) = sinc? [xo(2Q/AQ7)], @F = (3% /x0)AQr,  (9)
g6(@)=exp [ ~ In(2)(22/AQ)’], @F =(n2)"AQy,

where x, &~ 1.39 is the root of the equation sinc’x, = 1/2
(sincx = (sinx/x)); AQy, AQr, and AQg are the FWHM
of the true form factors g, g1, and gg. The dependence of
these parameters on the properties of a medium is presented,
for example, in Refs [1, 2].

Taking into account (8) and (9), the FWHMSs of the
observed spectral gain line for the Lorentzian, time-of-flight,
and Gaussian true line shapes are

AQ[,(E) = AQLf(2),
AQH (&) = (3" /x0)AQr £ (£),

AQS, (&) = (In2)"'?AQG £ (2),

(10)

where the function f(¢) is defined in (8).

One can see from (8) that for & > 1, the observed width of
the spectral line is determined not by the FWHM of its true
form factor g(2) but by its sharpness at the line centre, i. e., by
the parameter Q. In particular, it follows from (10) that for
the same half-widths of the true form factor, the observed col-
lision line broadening will be approximately 20 —25% lower
than the Doppler or time-of-flight broadening. This appears
quite natural because the Lorentzian form factor is sharper at
the line centre.

To estimate an actual degree of the normalisation of the
observed shape of the spectral line, we compared in Fig. 1 the
Gaussian approximation (6) with exact form factors observed
for the Lorentzian, time-of-flight, and Gaussian spectral line
profiles, which were calculated directly from expressions (4)
and (9). Fig. 1 presents functions y“TC(Q.¢&) for ¢ =0
[when the observed form factor y coincides with the true
form factor g (see (5)], the intermediate optical thickness
£=2,4,8, and for £ = oo (when the observed form factor
is completely normalised). The FWHM AQ, ), of the form
factor in Fig. 1 expressed in terms of the dimensionless fre-
quency 2Q/AQ5(¢) is determined by expressions (10) and
depends on the line broadening mechanism.

An appropriate choice of the scale provides the same ‘cal-
culated’ width for all the plots, i.e., it ensures automatically
the account for the spectral line narrowing with increasing
optical thickness & of a substance layer according to (8)
and for the difference in the observed line widths for different
broadening mechanisms according to (10). This ensures a
coincidence of all the curves in Fig. 1 at the line centre (at
Q = 0), which allows one to focus attention on their shape
(in which they only differ).

Fig. 2 compares the widths of the observed gain line at the
levels 1/ =1/2,1/10, and 1/100 of its maximum for differ-
ent line broadening mechanisms. Here, 2AQ; 5/ is the
width of the observed gain line normalised to the sharpness
of the true form factor Q. The parameter £, for the three type
of broadening L, T, and G is determined by expressions (9), as
before, and the observed line widths AQ, 5z were calculated
directly from exact expression (4). The curves corresponding
to different broadening mechanisms are indicated in Fig. 2 by
letters L, T, and G. The letter A refers to the approximation
6).

An appropriate choice of the ordinate axis scale in Fig. 2,
as in Fig. 1, provides the account for the natural difference
between collision, time-of-flight, and Doppler line broaden-
ing, leaving for analysis only the dependence of ‘norma-
lised” widths on the optical thickness of the layer (otherwise,
for each type of the broadening, its own asymptotic curve
would be required).

Figs 1 and 2 show that in all the cases under study, the
normalisation of the observed line profile does occur with
increasing optical thickness of the layer. In particular, the
asymptotics of expression (7) is confirmed for any choice of
the level for the line width 1/ measurement. At the same
time, one can see that for small values of 1/f (when the width
of the line is measured at its ‘base’), the region of real applic-
ability of the approximation (6), (7) shifts to a greater optical
thickness ¢&.

In addition, one can see that in the case of collision broad-
ening (L), the normalisation of the observed spectral gain line
occurs most slowly. In this case, the base of the observed line
profile is always broader than that in the Gaussian approxi-
mation, and the ‘almost’ Lorentzian line profile passes to the
‘almost’ Gaussian profile quite lately, at & ~ 4, which corres-



On the normalisation of the observed spectral gain line profile with increasing optical thickness of a substance layer 801

Q) 7' (Q) 7%(Q)
1.00 1.00 1.00
0.75 075 |
0.50 0.50 |
0.25 025 |

0 0

20/AQ,

20/AQ)),

20/AQ7,

Figure 1. Form factors of the spectral gain line observed at the different optical thickness of a substance layer ¢ for Lorentzian (L), Gaussian (G), and

time-of-flight (T) true form factors of the line.
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Figure 2. Dependences of the width of the observed spectral gain line at
the 18 level of the optical thickness of a substance layer ¢ for different
parameters 1/ for Lorentzian (L) , Gaussian (G), and time-of-flight (T)
true form factors of the line and their common analytic approximation
(A).

ponds to the intensity gain at the line centre ¢(0,¢) ~ 50. In
the case of time-of-flight (T) or Doppler (G) broadening, the
observed line shape is normalised much faster. In these cases,
the maximum difference (not very large) of the observed line
profile from a Gaussian is reached already for ¢ ~ 2, which
corresponds to the gain at the line centre ¢(0,&) ~ 6. As the
optical thickness of the layer increases, the Gaussian asymp-
totics (6) is quite rapidly achieved.

Note that for & > 1, the shape of the spectral line observed
in the case of the time-of-flight or Doppler broadening proves
to be virtually the same (which is not the case for the true line
shape; see Fig. 1 for ¢ = 0). In the case of the time-of-flight
broadening, the shape of the spectral line that is observed
at a small optical thickness ¢ substantially differs from a
Gaussian; however, already for £ = 0.5, it is closer to a Gaus-
sian than to its initial shape. The approach to the Gaussian

asymptotics (¢ > 1) occurs not from the side of the thin-layer
asymptotics (£ < 1) but from the side that is opposite to the
deviation of the Gaussian asymptotics from the true profile at
a small optical thickness (see Figs 1 and 2).

In the case of the Doppler line broadening, the approxi-
mation (6), (7) is valid not only for ¢ — oo but also for
¢ — 0. Although this circumstance is accidental, it makes
the approximation (6), (7) universal for a Gaussian profile
of the true form factor of the spectral line, i.e., it is valid
for any optical thickness & of a substance layer. The error
of this approximation is small and reaches a maximum for
& =~ 3, which corresponds to the gain at the line centre
@(0,8) ~ 20.

In a more realistic statement of the problem, one should
take into account, along with resonance amplification of light
at the frequencies close to the spectral line frequency, nonre-
sonance absorption of light, which weakly depends on the
frequency near the resonance frequency w,. In this case,
instead of (1), the gain is described by the expression

() = 0g(2) — oy, (11)

where o is the nonresonance absorption coefficient, and
instead of (2), we have

G(Q, ) = exp[Eg(Q) — &i] = exp(=&)[1 + (@, 9)], (12)

where & = oz.

One can easily verify that the replacement of expressions
(1) and (2) by (11) and (12) does not lead to any changes in the
subsequent discussion except one substantial feature. In this
case, the normalisation and narrowing of the spectral line are
not necessarily observed only when the gain in the layer is
large. Indeed, the normalisation is controlled by the param-
eter £> 1 and it does not depend on the additional
nonresonance attenuation of a signal. This means that for
&= & > 1, the spectral gain line can in principle narrow
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down to any degree and can be normalised at a moderate gain
(or absorption) at the line centre.

It is interesting that such a ‘filter’ is not an interference
filter, in contrast to spectral analysers of the Fabry—Perot
interferometer type, because the narrowness of its transmis-
sion (or amplification) band is caused simply by the frequency
selection of photons propagating through the substance layer
rather than by the fulfilment of some phase relations.

Note that an attempt to narrow down a spectral line
by increasing the effective optical thickness of the active
medium layer in the absence of nonresonance absorption
inevitably results in an exponential increase in the signal
power and in the necessity to consider the gain saturation
[1, 2], which is ignored in this paper.

The results obtained above can be used to take into
account not only a ‘distributed’ filter represented by a layer
of the active substance but also ‘localised’ filters such as semi-
transparent mirrors, lenses, etc. One can easily verify that the
appearance of such elements does not change substantially
the results presented above.

If the number of localised filters is finite, their influence
can be accounted for by a simple multiplication of the Gaus-
sian transfer coefficient of a layer by the transfer coefficients
of localised filters. The result of this multiplication will be
determined by the narrowest filter. For a sufficiently thick
layer, this is always a Gaussian filter, while the influence
of other elements is manifested in a general amplification
or attenuation of a signal.

In a more interesting case of the infinite increase in the
number of localised filters of the same type with increasing
optical thickness of a substance layer (a lens line or an
open resonator), the transfer characteristics of additional
can be introduced into (2). This will only change the function
a(w), which will be now determined not only by the true form
factor g(Q2) of the spectral line (1) and the nonresonance
absorption coefficient ¢; (11) but also by the parameters of
localised filters. In the case of a strong frequency dependence
of the transfer characteristics of the filters, this ‘renormalisa-
tion” will result in the shift in the central frequency of the
transmission band from the spectral line centre w, and in
the change in the parameter Q,. However, it will affect neither
an analogy with the central limit theorem noted above nor the
normalisation of the transfer characteristic of a substance
layer. Note that this analogy will be even more direct because
an artificial separation of a substance layer into ‘sublayers’ of
the unit thickness playing the role of individual filters will dis-
appear and one can consider simply the multiplication of
‘single-pass’ transfer functions upon repeated passages
through a filter.

The main result of this study is that the observed profile of
the spectral gain line and the transfer function of a substance
layer are normalised with increasing optical thickness & of the
substance independently of the shape of the true form factor
of the spectral line and the mechanism of the spectral line
broadening. In any case, the observed line shape tends to a
Gaussian with increasing optical thickness ¢ and the width
of the spectral line decreases as £7Y2. The line shape and
its width measured at different levels are described by univer-
sal expressions (6) and (7).

This means, in particular, that a noise signal is always
normalised when the thickness of the active layer is sufficient
[3], the correlation time increasing as & 1/2 The duration of the
determinate signal propagating through the layer increases as
gl (which is substantially slower than the usual dispersion

spreading of a wave packet [4]). In this case, the signal energy
increases as /2 exp ¢ and its maximum intensity increases
as &' exp . Of course, these conclusions are valid only when
the correlation time of the noise being filtered or the initial
duration of the determinate is sufficiently short. However,
because of the narrowing of a spectral line with increasing
optical thickness of a substance layer, these conditions are
always fulfilled for any noise or signal when the layer is suf-
ficiently thick.
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