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Babinet principle and diffraction losses in laser resonators

V V Kubarev

Abstract. A simple analytical technique, based on the Babi-
net principle, for calculating low diffraction losses of differ-
ent kinds in stable resonators is described. The technique
was verified by comparison with the known numerical and
analytical calculations of the losses in specific diffraction
problems.

1. Introduction

Diffraction losses in a laser resonator are frequently a con-
stituent of its internal losses. These losses arise from various
perturbations inside the resonator: openings in the mirrors,
‘scrapers’ (mobile mirrors intended for controllable radia-
tion extraction from the outer beam area), various dia-
phragms, polarisers, etc. The losses due to finite mirror
apertures in open laser resonators also belong to the cate-
gory of diffraction losses.

Resonators with low diffraction losses hold the greatest
practical interest. It is widely believed that there is no way
to adequately calculate these losses by a simple perturbation
technique, because the inaccuracy of their determination
allegedly proves to be of the order of the losses themselves.
For this reason, it is standard practice to calculate diffraction
losses employing rather complex and cumbersome methods
of solution of integral equations. The aim of this paper is
to show that the simplest perturbation technique introduces,
when applied correctly to stable resonators, an error much
smaller than the losses to be determined [1].

2. Formulation of the technique

We will investigate a single-mode laser operation by one of
the lowest modes of an open or waveguide resonator.
Consider perturbations having « characteristic linear di-
mension § which is small compared to the gradient dimen-
sion of the operating mode a and yet large compared to the
wavelength A. Because of the smoothness of the field dis-
tribution in the mode, this requirement means, as a rule
(exceptions to this rule are described below), the smallness
of the perturbation itself. The unperturbed mode, i.e., the
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resonator mode in the absence of perturbations, will be
adopted as the zero-order approximation.

This mode is usually well known, and in the first-order
approximation, the perturbation-induced losses may be rep-
resented as a sum of two terms. The first term is ‘geometric’
losses ¢y, which represent the fraction of radiation of the
unperturbed mode that falls within the perturbation cross
section:

fSp 1(x,y)dxdy "
T T(x,y)dxdy’
where I (x, y) is the unperturbed mode intensity; S, and S,
are the respective cross sections of the perturbation and the
mode, respectively; and x and y are lateral coordinates.
Apart from geometric losses, additional diffraction losses
arising from the scattering of the remaining part of radia-
tion should be taken into account.

The perturbation cross section and the remaining part of
the beam section are mutually complementary screens.
According to the Babinet principle [2], the fraction of scat-
tered radiation will therefore be equal to the fraction of
radiation intercepted by the perturbation cross section, i.e.,
to geometric losses, while the angular distribution of this radi-
ation will be the same as for the geometric losses.

Therefore, the angular width ~1/0 of the scattered
radiation will be much greater than the maximum character-
istic radiation divergence ~ 1/a of the operating mode. This
implies that virtually all the scattered radiation escapes from
the mode and is lost. As a result, the total loss by a small per-
turbation is

c=1-(1-¢,) ~2,. )

3. Verification of the technique

Let us verify the technique and determine the range of its
applicability taking advantage of the well-known special
cases where the diffraction problem was solved exactly with
the aid of integral equations. Consider the perturbations of
two types, whose special cases have such solutions. First,
this is a perturbation arising from the cut-off of the outer
field area due to a limited mirror aperture of an arbitrary
shape, or conventional diffraction losses of an open reso-
nator. As the second example, we take a perturbation
caused by the presence of some coupling apertures in the
resonator mirrors. Mirrors of this type are quite often
optimal for optically pumped lasers [3], electric-discharge
DCN lasers operating in the specific mode of mutual amp-
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lification of different transverse modes [4], submillimeter
lasers with a low-gain active medium [5], free-electron la-
sers, etc.

3.1. Diffraction losses on the outer aperture of the mirrors
of an open resonator

Consider the TEMg, mode of a symmetric open resonator
with large spherical mirrors. This mode is known to possess
a Gaussian radial intensity distribution [6]

I=Iexp|— (r/a)], a= (2/2m) (1 - g?) "%,

where / is the resonator length; g=1—1//R; and R is the
radius of curvature of the mirrors. The geometric losses for
round mirrors of a finite radius r, have the form

g = exp[—ZTcNm(l — g2)1/2}, 3)

where N,, = r2 /21 is the Fresnel number for the resonator
mirrors. The ratio of the characteristic width Ar of the field
ring behind the mirror aperture to the characteristic dia-
meter of the TEM, mode is

Ar
2a

In2 2
s

where Ar is defined by the equality 7 (ry, + Ar) = ¢ 1 ().
The requirement that the losses be low 2¢, < 0.1 leads, in
accordance with expression (3), to the inequality N, (1—
gz)l/2 > 0.5. Substituting this inequality in formula (4)
gives Ar/2a < 0.1, i.e., the width of the ring will be far less
than the characteristic dimension of the mode.

By applying the Babinet principle to the circular pertur-
bation under study, we obtain that for low losses the
radiation scattered at the edge of the mirrors is virtually
not ‘captured’ by the operating TEMy, mode and is lost.
The total loss ¢, at this perturbation may be calculated by
formula (2), in which we should substitute the geometric
losses from expression (3).

Fig. 1 compares the losses calculated by formulas (2) and
(3) with the data of ‘classical’ paper [7], in which these losses
were calculated by numerically solving the integral equation.
A good agreement is observed for all the plots of the losses,
with the exception of the curves for a confocal (g = 0) and
plane-parallel (Fabry —Perot) (g = 1) resonators.

The resonators of two last types are at the stability boun-
dary of the known g, g,-diagram. For them, the perturbation
under consideration cannot be treated as small (for a plane-
parallel resonator, by definition). However, these resonators
find limited use in lasers because of their well-known disad-
vantages. Resonators with a parameter g = 0.5 — 0.9 are used
much more widely. For them, the average departure of the
curves calculated by formulas (2) and (3) from the accurate
losses is no greater than 15% (Fig. 1).

Also plotted in Fig. 1 are the results of calculation of these
losses by the familiar analytical formula from Ref. [8] [for-
mula (32)], which was derived using extremely complicated
and cumbersome transformations of the integral equation
and finding its approximate solution. The losses calculated
by formulas (2) and (3) virtually coincide with the data of
Ref. [8] for all values of the parameters g and N,. It is inter-

{n(ln 2)Np, (1 - gz) 1/2] 2

40 N,

Figure 1. Single-pass aperture losses of the TEM(, mode of a symmetric
resonator with round mirrors as functions of the aperture Fresnel number
for different values of the parameter g: the data of Ref. [7] (solid lines), cal-
culation by formulas (2) and (3) (dashed lines), and the data of Ref. [8]
(dash-dotted lines).

esting to note that both techniques give the same deviations
from the exact solution of Ref. [7] for a confocal resonator
(g = 0) and upon an approach to the plane-parallel resonator
(g =10.99). This suggests that these techniques describe,
despite a radical difference in approaches, virtually similar
approximate models of the problem under study.

3.2. Diffraction losses on a coupling aperture

The diffraction losses for the special case of a confocal
resonator with round coupling apertures at the centres of its
round mirrors were calculated by McCumber [9] employing
a rather complex method of solution of the integral
equation. Fig. 2 shows the total diffraction losses ¢, bor-
rowed from Ref. [9], as functions of the Fresnel number
N, =r2 /AL of the resonator mirrors for different Fresnel
numbers Ny = r¢ /AL (rq is the aperture radius) of the aper-
ture for the TEM,y,, TEMy;, and TEM;, modes. The
diffraction losses associated with the coupling aperture
correspond to the regions in Fig. 2 where the curves flatten
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Figure 2. Total single-pass diffraction losses ¢, of the resonator borrowed
from Ref. [9] (dashed lines), losses ¢;, on the coupling aperture calculated
by formulas (2) and (5)—(7) (solid lines), and total losses ¢, = 1—
(1 —¢,) (1 = ¢p), where ¢, stands for the aperture losses borrowed from
Ref. [9] (dash-dotted lines), as functions of the aperture Fresnel number
for different Fresnel numbers of the coupling aperture N, and different
TEM;; modes (the numbers in parentheses denote the mode indices).
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out, because here these losses significantly exceed the losses
¢, on the outer aperture of the mirrors. Also shown in
Fig. 2 are the losses ¢, =1—(1 —cg)2 on the coupling
aperture calculated by the simplest formulas for the
geometric losses ¢; for the TEM; modes:

Cé)O — 2TENO, (5)
¢! =1 [1+ (21N,)*] exp(—2nNy), (6)
¢’ = 1= (1+2nNp) exp(—2mNy). @

In the notation of the modes, recourse is made to the same
order of indices as in Ref. [9], i.e., the azimuth index comes
first and the radial one comes second.

One can see that the calculations by the technique under
discussion agree nicely with the data of Ref. [9], with the
exception of the range of excessively high N, (see Fig. 2)
for high N, for the TEM,, mode. This discrepancy is inherent
in the confocal resonator only and is explained by its boun-
dary ‘instability’ (see Section 3.1). For resonators away
from the stability boundary (g = 0.4 — 0.95), this discrep-
ancy should not take place. The losses calculated by the
technique outlined above agree closely with the data of
Ref. [9] also for other combinations of the parameters (the
mode, N,) not given in Fig. 2. For instance, for N, = 1073,
we obtain from formulas (2) and (7) that ¢’ = 0.0039%,
which is close to ¢i’ = 0.0036% from Ref. [9]. For N, =
10~ expressions (2) and (6) give ¢ = 0.126%, which is close
to ) = 0.107% from Ref. [9]. By and large, the results of cal-
culations employing formulas (2) and (5) — (7) depart from the
data of Ref. [9] by 6 —10% for the TEM,, mode, by 10 —15%
for the TEMy mode, and 12 —15% for the TEM,; mode. As
would be expected, this departure increases slightly as the
characteristic gradient scale dimension of the mode dec-
reases.

The dash-dotted lines in Fig. 2 show the total diffraction
losses ¢ =1 — (1 —¢,)(1 — ¢,) = ¢, + ¢, which include the
diffraction losses ¢, on the outer aperture of the mirrors in
the absence of coupling apertures borrowed from Ref. [9]
(the method under discussion is inappropriate for calculating
the aperture losses in a confocal resonator; see Section 3.1)
and the diffraction losses ¢, on the coupling aperture, which
were calculated using formulas (2) and (5) — (7). The proxim-
ity of these curves to the curves from Ref. [9] suggest that the
losses initiated by a small perturbation possess, as would be
expected, the property of additivity.

Note that the analytical formula for calculating the losses
of the TEM,, mode arising from round coupling apertures at
the centre of round mirrors of a confocal resonator, coincid-
ing with expressions (2), (5), can be obtained by elementary
rearrangements of formula (26b) from Ref. [9].

4. Conclusions

The technique for elementary calculation of low (less than
10 % in one pass; Sections 3.1 and 3.2) diffraction losses in
stable laser resonators described above is based on general
principles. First, this allows a radical simplification of the
calculations. Second, the method can be easily applied to
different, yet unsolved diffraction problems. The author has
repeatedly employed this technique to calculate the losses
due to different perturbations of the outer beam area and

the losses due to a coupling aperture in the mirrors of gas
waveguide lasers [4, 5].

The technique was also used to calculate the resonators of
a high-power submillimetre free-electron laser and a compact
free-electron laser with a planar waveguide [10, 11]. In all the
cases, the calculation was carried out employing general for-
mulas (1) and (2). The technique can also be easily applied to
various asymmetric problems that cannot be solved by the
methods developed in Refs [8, 9].

References

1. Kubarev V V Preprint No. 99-72 (Novosibirsk: Budker Institute
of Nuclear Physics, Siberian Division, Russian Academy of Sci-
ences, 1999)

2. Born M, Wolf E Principles of Optics (Oxford: Pergamon Press,

1969)

Hodges D T Infrared Phys. 18 375 (1978)

4.  Kubarev V V, Kurenskii E A Kvantovaya Elektron. (Moscow) 23
311 (1996) [Quantum Electron 26(4) 303 (1996)]

5. Kubarev V V, Kurenskii E A Kvantovaya Elektron. (Moscow) 22
1179 (1995) [Quantum Electron 25(12) 1141 (1995)]

bl

6. Kogelnik H, Li T Appl. Opt. 5 1550 (1966)

7. Li T Bell Syst. Techn. J. 44 917 (1965)

8. Lyubimov V V, Orlova I B Opt. Spektrosk. 29 581 (1970)

9. McCumber D E Bell Syst. Techn. J. 44 333 (1965)

10. Kubarev V V Presentation to the XII National Conf. on the Use of

Synchrotron Radiation, Novosibirsk, Russia, 1998
11.  Kubarev V'V IV Asian Symposium on Free Electron Lasers, Tae-
Jjon, Korea, 1999


http://www.turpion.org/info/lnkpdf?tur_a=qe&tur_y=1996&tur_v=26&tur_n=4&tur_c=655
http://www.turpion.org/info/lnkpdf?tur_a=qe&tur_y=1995&tur_v=25&tur_n=12&tur_c=551

