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Cooperative interaction of dressed atoms
with a quantised mode of the electromagnetic field

M Z Smirnov

Abstract. The nonlinear dynamics of an open quantum
system containing an arbitrary number of two-level atoms
coupled with a classical polychromatic electromagnetic field
and a quantised mode of the electromagnetic field is studied.
Two particular cases of the elastic and inelastic interactions
are considered. In the first case, the quantised mode is
resonant with the transition between the quasi-energy levels
corresponding to the same quasi-energy state, while in the
second case, the levels involved in the interaction corre-
spond to different quasi-energy states. For the elastic inter-
action, which can appear only in open quantum systems, an
analytic solution of the Heisenberg equations is obtained.
The time dependences of the population of quasi-energy
states, the number of photons in the quantised mode, and
photon statistics are numerically analysed for the inelastic
interaction and at the crossing point of quasi-levels, when
both types of the interaction are simultaneously present.

The number of papers devoted to the fundamental physical
models of quantum optics, the Jaynes—Cummings one-
atom model [1] and the Tavis—Cummings model [2] des-
cribing the cooperative interaction of the polyatomic system
with electromagnetic radiation, rapidly increases in recent
years. Various modifications of these models have been pro-
posed that consider several modes of the electromagnetic
field, multilevel atoms, and multiphoton transitions (see, for
example, Refs [3—7] and references therein).

Interest in physical models of this type is caused by a rapid
progress in experimental quantum optics, in particular, by
creation of a one-atom maser [8, 9] and laser [10] using beams
of cooled atoms and high-Q superconducting cavities. In
experiments with a one-atom maser, one of the most interest-
ing effects predicted by the Jaynes —Cummings model was
observed — collapses and revivals of oscillations of the popu-
lation inversion of atoms [9]. Various states of a quantised
mode of the electromagnetic field were investigated, includ-
ing squeezed states. A detailed review of theoretical and
experimental studies in this field is presented in book [11].

In Refs. [12, 13], an open modification of the Jaynes—
Cummings model was suggested that considers a dressed
atom and a quantised mode of the electromagnetic field.

M Z Smirnov Laser Center, St. Petersburg State University of Fine
Mechanics and Optics, Sablinskaya ul. 14, 197101 St. Petersburg, Russia

Received 30 December 1999
Kvantovaya Elektronika 30 (9) 821 - 823 (2000)
Translated by M N Sapozhnikov

By a dressed atom is meant a two-level atom interacting
with a classical electromagnetic field with the equidistant
spectrum. The absorption and luminescence spectra of
such an atom are determined by the quasi-energy level dia-
gram. The characteristic feature of the open model is the
possibility to control the positions of quasi-energy levels by
varying parameters of a classical field. In particular, in the
region of crossing and anti-crossing of these levels, the model
dynamics exhibits a number of specific features [14]. Another
feature of this model is the possibility of the elastic inter-
action of a dressed atom with a quantised mode when the
populations of quasi-energy levels do not change [12, 14].

Both these features are also inherent in an open poly-
atomic model, which is considered in this paper.

It was shown in Refs [13, 15] that the spectroscopic prop-
erties of a dressed atom, i.e., the atom located in a poly-
chromatic classical field with the equidistant spectrum, can
be described by the diagram of quasi-energy states (QESs)
and the spectrum of the quasi-energy levels. Each QES cor-
responds to an infinite sequence of the equidistant quasi-
energy levels separated by the energy gap /iw’, where o’ is
the difference of the frequencies of adjacent spectral compo-
nents of a classical field. When the parameters of a classical
field are changed, the quasi-energy levels are shifted and they
may cross with each other.

When a dressed atom is not subjected to any external per-
turbation, the operators of transitions between QESs are
integrals of motion in the Heisenberg representation. The
interaction between a dressed atom and a quantised mode of
the electromagnetic field results in the time dependence of
these operators. In this case, the timed dependences of
QES populations and the number of photons in the quantised
mode substantially depend on the type of quasi-energy levels
coupled by the transitions that are resonant with the quan-
tised mode. If the quasi-energy levels correspond to dif-
ferent QESs, the interaction dynamics is qualitatively the
same as that in the absence of a classical field. Emission
and absorption of photons is accompanied by the corre-
sponding change in the QES populations. In this case, a
term ‘inelastic’ interaction can be used.

However, if the involved quasi-energy levels correspond
to the same QES, the QES populations do not change
upon absorption and emission of photons. The interaction
of this type, which can be called ‘elastic’, is possible only
for open quantum systems, such as a dressed atom. In the
region of quasi-energy level crossing (approach), these two
types of interaction interfere, which can result in a number
of interesting phenomena, for example, the generation of
squeezed quantum states [13].
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Unlike previous papers, in this paper, a system of many
dressed atoms is considered that interact with a quantised
mode of the electromagnetic field. It is assumed that the
atoms have two levels and are located in a region whose
size is small compared to the wavelength [16]. A general
case is considered, when the effective Hamiltonian may con-
tain the terms describing both the inelastic and elastic
interaction.

The expression for the effective Hamiltonian can be
obtained by summing the corresponding expression for the
one-atom Hamiltonian from Ref. [13] over the atoms of
the system under study. This expression can be conveniently
represented in terms of cooperative atomic operators
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Here, k is the number of an atom; N is the number of
atoms; @ and @ are the annihilation and creation operators
for photons of the quantised mode; ¢, and &, are operators
of the transition of the kth atom from the quasi-energy
state |6,), to the state |6)), and back (the ‘plus’ sign means
Hermitian conjugation); o« and j are constants of the
‘elastic’ interaction; f is a constant of ‘inelastic’ interaction.
All the notations correspond to Ref. [13]. The constants of
interaction of different atoms with a quantised mode are
assumed equal to each other.
By introducing the time evolution operator

i(t) = exp (— iHt), (3)

we consider the time dependence of the following average
quantities, which characterise a coupled system of dressed
atoms and a quantised mode: the average number of
photons in the quantised mode
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The angle brackets in Eqns (3)—(7) denote quantum-me-
chanical averaging over the initial quantum state of a
coupled system of dressed atoms and a quantised mode; t =
#,w't is the dimensionless time; and 5, is a constant of the
interaction between an atom and the quantised mode [13].

Below, we will consider only those quantum states of
dressed atoms that are symmetrical relative to the atom inter-
change. These symmetric states can be represented in the
form (cf. [16, 17])
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where the index m runs all the values from —N/2 to +N/2
with a unit step. Summation in Eqn (8) is performed over
all permutations ¢ = {6,0,,...,0y} of numbers 1,2,
..., N. In the Hilbert space of dressed atoms and a quan-
tised mode, the basis of the states

Im) |n), m=—N/2, =N/2+1,...,N/2, n=0,1,2....(9)

can be chosen, where |n) are the Fock states of a quantised
mode containing n photons.

The right-hand sides of equations (4)—(7) can be calcu-
lated analytically in the case of purely ‘elastic’ interaction
when we have « =y = 0, § # 0 in expression (2) for the effec-
tive Hamiltonian. Consider a quantised mode excited initially
to the coherent state |v) (so that a|v) = v|v)) and a system of
dressed atoms excited to the symmetric state |m),, so that the
wave function of the total system has the form |m)|v).

The operators under the sign of quantum-mechanical
averaging in expressions (4), (5), and (7) can be rewritten
in the normally ordered form by using known methods of
operator algebra [18]. As a result, we obtain the following
relations

ii(t) = v —2mp <%, (10)
An(t) =n(1), F(r)=1, (11)
Ny(7) :g—m Ni(7) :g—l—m (12)

One can see from the solution obtained that photons in the
quantised mode are always described by the Poisson sta-
tistics, while the QES populations do not change with time.

In the general case, the dynamics of a polyatomic model
can be studied by numerical methods by using the matrix rep-
resentation of the effective Hamiltonian in the basis of states
(9). As an example, Fig. 1 shows the time dependences of the
number (n) of photons in the quantised mode (solid curves),
the population N| of the quasi-energy states |0;) (the dashed
curve in Fig. 1a), and the Fano factor F (the dashed line in
Fig. 1b) for a system of dressed atoms excited initially to
the |0;) state and for a quantised mode excited initially to
the coherent |v) state.
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Figure 1.

One can see from Fig. 1 that after a few first oscillations,
the dependence on the initial conditions virtually vanishes
and the system transfers to the state that can be treated as
equilibrium. In this state, the relative fluctuations of the num-
ber of photons and populations of quasi-energy levels are
small and irregular.

The use of dressed atoms, whose quasi-energy levels can
be controlled by an external classical field, represents a nat-
ural development of the modern technique of atomic beam
masers and lasers. By changing the amplitude of the classical
field, one can produce lasing on a variety of quantum transi-
tions between quasi-energy levels and observe the resonances
caused by crossing and anti-crossing of these levels. If the
upper and lower quasi-energy levels correspond to the
same quasi-energy state, the interaction of a quantised
mode with a dressed atom will be elastic. In this case, as fol-
lows from relations (10)—(12), the energy efficiently transfers
from a classical field to the quantised mode, the populations
of quasi-energy states being invariable. Depending on the
atomic beam density, one or several atoms can interact simul-
taneously with the quantised mode. In the latter case, the
efficiency of energy transfer can substantially increase.

To describe adequately different experiments with atomic
beam masers and lasers, it is necessary to develop further the
theory of an open polyatomic model. In particular, one
should consider relaxation both of the atoms and a quantised
mode, analyse excitation fluctuations, which depend on the
atomic statistics in a beam, study the squeezing of quadrature
components of the quantised field, etc.
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