
Abstract. A system of resonance atoms doped into a pho-
tonic bandgap material is considered in the case when the
resonance transition frequency lies within the band gap.
Spontaneous emission of a single atom is suppressed in
this situation, which is called the light localisation. It is
shown that, if the density of the doped atoms is sufficiently
high, the coherent interaction between atoms can appear,
resulting in the emission of a single or a series of coherent
pulses by a system of atoms.

1. Introduction

There is a class of materials where the electromagnetic waves
of a certain frequency range �O1;O2� cannot propagate. They
are called photonic bandgap materials [1 ^ 3]. The width of
the photonic band gap is Dp � O2 ÿ O1. Depending on the
physical nature of the photonic band gap, these materials can
be divided into two classes. The more popular one includes
the materials with an artificially created periodical structure
producing the band gap [1, 2]. It is these structures that are
usually called photonic bandgap materials [3].

However, there is another mechanism for the creation of
photonic band gaps, namely, the interaction of photons with
collective optical excitations of the medium, such as optical
phonons, magnons, and excitons [4, 5]. In the latter case,
the photonic band gap is called the polariton band gap.
Regardless of the physical nature, the two types of band
gaps can be described by the same mathematical models
[6, 7].

If a resonance atom is doped into a photonic bandgap
material and its transition frequency lies within this gap,
the spontaneous emission of the atom will be suppressed.
The excited atom cannot relax to a lower state by emitting
a photon because the photon propagation is forbidden inside
the band gap.This effect is called the light localisation. Math-
ematically, it can be expressed by the condition

lim
t!1hs

z�t�i � z > 0 ;

where s z is the Pauli operator and the angle brackets denote
statistical averaging.

It is known that, apart from resonance processes, some
nonresonance processes always take place. Although in vac-
uum the probability of the latter can be significantly lower
than that of the former, the atom eventually relaxes to a lower
state via nonresonance processes. For these reasons, strictly
speaking, the above limit should be understood as the con-
dition

hs z�t�i � z > 0 ; Tres 5 t5Tnon,

where Tres is the characteristic time of spontaneous emission
of the resonance atom in vacuum and Tnon is the character-
istic time of emission via nonresonance processes in a matter.
The typical lifetime of most atomic levels is of the order of
10ÿ8 s [8], whereas the characteristic times of nonresonance
processes are 0:1ÿ 100 s. This means that, although the light
localisation cannot last infinitely, its lifetime is much larger
than Tres. The light localisation is similar to decay freezing in
an atomic system undergoing a specific interaction with the
thermal bath [9].

To provide a microscopic description of light localisation,
one usually considers stationary models with a single doped
atom [6, 7, 10]. The studies of these models revealed that, if
the number of doped atoms is sufficiently large, an impurity
band can appear inside the forbidden zone, allowing the prop-
agation of electromagnetic waves [10 ^12]. However, to
provide an accurate description of the physical processes
and the conditions for light localisation, one should consider
the actual problem of the nonequilibrium behaviour of the
atoms doped into a photonic bandgap material.

The dynamics of a system of resonance atoms whose tran-
sition frequency is near a photonic bandgap edge was
considered in Refs [13 ^15] using the localised Dicke model.
However, the application of this model to the problem of light
localisation is not justified. Indeed, the localised model
assumes that the emission wavelength is much larger than
the sample dimensions. On the other hand, light localisation
itself consists in the emission of a photon that propagates a
localisation length of the order of several wavelengths. Hav-
ing been reflected from scatterers, which can represent
spatial structures or optical collective excitations depending
on the medium type, the emitted photon returns to the
atom and is reabsorbed by it.

This is a physical picture of light localisation. Thus, it is
obvious that one can speak about light localisation only if the
localisation length and, therefore, the wavelength are much
smaller than the characteristic sample dimensions. In the
case of the localised model, the wavelength is much larger
than the sample dimensions and the notion of light localisa-
tion becomes senseless.
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A one-dimensional model of atoms doped into a photonic
bandgap material with Kerr nonlinearity was considered in
Ref. [16]. However, as in Refs [13 ^15], the resonance fre-
quency of the atoms was assumed to lie either near the
edge of the photonic band gap or far outside it. The purpose
of Ref. [16] was to study the appearance of short solitons.

The formulation of the physical problem and the purposes
of this work are fundamentally different from those of the
previously published papers by other authors. First, we con-
sider the actual three-dimensional dynamic problem that is
based on the microscopic Hamiltonian of a system of atoms
doped into a medium. Second, we assume that the emission
wavelength is much smaller than the sample dimensions,
which is a necessary condition for light localisation. Third,
the resonance frequency of the atoms is assumed to lie deep
inside the photonic band gap, so that the spontaneous emis-
sion of a single atom is virtually completely suppressed. The
purpose of this work is to determine the conditions when the
collective nonlinear effects make possible delocalisation of
light.

2. Model Hamiltonian

A system of resonance atoms in a medium can be described
by the Hamiltonian [17]

Ĥ � Ĥa � Ĥf � Ĥaf � Ĥm � Ĥmf , (1)

which consists of the following terms:

Ĥa �
1
2

XN
i�1

o0�1� s z
i � (2)

is the Hamiltonian of two-level resonance atoms with the
transition frequency o0;

Ĥf �
1
8p

�
E 2 �H 2
� �

dr (3)

is the Hamiltonian of the radiation field. Here, E is the elec-
tric field, H � H� A is the magnetic field, and A is the vec-
tor potential satisfying the Coulomb calibration HA � 0;

Ĥaf � ÿ
1
c

XN
i�1

ji Ai (4)

is the Hamiltonian of the interaction between the atoms and
the radiation field. Here, ji � io0(ds

�
i ÿ d �sÿi ) is the transi-

tion current; d is the transition dipole moment; s�i are the
ladder operators; c is the speed of light; and Ai � A(ri; t);

Ĥmf � ÿ
1
c

XN0

i�1
jmiAi (5)

is the Hamiltonian of the interaction between the medium
and the radiation field; jmi is the electric current produced
by the medium particles; and Ĥm is the Hamiltonian of the
medium, which can be modelled by a system of oscillators.
Instead of specifying the concrete form of Ĥm, we will model
the effective interaction between the atoms and the medium.
Below, this method will be used.

3. Equations of motion

To derive the equations of motion, we will use the method
based on the elimination of field variables [18]. According

to the Maxwell operator equations, the field variables have
the form

A � Avac � Arad � Amat, (6)

where Avac is the vector potential of vacuum fluctuations;

Arad�ri; t� �
XN
j

1
crij

jj tÿ rij
c

� �
,

(7)

Amat�ri; t� �
XN0

j

1
crij

jmj tÿ rij
c

� �
are the vector potentials induced by the atoms and the
medium, respectively; rij � jri ÿ rj j; and the summation
does not include the terms with j � i. The joint action of
the vacuum and the medium on the atoms is equivalent to
the action of the effective vacuum characterised by the vec-
tor potential

Aeff�r; t� � Avac�r; t� � Amat�r; t�. (8)

The action of the effective vacuum on atoms is described by
the stochastic variable

xi�t� � k0dAeff�ri; t�, (9)

where k0 � o0=c.
We can eliminate the field variables A and E from the

equations of motion by inserting the operator relationships
(6) ^ (8) into the Heisenberg equations for the atomic varia-
bles s z

i and s�i . In this way, the number of equations is
reduced, but new nonlinear terms appear which describe
the effective interatomic interaction induced by the radiation
field. In the equations for the atomic operators, only the sto-
chastic variable (9) remains. Its modelling is equivalent to the
modelling of the properties of the medium with doped atoms.
By averaging the equations of motion over the atomic degrees
of freedom, we introduce the notation

ui�t� � sÿi �t�h i0, si�t� � s z
i �t�h i0, (10)

where the prime means that the averaging is performed over
the atomic variables only, excluding the stochastic variable
(9). For such partial averages, we will assume that

sai s
b
j

D E0 � saih i0 sb
j

D E0 �i 6� j�. (11)

The retardation of the potentials (7) will be treated within the
Born approximation:

sÿj tÿ rij
c

� �D E0
� sÿj �t�

 �0exp�ik0rij�. (12)

The uncoupling (11) is similar to the quasiclassical
approximation, but not equivalent to it, since in our case
the averaging does not involve the stochastic variable (9).
As a result of the uncoupling (11), we obtain a closed system
of equations for the variables hsa

i i0. However, these equations
are stochastic as they explicitly contain the stochastic variable
(9). When calculating the values of observables, one should
average over this variable. This approach takes into account
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local quantum fluctuations, which distinguishes it from the
quasiclassical approximation. Therefore, the uncoupling (11)
can be called the stochastic mean-field approximation [17].

In order to make the equations of motion more compact,
we introduce the notation

fi�t� � k0 dArad�ri; t�h i0� xi�t�. (13)

We will also use the continuous representation where the
functions (10) depend on the continuous vector r, so that

u � u�r; t� ; s � s�r; t� :

Correspondingly, the summation over i from unity to N
should be replaced by the integration r

�
d r, where r �

N=V is the density of resonance atoms. Finally, introducing
the function

v � v�r; t� � ju�r; t�j2, (14)

we obtain the following equations of motion

du
dt
� ÿ�io0 � g2�u� fs ;

ds
dt
� ÿ2�u�f � f �u� ÿ g1�sÿ z�, (15)

dv
dt
� ÿ2g2v� s�u�f � f �u�.

Since the definition of the function f � f (r, t) (13) con-
tains the stochastic variable x � x(r, t) defined in Eqn (9),
Eqns (15) are stochastic differential equations. They include
the terms containing the longitudinal (g1) and the transverse
(g2) relaxation rates, as well as the parameter z, which is close
to the average initial population inversion,

s0 �
1
V

�
s�r; 0�dr,

and which describes the suppression of the spontaneous
emission of single atoms.

Generally speaking, the spontaneous emission of a single
atom can be suppressed by one of the two physically different
mechanisms. Depending on the relationship between the
characteristic times T1 and Tnon, this is dynamic suppression
(T1 5Tnon) or static suppression (T1 � Tnon). In the former
case, the equations of motion should contain the relaxation
rate g1, whereas in the latter case, one should set g1 � 0.

4. The possibility of emission

In our analysis of the evolution equations (15), we will
assume that no spatial electromagnetic structures are created
in the sample. In this case, one can use the homogeneous
approximation, where the functions u, s, and v are independ-
ent of the spatial variables. In this approximation,

k0 dAradh i0� g2 G �u� Gu�e 2d
� �

,

where

G � 3gr
4g2

�
sin�k0r� � i cos�k0r�

k0r
dr; (16)

and g � 4k 3
0 jd j2=3 is the natural linewidth.We also introduce

the collective transition frequency

O � o0 � g2g
0s (17)

and the collective decay rate

G � g2�1ÿ gs�, (18)

where

g � ReG � 3gr
4g2

�
sin�k0r�
k0r

dr;
(19)

g 0 � ImG � 3gr
4g2

�
cos�k0r�

k0r
dr.

Then, equations (15) take the form

du
dt
� ÿ�iO� G�u� sx� g2Gsu

�e 2d ,

ds
dt
� ÿ4g2gvÿ 2�u�x� x �u� ÿ g1�sÿ z�

(20)

ÿ2g2 G�u�ed�2 � G ��e �d u�2
h i

,

dv
dt
� ÿ2Gv� s�u�x� x �u� � g2s G�u�ed�2 � G ��e�du�2

h i
,

where ed � d=d.
The quantities (16) and (19) are the parameters of atom-

atom coupling.The coupling of the atoms to the effective vac-
uum producing the vector potential (8) is described by the
function

a � 1
sG

Re lim
t!1

1
t

� t

0
hhu��t�x�t�iidt, (21)

where the double angle brackets denote the averaging over
the stochastic variable (9).

Equations (20) can be solved employing the method of
scales separation [19, 20], which is the generalisation of the
averaging method [21] to the case of stochastic differential
equations. The method of scales separation [19, 20] can be
applied because there are small parameters

g1
o0

5 1;
g2
o0

5 1; jaj5 1. (22)

Inequalities (22) classify the function u as a fast one with
respect to the slow functions s and v. Treating the slow
functions as quasi-invariants, for the fast function we have

u�t� � u0 � s
� t

0
e�iO�G�t

0
x�t 0� dt 0

� �
eÿ�iO�G�t, (23)

where u0 � u(0). In the case hhxii � 0, the quantity a (21),
which describes the atom-medium coupling, takes the form

a � 1
G
Re lim

t!1
1
t

�t
0
dt
�t
0
eÿ�iO�G��tÿt

0�hhx��t�x�t 0�iidt 0. (24)
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When performing the integration in Eqn (24), one should
treat the slow variables as constants. In the next section we
will give a specific example of calculating the quantity a
(24). By substituting the fast function (23) into the equations
for the slow variables and averaging the right-hand sides of
the equations over time and the stochastic variable, we obtain

ds
dt
� ÿ4gg2 vÿ as 2

� �
ÿ g1 sÿ z

ÿ �
,

(25)
dv
dt
� ÿ2g2�1ÿ gs��vÿ as 2� ,

where

�g1 � g1 � 4g2a; z � g1
g1

z .

We will first consider the more general case when g1 6� 0.
To find out the conditions for light localisation, we have to
consider the behaviour of the solutions s and v at t!1,
that is, the stationary points of equations (25). In the case
gz < 1, the stationary solutions are

s�1 � z ; v�1 � az
2
:

Hereafter, we assume for siplicity that the coupling parame-
ter jaj � const. Since jaj5 1, we have z � z and there is
virtually no light delocalisation.

For gz > 1, the solutions of equations (25) tend to the sta-
tionary point

s�2 �
1
g
; v�2 �

g1�gzÿ 1�
4g2g 2 � a

g 2 .

In this case, partial light delocalisation takes place because
gÿ1 < z. The light leaks out either as a single broad pulse or,
in the case

gz > 1� g1
8g2

,

as a series of narrow coherent pulses. At t!1, the time
period between two neighbouring pulses is

T1 �
4ph

8�gzÿ 1�g1g2 ÿ g 21
i1=2 .

Thus, the light delocalisation via collective emission of
atoms is possible only if the coherent interatomic interaction
is sufficiently strong, so that gz > 1, which is equivalent to

gzg1
g1 � 4ag2

> 1. (26)

Given that z � s0 and jaj5 1, the last equality reduces to the
condition

gs0 > 1. (27)

Consider now the case when the longitudinal relaxation is
completely suppressed, so that g1 � 0. It follows from equa-
tions (25) that

s�t� � ÿ g0
gg2

tanh
tÿ t0
t0

� �
� 1
g
,

where

g0 � 2gjs0jg2
�������������
ac ÿ a
p � 1

t0
;

ac �
gs0 ÿ 1
2gs0

���� ����2� u0
s0

���� ����2;
t0 �

t0
2

ln
g0 ÿ g2�1ÿ gs0�
g0 � g2�1ÿ gs0�
���� ���� .

Light delocalisation implies the inequality s(1) < s0; in
addition, the delocalisation should take place at times
t0 5T1. Since

s�1� � ÿ2js0j
�������������
ac ÿ a
p � 1

g
,

the condition for light delocalisation takes the form

g s0 � 2js0j
�������������
ac ÿ a
pÿ �

> 1. (28)

The most interesting is the case when the atoms do not
experience any external coherent driving at the initial time
instant, u0 � 0. Then, if we assume that a5 ac, inequality
(28) transforms to condition (27). If the interatomic coupling
parameter is large, g4 1, then we have ac ' 1=4 and
s(1) ' ÿjs0j, i. e., virtually all light is released.

It is interesting to compare the conditions of delocalisa-
tion to the conditions of superradiance [22]. The latter
takes place if t0 < T2, which in our case is equivalent to

2gjs0j
�������������
ac ÿ a
p

> 1. (29)

For u0 � 0 and a5 ac, this inequality reduces to

gs0 > 2. (30)

Thus, the meanings of the delocalisation condition (27) and
the superradiance condition (30) are close but not equivalent.

5. Polariton band gap

To clarify the situation, we have to explain how the coupling
constant a (24) is calculated.To be specific, we will consider a
material with a polariton forbidden gap. The polariton effect
is well pronounced in many dielectrics and semiconductors
[4, 5, 23], for example, in CuCl, CuBr, CdSe, ZnSe, GaAs,
GaSb, InAs, AlAs, and SiC. When there is a polariton band
gap, the polariton spectrum consists of two branches:

0 � oq1 < O1 ; O2 � oq2 <1 , (31)

where q is the wave number. The width of the gap is Dp �
O2 ÿ O1 > 0. The frequencies of the lower and the upper gap
edges are related by the expression e0O

2
1 � e1O

2
2 , where e0

and e1 are the dielectric constants for static and high-fre-
quency fields, respectively. The polariton spectrum of a cubic
crystal consists of the two branches

o2
qs �

1
2

O 2
2 � c 2q 2 � �O 2

2 � c 2q 2�2 ÿ 4O 2
1 c

2q 2
h i1=2� �

, (32)

where c is the speed of light in the medium, which is related
to the speed of light in vacuum by c � c0=

������
e1
p

. When the
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polariton decay rate Gp � 1012 sÿ1 is introduced, the disper-
sion relationship takes the form

c 2k 2

o2 �
O 2

2 ÿ o2

O 2
1 ÿ o2 � ioGp

. (33)

When calculating the averages of the stochastic variable
x(t) appearing in Eqn (24), one should take into account
the sample geometry. In the following, we will assume that
the sample is cylindrical with the radius R, the length L
(R5L), and the volume V � pR 2L. The cylinder axis corre-
sponds to the seed mode eikz with the wave number k � k0 �
o0=c. Then,

x�t� � 1
N0

XN0

i�1
xi�t�eÿi kzi , (34)

where xi(t) is defined by Eqn (9). The effective vector poten-
tial

Aeff�ri; t� �
XN0

j

1
crij

Jeff rj ; tÿ
rij
c

� �
is determined by the medium current Jeff (rj ; t� � (e=m)pj(t),
where e and m are the ion charge and mass. The moment pj is
defined by the second-quantised form

pj�t� � ÿi
X
q;s

moqs

2N0

� �1=2
bqs e

ÿioqst ÿ b�ÿqs e
ioqst

� �
eqse

iqrj ,

where the summation over s includes the summation over the
two spectrum branches and two transverse polarisations.

Thus, the stochastic variable can be modelled by the
expression

x�t��ÿi
X
q;s

kk0deqs
reoqs

2N0

� �1=2

� jqsbqse
ÿioqst ÿ jÿqsb

�
qse

ioqst
� �

, (35)

where re � e 2=mc 2;

jqs �
1
N0

XN0

i 6�j

1
krij

exp i
oqs

c
rij � iqrj ÿ ikzi

� �
; (36)

jÿqs �
1
N0

XN0

i 6�j

1
krij

exp ÿioqs

c
rij ÿ iqrj ÿ ikzi

� �
. (37)

For the averages of the Bose operators bqs, we have

hhb�qsbq 0s 0 ii � dqq 0dss 0nqs; hhbqsbq 0s 0 ii � 0,

where nqs � (eboqs ÿ 1)ÿ1. Using these equalities, we find the
correlator

hhx��t�x�t 0�ii �
X
q;s

krek
3
0

2N0
jdeqsj2oqs jjqsj2nqs eioqs�tÿt 0�

h

�jjÿqsj2�1� nqs�eÿioqs�tÿt 0�
i
. (38)

Inserting Eqn (38) into Eqn (24), we obtain

a �
X
q;s

krek
3
0

2N0
jdeqsj2oqs

nqsjjqsj2
�Oÿ oqs�2 � G 2

"

� �1� nqs�jjÿqsj2
�O� oqs�2 � G 2

#
. (39)

Passing from summation to integration in Eqn (36), (37),we
make use of the equality

1
V

�
ei�qÿk�rdr � dqk ,

which yields

jqs � dqkjks ; jÿqs � dÿqkj
�
ks ,

where

jks �
�
r0
kr

ei�ksrÿkz�dr ; (40)

ks � oks=c, and r0 � N0=V . Equation (39) then transforms
to

a �
X
s

kre
8N0

gksjjksj2oks

�
nks

�Oÿ oks�2 � G 2

� 1� nks
�O� oks�2 � G 2

�
, (41)

where

gks � 3g jedeksj2. (42)

Since k � k0 and oks � oo, we have

jks ÿ kj
k

5 1. (43)

Performing the integration over the cylinder volume in
expression (40) in the same way as it was done for similar
integrals in Refs [24, 25], we obtain

jks �
pL
k 2a 3

ÿ
pF ÿ 2FSi 2F � 1ÿ cos 2F�

� i sin 2F ÿ 2iFCi 2F
�
, (44)

where F � pR 2=lL is the Fresnel number; r0a
3 � 1; and Si x

and Ci x are respectively the sine and cosine integral func-
tions. In the limits of large and small Fresnel numbers, we
have respectively

jks '
pL
k 2a3

F�p� 2i ln 2F� �F 5 1�,
(45)

jks '
pL
k 2a3

1� i
cos 2F
2F

� �
�F 4 1�.

To estimate the atom-polariton coupling constant (41), we
will use the parameters typical for the materials mentioned at
the beginning of the section: O1 � O2 � 1014 sÿ1, Dp �
1013 sÿ1, l � 10ÿ3 cm, and g � 108 ÿ 109 sÿ1. We will also
assume that the resonance frequency o0 � 1014 cÿ1 lies
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deep inside the polariton band gap and use the fact that
a � 10ÿ8 cm and re � 10ÿ13 cm. The room temperature cor-
responds to the frequency 1013 sÿ1; therefore, bok � 10 and
nk ' eÿbok � 10ÿ5. For the atom-polariton coupling constant
(41), we finally obtain a < 10ÿ3. This justifies the assumption
about the smallness of a made in Sec. (4) during the analysis
of the evolution equations.

6. Conclusions

We have studied the possibility of collective emission by
atoms doped into a bandgap material, in the situation
when the resonance emission frequency lies deep inside the
forbidden gap so that the spontaneous emission of single
atoms is suppressed. We have considered a realistic three-
dimensional system where the radiation wavelength is much
smaller than the sample dimensions. The emission by doped
atoms becomes possible if their density exceeds a certain
critical value, when the nonlinear effects related to the col-
lective interaction between the atoms begin to play the
dominant role.

The situation when a single atom cannot emit and the
light is localised, but an ensemble of atoms can emit, can
be reasonably termed collective release of light. The critical
atom density, at which the collective release occurs, depends
on the initial conditions, the atom-atom coupling parameter
(19), and the medium-atom coupling parameter (24). It was
shown in the preceding section that a5 1; therefore, the
renormalisation of the characteristic parameters g1 and z
in Eqns (25) is insignificant: g1 � g1 and z � z � s0. It follows
from the analysis of Section 4 that the release of light
becomes possible for gs0 > 1.

The atom-atom coupling parameter g defined by Eqn (19)
depends on the sample geometry.To estimate the critical den-
sity of doped atoms rc that triggers the collective emission,
one can set g � rl 3. The critical density is then rc �
1=s0l

3. For a polariton bandgap material with l � 10ÿ3 cm
and the completely inverted initial state, s0 � 1, the critical
density is rc � 109 cmÿ3. If the atom density exceeds rc,
the collective release of light should take place. The prediction
of this effect is the main result of this paper.
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