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Dynamics of injection locking in a solid-state laser
with intracavity second-harmonic generation

11 Zolotoverkh, E G Lariontsev

Abstract. The dynamics of oscillation in a solid-state laser
with intracavity second-harmonic generation under the
influence of an external signal at the second-harmonic fre-
quency injected into its cavity in the presence of feedback at
the double frequency is theoretically studied. Boundaries of
the regions of injection locking for three stationary laser
states differing in the nonlinear phase incursion caused by
radiation conversion into the second harmonic are found.
Relaxation oscillations in the stationary state of injection
locking are studied. It is shown that the second relaxation
frequency, which is related to phase perturbations of the
second harmonic and perturbations of the phase difference
of waves in a nonlinear crystal, is excited in a single-mode
solid-state laser in addition to the fundamental frequency of
relaxation oscillations. Conditions are found under which
relaxation oscillations at the second relaxation frequency
are excited.

1. Introduction

The physics of phenomena accompanying the injection of
external radiation into a laser is well studied. These phe-
nomena are of considerable importance for the study of
fundamental problems of the nonlinear dynamics (such as
dynamic chaos, locking of regular and chaotic oscillations,
multistability, etc) [1—-3] and the formation of squeezed
light [3—6]. Injection locking is of applied interest in imp-
roving emission characteristics of high-power lasers. Here,
we study previously unsolved aspects of these phenomena
related to injection of optical radiation into a solid-state
laser generating the second harmonic in a doubly resonant
cavity (by a doubly resonant cavity is meant a cavity having
a high Q factor both at the fundamental frequency w and
the double frequency 2w).

Previous studies on frequency doubling [7—12] and self-
doubling [13-16] in a cavity have been mainly performed
for systems in which the second harmonic was outcoupled
from a cavity upon a single round trip (feedback at the fre-
quency 2w was absent). In papers [17-20], SHG in a
doubly resonant laser cavity has been theoretically studied.
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Such lasers have three stationary states [20], which differ
in the nonlinear phase incursion associated with conversion
into the second harmonic and in oscillation frequencies. Opti-
cal injection into such lasers may be useful to study nonlinear
shifts of radiation frequency. Moreover, as will be shown,
nonlinear frequency conversion in a cavity affects the dyna-
mics of phase locking of radiation by an injected signal and
leads to the appearance of one more frequency of relaxation
oscillations in a single-mode solid-state laser.

Injection locking in a laser with intracavity SHG can be
realised by two methods. In addition to the conventional
method, which uses injection of an external signal at the fre-
quency oj;, close to the laser frequency o (w;, =~ ), one can
use another method with an injection signal at the frequency
Wi, ~ 2. Here, we analyse the second method.

2. System of equations and the stationary regime
of injection locking

The system of rate equations describing the dynamics of
injection locking in a solid-state laser with SHG in a doubly
resonant cavity will be written in the form
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Here, a;, = (11_,2/15)1/2 and ¢, , are dimensionless amplitu-
des and phases of the intracavity fields at the fundamental
and double frequencies, respectively; I;, are their inten-
sities; I, is the saturation intensity of an active medium,;
V=20, — ¢y E, = (Im/IS)l/2 is the dimensionless ampli-
tude of the injected signal; k;, are linear losses in the
doubly resonant cavity; w;., and w,. are natural frequencies
of the doubly resonant cavity; k;, is the transmittance of the
mirror through which an external signal is injected; T is the
round-trip time for light travelling in the cavity; ¢ = (;{I)ZIS
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is the nonlinearity parameter; y is the coefficient of non-
linearity; / is the length of an active (nonlinear element); 7}
is the relaxation time for inverse population; N is inverse
population normalised to its threshold value; and N is the
value of N in the absence of saturation.

The phase-matching condition in a nonlinear crystal is
assumed to be fulfilled. For a single-mode solid-state laser,
the relative detuning of the fundamental frequency from
the gain line centre is small, and its effect will be ignored.
First, we consider the stationary regime of injection locking
in the specific case when the injection signal frequency w;,
coincides with the natural frequency of the cavity for the sec-
ond harmonic w,., which is equal to its double frequency for
fundamental radiation 2wy,.

It follows from equations (1) — (5) that stationary solutions
in this case should satisfy the conditions

cosiyy =0, singp, =0. ©6)

The problem may have several stationary solutions, which
differ in signs of siny and cos¢,, but only one of them may
be stable, and it is given by

ll/ = T[/27 Py =T (7)

If phase relations (7) are fulfilled, the intracavity field
amplitudes are determined by the formulas
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where A = kiky/e; B=1+ A — 2k, E;, /5.

Let us analyse the stability of solution (7), (8). One can
easily show that the characteristic equation for small pertur-
bations is divided into two, and we obtain a cubic equation for
perturbations of the variables a;,a, and N relative to their
stationary values (8) and a quadratic equation for perturba-
tions of ¢, and  relative to the stationary values (7). The
analysis of these equations shows that the injection of an
external signal produces the second (additional) frequency
of relaxation oscillations in a single-mode solid-state laser
with SHG in a doubly resonant cavity. The fundamental freq-
uency of relaxation oscillations (w,;) is associated with per-
turbations of radiation intensity and population difference,
whereas the additional frequency (w,,) is related to phase per-
turbations of the second harmonic and perturbations of
phase difference in a nonlinear crystal.

The cubic equation determines damped perturbations at
the fundamental frequency of relaxation oscillations w,;, and
the quadratic equation gives the following expressions for the
frequency w,, and the damping factor (or the enhancement
factor) y of relaxation oscillations:
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The stationary values of amplitudes a; and @, in (9) are
determined by formulas (8). Note that formulas (6)-(9)
describe the stationary mode of operation and its stability
for any value of N, (for any pump). Depending on N,
they describe a degenerate optical parametric oscillator

(Ny = 0), a degenerate parametric oscillator with regenera-
tive amplification at the frequency o (0 < Ny < 1), and a
laser with intracavity SHG and optical injection at the fre-
quency 2w (Ng > 1).

Fig. 1 presents the dependences of the dimensionless out-
put intensities kla% and kzag and the frequency of relaxation
oscillations w,, on the dimensionless injection signal intensity
ki, E2 for different N,. Stable solutions are shown by solid
curves, and unstable solutions are shown by dotted curves.
The calculations were performed assuming that & = 5 x 107,
T.=0.2ns, k; =0.01,and k, = 0.01. These parameters (ex-
cept k,) correspond to parameters of the Nd : YAG laser
with SHG in a KTP crystal 5 mm long, which was used in
[9—11]. Dependences in Fig. la correspond to a parametric
oscillator (N, = 0). In this case, ka3 first linearly increases
with increasing k;, E;> and then, above the threshold of para-
metric oscillation, an increase in k,a3 sharply slows down and
the conversion of the second harmonic to the fundamental
frequency causes an increase in k,a:. The threshold of para-
metric oscillation considerably lowers with increasing N,
and when N, > 1, it is absent (parametric oscillation is
excited for the amplitude E;, as small as is desired).
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Figure 1. Dependences of the dimensionless output intensities k;a? (7),
k»d3 (2) and the frequency of relaxation oscillations w;, (3) on the dimen-
sionless intensity of an injected signal k;, E2 for ¢ = 5 x 1075, T, = 0.2 ns,
ki =0.01,k, =0.01, and Ny = 0 (a), 2 (b), and 6 (c). Stable solutions are
shown by solid curves, and unstable solutions are shown by dotted curves.
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In the case of a laser (N, > 1), the second-harmonic inten-
sity k,a3 nonmonotonically varies with increasing ki, E.
First, it monotonically decreases down to zero and then
increases (Figs 1b and Ic). The laser radiation intensity
k,a} monotonically increases with increasing k;, E;2, which
is explained by parametric conversion of the injected signal
into laser radiation.

One can see from Fig. 1 that the frequency w,, weakly
depends on the pump power. This directly follows from
(9). If the decrement is small (y < w,,), formula (9) for w,,
takes the form

Wy = (kinEin\/E)l/z/Tm

For a specified amplitude of the injection signal, the
frequency w,, for a laser (N, > 1) and for a parametric
oscillator (Ny =0) has close values. For a parametric
oscillator, relaxation oscillations have been studied earlier
in [21-23].

The stability of the stationary regime of injection locking
(7), (8) depends on the pump level. Let N, be written in the
form Ny =1+n, where n is the excess of pump power
over the threshold. For  below the critical value

3 @22+%%+£;
=172 e 2%,
the stationary solution (7), (8) is stable for any injection

signal amplitude. But if > n, and an injection signal has a
low amplitude satisfying the inequality

Ve(n —np)
kinEin < )
2+kay/ky

(10)

(11)

a Hopf bifurcation arises. As a result, relaxation oscillations
with the frequency w,, are self-excited, and stationary
injection locking changes to the self-modulation regime.

3. Boundaries of injection locking regions

We have already noted that the analytical expressions
presented above describe a particular case of injection
locking. In the general case (for arbitrary detunings
Wiy — 0y, and w,, — 2m;.), one can easily obtain from
(1)—(5) the following formulas for stationary injection
locking:
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These formulas determine parametric dependences of
N,ay, and E2 on . Specifying the parameter af, one
can calculate N,a,,{ and Ehz1 from expression (12).

Using formulas (12), we studied the region of existence of
injection locking. Injection locking is possible in a finite
region of frequency detunings w;, — w,., which is determined
by the inequalities Q) < wj, — Wy, < £,, where Q, , are the
boundaries of the region of injection locking.

If an injection signal is absent and the cavity frequency
detuning A = w,, — 2w, = 0, a laser with SHG in a double
cavity may have three stationary states [20], which differ in
nonlinear phase incursion associated with conversion into
the second harmonic, and in the oscillation frequency. In
the presence of an injected signal, these states are character-
ised by three regions of injection locking. For n below the
value 7y, which is determined by formula (10), there exists
only one state, which has cosy = 0. This state has a zero non-
linear frequency shift, and its oscillation frequency coincides
with the mode frequency w;. of the cavity. In this case, we
have only one region of injection locking. For ¢ = 5 x 1072,
ki =0.01, and k, = 0.01, the quantity # has the critical value
1o = 2. The dependence of the width of the injection locking
region on the dimensionless intensity of an injected signal
ki E2 for n < 1y and A = w,.— 2w, =0 is presented in
Fig. 2a.
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Figure 2. Dependences of the boundaries of injection locking regions on
the dimensionless intensity of an injected signal ki, E2 for ¢ = 5 x 107>,
T.=0.2ns, k; =0.01,k, =0.01, and n = 1 (a) and 5 (b). The instability
re

For 17 > 5, and E;2 = 0, the state with cosy = 0 becomes
unstable and two other states appear. Their oscillation fre-
quencies w, are shifted because of nonlinear phase shifts:

Dy p = D¢ + (N8 (13)

where @, is the nonlinear shift of the oscillation frequency,
which is determined by the formula

1 Te(n —ky/2ky) (@)2]1/2.

T, | 2+ky/k 2 (14

Wy =
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The dependence of the boundaries of injection locking
regions on the dimensionless intensity of an injected signal
kinEiIz1 for n >y, and A = w,, —2w;. =0 is presented in
Fig. 2b. In this case, we have three injection locking regions,
whose centres correspond to the oscillation frequencies w,
and w,, in the states considered above. For n > 5, and
low intensities of an injected signal, an instability takes place
inside the region centered at the frequency w,., which is
caused by self-excitation of relaxation oscillations at the fre-
quency ., (the instability region in Fig. 2b is shaded).

4. Conclusions

Our analysis of injection locking in a solid-state laser with
intracavity SHG in the presence of an injected signal at the
second harmonic showed the existence of three regions of
injection locking, which correspond to three stationary
lasing regimes. Centres of these regions correspond to laser
oscillation frequencies in the absence of an injected signal,
and the difference in their central frequencies directly gives
the nonlinear shift of laser radiation frequency.

We showed that the second relaxation frequency may
appear in a single-mode solid-state laser in addition to the
fundamental frequency of relaxation oscillations, and this
additional frequency is associated with phase perturbations
of the second harmonic ¢, and perturbations of phase differ-
ence ¥ in a nonlinear crystal. Conditions of excitation of
relaxation oscillations at the second relaxation frequency
are found. For pump levels both above and below the laser
threshold, the fundamental frequency output increases with
increasing injected signal amplitude, which is related to the
parametric conversion of the injected signal frequency into
the fundamental frequency.
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