
Abstract. A method for controlling the refractive index that
is based on the backward rescattering of the scattered and
amplified electromagnetic waves is proposed and analysed.
The resulting field is a sum of the initial (probe) wave and
the rescattered wave. The effective wave number of the total
wave can be varied by varying the gain. This variation in the
wave number can be treated as a variation in the refractive
index, although the physical properties of the medium do
not change. The effective refractive index for the total wave
propagating in such a device was called the virtual refractive
index.

1. Formulation of the problem
The creation of a medium with a large controlled refractive
index would allow new approaches to the construction of
optical devices. For example, if the refractive index of the
material of a lens could be controlled, the lens would beco-
me a zoom lens, allowing the construction of interesting
technical devices.

The simplest solution to the problem of controlled refrac-
tive index could be based on the use of nonlinear pola-
risability. By applying a strong external field, one can change
the polarisability (and, therefore, the refractive index) of a
medium for another, weak field. This straightforward app-
roach has the drawback that the application of a strong
controlling field can only reduce the effective polarisability
of the medium. Therefore, one cannot count on an appreci-
able increase in the refractive index, especially in the
optical frequency range.

In this work, we discuss the possibility of not only varying
but also significantly increasing the effective refractive index
of a medium by applying an external perturbation. The
method was inspired by Lorentz's notion of the local field
[1, 2]. According to Lorentz, each particle of matter is sub-
jected to the action of the local field, which is a sum of the
average (Maxwell) field E and the additional field Eaux pro-
duced by the surrounding polarised particles:

E loc � E � Eaux; Eaux � �4p=3�P: (1)

In the linear approximation, P � aNE loc, where a is the
polarisability of a single particle andN is their concentration.
As a result,

P � wE; w � aN
1ÿ �4p=3�aN . (2)

Formally, expression (2) permits very large values of the
refractive index n � ��

e
p � (1� 4pw)1=2. Indeed, the polar-

isability a can be made purely real in atomic gases by using
the so-called L-scheme of excitation [3 ë 5]. In this case,
according to Eqn. (2), we have w!1 for N ! Ncr �
3=(4pa).

However, the practical realisation of this idea is problem-
atic due to the fact that the polarisability a ceases to be
constant for N5lÿ3 (l is the radiation wavelength) and
starts to decrease approximately as 1=N. Usually, 3=(4pa)4
lÿ3, and w approaches a value near aN with increasing par-
ticle concentration.

The method proposed in this work consists in the creation
of a sufficiently strong additional field that is proportional to
the external field. It can be realised using the scheme shown in
Fig. 1. A wave of the external field E(r; t) enters the probed
sample (p-sample) and is partially scattered in it. The scat-
tered wave is amplified in the amplifier and forms another
wave Ec(r; t), which undergoes secondary scattering, thus
forming the additional field. Hopefully, for sufficiently large
gains, the effective polarisability will also be large and con-
trollable by the variation of the amplifier parameters. The
following calculations show how justified these hopes are.
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Figure 1. Schematic of the setup for the control of the refractive index: (p)
p-sample with controlled refractive index, (a) amplifier medium, (m) mir-
rors of the amplifier cavity.



2. Effective polarisability
We will consider the case of the monochromatic éeld

E�r; t� � E�r� exp�ÿiot�: (3)

It follows from the Maxwell equations that

H� H� E�r� ÿ k20E�r� � 4pk20P�r�; (4)

where P(r) � w(r)E(r) and w(r) is the dielectric susceptibility.
Suppose that

w � wa � wp � dw�r�; (5)

where wa is constant over the ampliéer medium and vani-
shes in the p-sample, whereas dw�r� is nonzero in the p-
sample and vanishes in the ampliéer medium. In the fol-
lowing calculations, we will assume that the scattering is
induced by the spatial dependence dw(r) of the dielectric sus-
ceptibility of the p-sample. This dependence may be due to
density êuctuations or an artiécial periodic structure
(superlattice). In this work, we consider the scattering by
density êuctuations (Rayleigh scattering); the scattering by
a superlattice will be considered elsewhere.

To simplify equation (4),we divide the field into two parts:

E�r� � E0�r� � dE�r�; HE0�r� � 0: (6)

If we assume that the quantities dw(r) and dE(r) are small
and neglect their product, it follows from the condition
H�(1�4pw)E � � 0 that

dE�r� � ÿ 4p
e
dw�r�E0�r� � rotC ; e � 1� 4p�wa � wp�; (7)

where C is an arbitrary vector, which can be taken equal to
zero. Simple transformations using Eqn. (7) énally result in
the equation

H2E0�r� � k20eE0�r� � ÿ
4p
e
H� H� �dw�r�E0�r��: (8)

2.1. Ampliécation of the scattered wave

In accordance with the geometry of the problem, we rep-
resent the éeld E0(r) as the sum of the probe (Ep(r)) and
cavity part (Ec(r)) components

E0�r� � Ep�r� � Ec�r�;
(9)

Ep�r� � EpUp�r�; Ec�r� � EcU c�r�:

where Up(r) and Uc(r) are assumed to be orthogonal to
each other. To derive the equation for the cavity éeld, we
multiply the both sides of Eqn. (8) by U c(r) and integrate
over the total volume of the system. In doing so, we neglect
the diffraction due to énite dimensions of the system
components. This can be done because, in this problem, we
are interested in the scattering at large angles, whereas the
diffractional scattering occurs at small angles provided that
the dimensions of the scatterer are much larger than the
wavelength.

Finally, we obtain the relationship

Ec �
1

Dÿ i=Q

ÿ
RccEc � RpcEp

�
; (10)

where the following notation is used:

D � 1ÿ o2
c

o2

 !
eaVac � epVpc

Vcc
;

1
Q
� e 00aVac � e 00pVpc

Vcc
; (11)

jp;c �
4p
ep

H� H� �dw�r�Up;c�r��;

Rpc �
1
Vcc

�
p
jp�r�U�c�r�dr; Rcc �

1
Vcc

�
p
jc�r�U�c�r�dr: (12)

Vcc �
�
c
jUc�r�j2dr; Vpc �

�
p
jUc�r�j2dr ;

Vac�
�
a
jUc�r�j2dr:

The subscripts in Eqns (12) denote the integration over
the total cavity volume (c), the amplifier volume (a), or the
p-sample volume (p).The cavity eigenfrequencyoc appearing
in Eqn. (11) is determined by the equation

c2H2 � o2
ce
0

� �
Uc�r� � 0 (13)

and the appropriate boundary conditions. We assume that
the imaginary part e 00a of the permittivity of the ampliéer
describes the balance between the gain in the active medium
and possible losses (for example, due to the énite reêectivity
of the cavity mirrors). In Eqn. (10), we did not express Ec
explicitly in terms of Ep to simplify the subsequent cal-
culation of average values.

2.2. The equation for the wave vector of the probe éeld

To determine the effective refractive index, we have to
derive the equation for the modulus of the probe éeld wave
vector. To do this, suppose that

hdw�r�i � 0; hdw�r�dw�r 0�i � Sd�rÿ r 0�; (14)

where the correlation amplitude S is a characteristic of the
medium. This is a standard assumption in the studies of
Rayleigh scattering [6,7]. Assume also that

Up�r� � Vp�r� exp ikpz; Uc�r� � Vc�r� cos kcx; (15)

where the functions Vp;c�r� vary slowly compared to
exp ikpz and cos kcx.

Using these assumptions and carrying out the calcula-
tions described in the Appendix, we obtain the following
equation for the wave number kp:

k2p ÿ k20ep � k2pK � ik0K; (16)
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where K is the extinction coefécient;

K � K 0 � iK 00; K 0 � G
Axÿ B

x2 � 1
; K 00 � G

A� Bx

x2 � 1
; (17)

G � 8p2
k2c
k20

Vcp

VccVpp
Q; A � Re

S
e2p

; B � Im
S
e2p
: (18)

Below, we assume that (kc ÿ k0)k0 5 1 and, cor-
respondingly, k2c=k

2
0 � 1.

In a transparent sample, kp is real. From Eqn. (16), it fol-
lows that kp can be real only if

k2pK
00 � k20e

00
p � k0K � 0: (19)

In this case,

k2p �
k20e

0
p

1ÿ K 0
. (20)

Formula (20) is similar to relationship (2), with the dis-
tinction that K 0 depends on the gain and can be controlled
by varying it. It follows from Eqn. (20) that kp can be arbi-
trary large if K 0 ! 1. However, Eqn. (20) ceases to be
valid if (kp)

ÿ1 approaches the correlation length rcor of the
function dw(r). In this case, the approximation of the corre-
lation function by a delta function is no longer valid; the-
refore, kp cannot exceed 1=rcor.

Taking into account Eqn. (20), we can rewrite Eqn. (19)
as

K 00 � 1
e 0p

e 00p �
K
k0

� �
�1ÿ K 0� � 0: (21)

IfK 0 is close to unity, Eqn. (21) reduces to the relationship
K 00 � 0. According to Eqns (18), we then have

A � ÿBx; K 0 � ÿGB: (22)

Thus, we have reached the important conclusion that B
must be negative.

The crucial question is whether K 0 can be made arbitrary
close to unity. Since K 0 is proportional to the quality factor Q
and coefficient B, we have to estimate these quantities.

2.3. The attainable Q factor

Seemingly, the Q factor can be made arbitrary large by
increasing the gain. However, as the gain approaches the
lasing threshold, the risk appears that the êuctuation of the
ampliéer parameters (érst of all, the pumping power) will
make it slip to the lasing regime. The passage to the lasing
regime disrupts the linear relation between Ec and Ep (10)
and thereby the entire considered scheme of the refractive
index control. Therefore, the attainable Q factor is limited
by êuctuations. This means that the Q factor deéned by
equation (11) cannot exceed

Qmax �
Dÿ

de 00a
�2E1=2 Va

Vcc

� �ÿ1
: (23)

Suppose that je 00aj � baNa, where Na is the concentration
of the active particles created by the pumping. If the pumping
fluctuations follow Poisson statistics, then

Dÿ
de 00a
�2E1=2 Va

Vcc
� ba

1
Vcc

Dÿ
dNaVa�2

E1=2

� ba
1
Vcc

D
NaVa

E1=2
: (24)

If the amplifier is near the self-excitation mode and most
of the losses occur in medium of the p-sample, we have

bahNaiVa � wp
00Vpc: (25)

Inserting Eqns (24) and (25) in formula (23), we obtain

Qmax �
Vcc

�bae 00pVpc�1=2
: (26)

To give an example, we estimate Qmax of a semiconductor
ampliéer. For GaAs, we haveba � 2�10ÿ19 cm3; in a metal,
e 00p � 0:5ÿ 1, Vcc � 1 cm3, and Vpc10

ÿ3 cm3. This énally
leads to Qmax � 1012. For obvious reasons, the allowed
spectral range of the probe signal is limited by the ratio
o=Q.

2.4. Coefécients A and B
This speciéc form of coefécients A and B depends on the
material of the p-sample. As an example of the p-sample,
we will consider the suspension of dielectric or metallic
nanospheres in a liquid or a solid. It is implied that the
diameter of the nanospheres is much smaller than the
wavelength.

The Rayleigh scattering of radiation by nanospheres was
studied in Ref. [8]. It was shown that the correlation ampli-
tude S is given by the equations

S � �da�2Nb; da � b3
eb ÿ es
eb � 2es

; (27)

where b is the nanosphere radius; eb and es are the dielectric
susceptibilities of the nanospheres and the suspender,
respectively; and Nb is the nanosphere concentration. Sup-
pose that b � 10 nm and Nb � 1017 cmÿ3. In this case,
nanospheres occupy 40% of the suspension volume and,
according to the Clausius ë Mossotti relationship (Ref. [9],
p. 373), �epÿ1�=�ep� 2��0:4�eb ÿ 1�=�eb � 2� � 0:6�es ÿ 1�=
�es � 2�:

Wewill assume that the dielectric susceptibility of the sus-
pender is purely real. Then, according to formula (18),
coefficients A and B of the suspension depend on the param-
eters e 0b; e

00
b and es, resulting in a great number of different

variants of these coefficients. Figs 2 and 3 show some of these
variants for the coefficient B. First, one can see that the
dependence of B on the medium parameters is not monoto-
nous. Second, it turns out that there are intervals of
parameter values where the coefficient B is negative, as
required. Third, one can see that the coefficient B can be
appreciable for negative values of e 0b:

On the problem of controlled refractive index 811



It is known that, for the optical frequency range in metals,
e 0b < 0 [10]; therefore, suspensions of metallic nanospheres
are promising for our purposes. The nanosphere dimensions
should be lower than the thickness of the skin layer at the
mentioned frequencies, which agrees with the value of the
nanosphere radius introduced above. One should therefore
use nanospheres with the radius of the order of 10 nm. For
a nanosphere concentration of Nb � 1017 cmÿ3, we then
have B � 10ÿ17 ÿ 10ÿ16. Given an attainable Q factor of
the order of 1012, we can count on K 0 � 10ÿ3, which is rather
far from the desired unity.

There is a possibility to increase significantly the Q factor
and, therefore, the quantity K by modulating the gain in such
a way that it periodically passes through the threshold value.
In this case, as the gain approaches the threshold from below,
the system may be in a mode with a large refractive index.
However, this approach requires that the system operate in
a pulsed mode.

The coefficientK can be drastically increased by changing
the system geometry. The geometry of the amplifier shown in
Fig. 1 allows using only a small fraction of the scattered light.
A significantly greater part of the scattered light can be used
in a systemwith the cylindrical or spherical geometry (Fig. 4).
In the case of the cylindrical geometry, the usable fraction of
the scattered light increases by a factor of 2pR=l, where R is
the radius of the cylindrical p-sample. In the case of the sphe-

rical geometry, the enhancement factor equals (2pR=l�2,
where R is the radius of the spherical p-sample. For R �
0.1 cm and l � 1ÿ 0:5 mm, the enhancement factor of the
cylindrical geometry is 104, which is enough to reach the
required values of coefficient K near unity.

The field distribution in cavities with the cylindrical or
spherical geometry is inhomogeneous along the radius.
This fact calls for a special analysis of the systems with a
cylindrical or spherical shape.

Apart from the nanosphere suspension, we studied vari-
ous resonance media: atomic gases, atoms embedded in a
matrix, and quantum dots. The two-level approximation
was used in the calculations. All mentioned media produce
noticeably worse results than the nanosphere suspension.
In the resonance media, saturation of the resonance transi-
tion can be a harmful factor that strongly limits the inten-
sity of the input (probe) wave. In gaseous media, the attain-
able Q factor is also limited by the fast dissipation of fluc-
tuations under the influence of sound waves.

3. Conclusions

The performed analysis shows that the proposed method
for the control of the refractive index is physically gro-
unded. However, further investigation is needed to solve
this problem. First, the systems with the cylindrical or sphe-
rical geometry require further analysis. Second, one should
consider the possibility of manufacturing the p-sample from
the material that can be kept at the temperature of a phase
transition and then utilising the critical opalescence [6, 7].
Materials with the fractal structure can also be expected to
produce strong scattering. Third, in the case of a suféciently
strong éeld Ec, four-wave mixing can play an important
role that was neglected in this discussion.

An obvious modification of the proposed method is the
use of a periodic structure, such as a superlattice or a pho-
tonic crystal, as the p-sample. Unlike the Rayleigh scatte-
ring, the scattering by regular structures is coherent and
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Figure 2. Quantity B=b6Nb as a function of e 00b for es � 2 and e 0b � 10 (1 )
and 2 (2 ).

ë 3.5

600 B=b6Nb

300 1

0

ë 300

ë 600

ë 4.5 ë 4.0

2

eb
0

ë 900

Figure 3. Quantity B=b6Nb as a function of e 0b for es � 2 and e 00b � 0:5 (1 )
and 1 (2 ).
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Figure 4. (a) Cylindrical variant of the system: the cross section of the
setup by the plane perpendicular to the propagation direction of the probe
wave. (b) Spherical variant of the system: the cross section of the setup by
the great-circle plane parallel to the propagation direction of the probe
wave.The notation is the same as in Fig. 1.
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therefore more intense. However, in the case of scattering by a
periodic structure, the effective wave number kp is rather rig-
idly fixed to the structure period,which limits the possibilities
for its control. One should also keep in mind that, in peri-odic
structures, there exist forbidden bands of the wave vector.
These circumstances call for a special treatment of the prob-
lem of utilisation of periodic structures in the systems with
the controlled refractive index.

The choice of the active medium of the amplifier is also an
important problem. Here, the main problem is how to sup-
press the amplification of the spontaneous emission
(superluminescence). It can be solved by using a suitable
two-component medium. One of the components should be
amplifying, whereas the other should be an absorber with
a low concentration of absorbing particles and a large absorp-
tion cross section. This would provide sufficiently strong ab-
sorption and a weak intensity of the saturating field. Such a
medium has a threshold with respect to the initial intensity of
the amplified field [11,12]. This threshold should be chosen so
as to prevent the amplification of the spontaneous emission,
but it should not hinder the amplification of the scattered
radiation. If the gain medium is solid, one can manufacture
a layered sample with periodically interchanging amplifying
and absorbing layers. The material of the absorbing layers
should satisfy the conditions mentioned above.

A high quality factor Q of the amplifier allows the effi-
cient control of the group velocity, which was successfully
realised in Refs [13,14]. For Q � 1011 ÿ 1012, the group velo-
city can be reduced to a few centimetres per second.

The system considered in this paper is based on the use of
an amplifier and therefore can be termed as an `active sys-
tem'. Passive slowing systems are widely used in micro-
wave devices (see Ref. [9], p. 45, and Ref. [15]). Similar sys-
tems for the optical range are also possible.

One of such systems can be a string of dielectric micro-
spheres threaded by a dielectric waveguide. When a wave
propagates in such a waveguide, electromagnetic oscillations
are induced in the microspheres by the near-surface fields of
the waveguide and the microspheres. The whispering-gallery
modes of microspheres have high Q factors. By retaining the
energy of the propagating wave, they slow it down.The super-
crystals composed of microspheres should possess similar
properties.
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Appendix

Suppose that the éelds Ep and Ec are polarised along the y-
axis. Then, introducing the unit vectors ej ; j � x; y; z, we
recast the right-hand side of equation (8) to the form

H� H� dw�r�hE�r�i� � � ÿ q2

qxqy
�E�r�dw�r��

( )
ex

� ÿ q2

qx2
�E�r�dw�r�� ÿ q2

qz2
�E�r�dw�r��

( )
ey

� ÿ q2

qzqy
�E�r�dw�r��

( )
ez: (A1)

The projections of the vector j on the axes x and z can be
neglected in equation (A1) since the fields are slowly varying
along the y-axis. Thus,

H� H� dw�r�hE�r�i� � � ÿ q2

qx2
�E�r�dw�r��

(

ÿ q2

qz2
�E�r�dw�r��

)
ey: (A2)

Next, a series of routine operations is required: replace Ec
in Eqn. (A2) by its expression through Ep (10); introduce
the resulting relationship into equation (8); multiply the
both sides of the new equation by Up(r) � Vp(r) exp kpz and
integrate the products over the total system volume, taking
into account the orthogonality of Up(r) and Uc(r); and
carry out the statistical averaging. The statistical averaging
has to do with averages of the following type

qm

Zm
dw�r� q

n

Zn
dw�r 0�

� �
; (A3)

where Z stands for x or z; m; n � 0; 1; 2: To calculate these
quantities, we use the relationship

�
dx
�
dx0

q m�nd�xÿ x0�
qxmqx0n

f �x; x0�

� �ÿ1�m�n
�
dx
�
dx0d�xÿ x0� q

m�nf �x; x0�
qxmqx0n

; (±4)

which can be derived using dw�r�:

dw�r� �
�
dwq exp�iqr�dq;

qm

qzm
dw�r� �

�
�iqz�mdwq exp�iqr�dq: (±5)

Note that, hdw(r)dw(r 0)i � Sd(rÿ r 0), then hdwqdwq 0 (r 0)i �
�S=(2p)3�d(q� q 0). In the calculations, we assumed that
Ep � hEpi � dEp; and Ec � hEci � dEc, and neglected the
third-order terms, such as hdEp;cdw(r)dw(r

0)i. As a result of
these calculations, we obtained equation (17) for the wave
number kp.

In the derivation of equation (17), the term hEp jp(r)i,
which describes extinction [6, 7], appears. It is taken into
account by introducing the extinction coefficient K.
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