
Abstract. A system of equations is proposed that describes
the dynamics of a laser pulse containing a few optical cycles
(ultrashort pulse) in the transparency region of a medium
with induced birefringence. In this case, the approximation
of slowly varying envelopes, which is standard in the case of
monochromatic signals, is inapplicable. An approximate
solution is found for the case when the dispersion spreading
length is much smaller than the length of the polarisation
ellipse beating. It has the form of a travelling soliton-like
bound state of ordinary and extraordinary components. The
conditions for the stability of this pulse with respect to self-
focusing are determined.

1. Introduction
The advances of the last decade in the generation of optical
pulses with the lengths approaching a single optical cycle
[1, 2] has led to the appearance of a new research field con-
cerned with the interaction of such pulses with matter. In the
already established terminology, such laser signals are called
ultrashort pulses [3]. Theoretical studies of ultrashort pulses
obviously cannot rely on the approximation of slowly vary-
ing amplitudes and phases, which is traditionally used in the
optics of monochromatic signals [4]. One should expect that
many of the optical effects that are well known in the case of
continuous waves and monochromatic pulses would acquire
new features in the ultrashort domain.

The possible applications of ultrashort pulses in various
optical information systems make it topical to study soli-
ton-like propagation regimes of these signals. It is desi-
rable for many applications that the pulse polarisation re-
mained constant during its propagation in a waveguide [5].
Small birefringent fluctuations in such waveguides are usu-
ally suppressed by creating artificial regular birefringence
[5]. Constant electric fields (Kerr effect) and static deforma-
tions induce the strongest birefringence. In this way, an
initially isotropic medium acquires uniaxial optical aniso-
tropy.

The dynamics of ultrashort pulses in uniaxial anisotropic
crystals with natural birefringence and quadratic optical non-
linearity was considered in Ref. [6]. The effect of artificial

birefringence on the nonlinear dynamics of powerful mono-
chromatic envelope pulses has already been studied in some
detail [7 ^ 9]. The purpose of this work is to derive nonlinear
wave equations describing the dynamics of ultrashort pulses
in media with induced birefringence and to analyse, in some
special cases, their approximate solutions in the form of soli-
tary travelling pulses.

2. Phenomenological equations
When propagating in a birefringent medium, the electric
field E of the pulse splits into an ordinary (Eo) and an
extraordinary (Ee) component, which are polarised in mutu-
ally orthogonal planes and propagate with the velocities vo
and ve, respectively. For vo > ve, the axis coinciding with Eo
is `fast', and the axis parallel to Eo is `slow'; the situation
reverses for vo < ve. Suppose that a pulse propagates along
the x axis, which is perpendicular to the z axis of the induced
optical anisotropy. Then, the wave Eo is polarised along the y
axis, which is perpendicular to the plane xz, and the wave Ee
is polarised along the z axis.

The Maxwell equation has the same form for the both
components:

DEj ÿ
1
c 2

q2Ej

qt 2
� 4p

c 2
q2Pj

qt 2
; j � e; o, (1)

where c is the speed of light in vacuum and Pj is the polar-
isation that corresponds to the ordinary (extraordinary)
pulse component and whose dependence on E is specified
by constitutive equations.

In the following, we will assume that the frequencies o of
the ultrashort pulse spectrum lie in the medium transparency
region related to electronic optical quantum transitions. This
condition can be written as [10 ^12]

�o0tp�2 4 1, (2)

where o0 is a characteristic resonance frequency of the
medium that corresponds to electronic transitions and tp is
the time scale of the ultrashort pulse.

Inequality (2) corresponds to the slow variation of the
pulse profile during its propagation in the medium, when
the medium atoms follow this variation adiabatically. The
small lag of the polarisation behind E results in a small tem-
poral dispersion. On the other hand, the nonresonant
interaction between the pulse and the medium results in a
small excitation of the latter. Thus, the nonlinearity and
the dispersion are weak and can be taken into account by add-
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ing appropriate terms in the constitutive equations [10 ^13].
This means that the nonlinear dispersion, i.e., the frequency
dependence of nonlinear susceptibilities, can be neglected as
a higher-order effect. Thus, if condition (2) is fulfilled, we can
assume the linear susceptibility tensor to be independent of
the frequency in the transparency region. Its elements are
then symmetric with respect to all indices [14].

We will also assume that in the case of crystals, the axis of
the induced optical anisotropy coincides with one of the crys-
tallographic axes. Then, the linear susceptibility tensor is dia-
gonal, and the tensor of the corresponding cubic optical non-
linearity has the simplest form. For example, in a cubic
crystal, the axes x, y, and z should be directed along the mutu-
ally orthogonal axes of the fourth-order symmetry [15]. In
originally isotropic media with induced birefringence, these
conditions are fulfilled automatically.

For the chosen geometry of pulse propagation, the con-
stitutive relations should be invariant with respect to the
transformations y! ÿy and z! ÿz. This leads to the fol-
lowing dependence of the medium-polarisation vector com-
ponents on the electric field of the ultrashort pulse

Po � w �1�o Eo � w �3�o E 3
o � w �3�eo E 2

e Eo ÿ
1
2
wo
00 q

2Eo

qt 2
, (3)

Pe � w �1�e Ee � w �3�e E 3
o � w �3�eo E

2
o Ee ÿ

1
2
w e
00 q

2Ee

qt 2
. (4)

Here, w �1�o �w �1�yy (0) and w �1�e �w �1�zz (0) are the components
of the linear low-frequency susceptibility tensor for the or-
dinary and extraordinary waves; the parameters w �3�o �
w �3�yyyy(0,0,0), w

�3�
e � w �3�zzzz(0,0,0), w

�3�
eo � 3w �3�yzzy(0,0,0) � 3w �3�yyzz(0,

0,0) � 3w �3�yzyz�0,0,0) � 3w �3�zyyz(0,0,0)�3w �3�zyzy�0,0,0) � 3w �3�zzyy(0,
0,0) are expressed in terms of the components of the third-
order nonlinear susceptibility tensor; and the coefficients
w e;o
00 � (q2we;o=qo

2)o�0 describe the small temporal dispersion
of the linear nonresonant response of the medium.

Inserting expressions (3) and (4) into Eqn (1) and using
the unidirectional propagation approximation [13] for the x
axis, we obtain the system

qEo

qx
ÿ m

qEo

qt
� 3boE

2
o
qEo

qt
� a

q
qt

ÿ
E 2
e Eo

�
� do

q3Eo

qt3
� vm

2
D?

� t

ÿ1
Eodt

0, (5)

qEe

qx
� m

qEe

qt
� 3beE

2
e
qEe

qt
� a

q
qt

ÿ
E 2
o Ee

�
� de

q3Ee

qt3
� vm

2
D?

� t

ÿ1
Eedt

0, (6)

where a � 2pw �3�eo vm=c
2; bj � 2pw �3�j vm=c

2; dj � ÿpvmw j
00=c 2

( j � e; o); the parameter m � (vm=4)(v
ÿ2
e ÿ vÿ2o ) describes

the mismatch between the velocities ve � c=(1� 4pwe)
1=2

and vo � c=(1� 4pwo)
1=2; vm is some average velocity that

lies between ve and vo and is defined by the expression vÿ2m �
(vÿ2o � vÿ2e )=2; t � tÿ x=vm; and D? is the transverse Lap-
lacian.

Consider the system (5), (6) in the limit of monochromatic
pulses. For this purpose, we will use the representation

Ej � Cj exp�iotÿ qjx� � c.c. , j � e; o; (7)

where Cj are slowly varying complex amplitudes (jqCj=qtj
5 joCjj, jqCj=qxj5 jqjCj j) and qj are the wave numbers in
the moving reference frame. Using the one-dimensional ap-
proximation (vanishing right-hand sides of Eqns (5) and (6)),
we obtain the well-known system of equations describing the
dynamics of a monochromatic envelope pulse in a birefrin-
gent medium [5, 7, 8]

i
qCo

qx
ÿ iv

qCo

qT
ÿ ~do

q2Co

qT 2 ÿ 3
�

~bojCoj2 �
2
3

~ajCej2
�
Co

ÿ ~aC 2
e C

�
o exp�2i�qo ÿ qe�x� � 0, (8)

i
qCe

qx
� iv

qCe

qT
ÿ ~de

q2Ce

qT 2 ÿ 3
�

~bejCej2 �
2
3

~ajCoj2
�
Ce

ÿ ~aC 2
oC

�
e exp�ÿ2i�qo ÿ qe�x� � 0 , (9)

where T � tÿ3(do� de)o
2x=2; v�m� 3(de ÿ do)o

2=2; ~a �
oa; ~bj � obj ; ~dj � 3odj ; and qe � mo� deo

3, qo � ÿmo
�doo 3 are wave numbers.

The system (8), (9) was studied earlier in many papers. In
particular, Maimistov et al. [8] used a variational method to
find an approximate solution in the form of solitary enve-
lope pulses with elliptical polarisation. If the length of the
birefringent beating of the polarisation ellipse [4] is Lb �
� 2p=jqo ÿ qej4 ld � 1=(~doo

2), where ld is the diffraction
spreading length of the wave packet, the last terms in Eqns
(8) and (9) can be neglected. If, in addition, ~bo � ~be � 2~a=3,
equations (8), (9) transform to the Manakov system [7].

Since the system (8), (9) can be derived from the system
(5), (6) in the limit of long monochromatic signals, equations
(5) and (6) can be said to be more general: They describe the
dynamics of both envelope pulses and ultrashort pulses.

3. Soliton-like pulses in the case of weak
birefringence
The general analysis of Eqns (5), (6) seems to be rather
involved and probably can be performed only numerically.
In the one-dimensional approximation, these equations be-
come a coupled system of modified Korteweg-deVries equa-
tions (MKdV). If in this case we represent a solution of equa-
tions (5), (6) in the form of a two-component stationary tra-
velling wave, then, after a single integration, these equations
will transform to a system describing two coupled cubic-non-
linear oscillators. Assuming also that a � bo � be � b and
do � de � d, we obtain a special case (n � 2) of the Garneer
system [16], describing n nonlinear oscillators with different
eigenfrequencies.

The system of equations (5) and (6) was solved in
Ref. [16]; its generalised version was integrated in quadra-
tures in Ref. [17]. For n � 2, Maimistov [18,19] used the
Hirota method to find a localised solution that, in the case
of an infinitesimal parameter e 2 � jmjt 2p=(2jdj), is similar to
the solution found in Ref. [20]:

Eo;e � Em
y��m� cosh zÿ y��m� sinh z

1� e 2 cosh2 z
, (10)

where y (m) is the Heaviside step function; z � (tÿ x=v)=tp;
Em � 2(m=b)1=2; and the velocity v in the laboratory reference
frame is related to the pulse duration tp by the expression
1=v � 1=vm � d=t 2p .

918 S V Sazonov, A F Sobolevskii



Consider the physical meaning of the parameter e 2. In the
case of elliptical birefringence and monochromatic pulses, the
characteristic beating length Lb is defined by the expression
Lb � 2p=jqoÿ qej�2p=(oj1=voÿ1=vej). The analogous para-
meter Lbs for ultrashort pulses, which do not have any carrier
frequency, is defined by making the substitution 2p=o! 4tp
in the expression for Lb (the factor 4 is introduced for the sake
of convenience). Then, we have Lbs � 4tp=j1=vo ÿ 1=vej.

One can see from Eqns (5), (6) that, in the case de � do �
d, the dispersion spreading length lds of the ultrashort pulse
can be defined as lds � t 3p=d. Taking into account the close-
ness of the velocities ve and vo in the case of e 2 5 1, we
find that jmj � jvo ÿ vej(2vove)ÿ1. Performing simple algebra-
ic transformations, we finally obtain e 2 � lds=Lbs. Thus, the
condition e 2 5 1 means that the dispersion spreading length
is much smaller than the beating length of the polarisation
ellipse.

We will now derive a soliton-like solution of the system
(5), (6) when lds 5Lbs and the nonlinearity coefficients a,
bo, and be are different. If the birefringence is weak, we
and wo differ only slightly, and the quantity m is correspond-
ingly small. The dispersion terms in Eqns (5) and (6) have a
higher order of smallness with respect to the parameter
(o0tp)

ÿ2; therefore, for e 2 5 1, we can neglect the difference
between de and do and set de � do � d.

We will use the average variational principle of the Ritz ^
Whitham [21, 22]. The Lagrangian density for the system (5),
(6) can be written as

L � 1
2
qFo

qx
qFo

qt
� 1
2
qFe

qx
qFe

qt
� m

2

�
qFe

qt

�2
ÿ m

2

�
qFo

qt

�2

ÿ bo
4

�
qFo

qt

�4
ÿ be

4

�
qFe

qt

�4
ÿ a
2

�
qFo

qt

�2� qFe

qt

�2
(11)

� d
2

�
q 2Fo

qt 2

�2
� d
2

�
q 2Fe

qt 2

�2
ÿ vo

4
�H?Fo�2 ÿ

ve
4
�H?Fe�2,

where potentials Fo and Fe are defined by the relations Eo �
qFo=qt and Ee � qFe=qt.

Taking into account expression (10), we represent a trial
soliton-like solution for Fo and Fe in the form

Fo;e � A�x; r?��y��m� arctan�Z sinh x��

ÿy��m� arctan�Z cosh x��, (12)

where x � �tÿ f (x; r?)�=tp(x; r?); A(x; r?), tp(x; r?), Z(x; r?)
are slow functions of their arguments; and f (x; r?) is a fast
function of its arguments. In addition, Z depends on x and
satisfies the condition Z 2(x; r?)5 1. Then, the expressions
for Eo and Ee coincide with expression (10) up to the re-
placement e! Z.

After inserting Eqn (12) into Eqn (11), we retain the x-
and r?-derivatives of only the fast function f (x; r?). The sub-
sequent integration over t produces the averaged Lagrangian

L
�
tp;A; Z;

qf
qx
;H? f

�
�
� �1
ÿ1

Ldt.

Employing L, we obtain the following Euler ^ Lagrange
equations for the variables tp, A, e, and f in the one-dimen-
sional approximation

f �
�
1
v
ÿ 1
vm

�
x;

1
v
� 1

vm
� d
t 2p
;

A � A0 � 4
�

d
bo � be � 2a

�1=2

; Z � 2eÿk,

k � 1
4e 2

�
1� 11bo ÿ 21be ÿ 10a

3�bo � be � 2a�
�
, (13)

where the pulse duration tp is a free parameter. If the expres-
sion appearing in the square brackets in the expression for k
is positive, the condition e 2 5 1 automatically ensures that
the parameter Z2 is small. According to Eqns (12) and (13),
the expressions for Eo and Ee can be written in the form Eqn
(10), where Em � Ae=tp, z � tÿ x=vo.

Thus, in the case lds 5Lbs, the ordinary and the extraor-
dinary components of the ultrashort pulse can propagate
together in the form of a stationary localised state. In this
state, the component polarised along the fast axis is a unipo-
lar pulse of the electric field strength, whereas the component
parallel to the slow axis is a bipolar pulse.

As it passes through a fixed plane x � const, the end of
the vector E of the ultrashort pulse describes a closed curve,
whose equation can be easily derived in the case m > 0 from
Eqn (10). Taking into account the substitution e! Z, we
obtain

Y 2 ÿ Z 2 � �ÿ1� Z 2�Y 2 ÿ Z 2�2, (14)

where Z � Ee=Em and Y � Eo=Em. The analogous expres-
sion for the case m < 0 can be obtained by exchanging
Z $ Y .

The Fig. 1 shows the curve (14) for m > 0. It follows from
Eqn (10) that tanj � Z=Y � ÿ tanh z, and thereforeÿ458 <
j < 458 (see Fig. 1). This means that the vector E of the soli-
ton-like pulse cannot deflect from the fast axis by more than
458.The maximum angles�458 are reached at the leading and
the trailing edges of the pulse, whereas in the middle of the
pulse j � 0. The parameter Z describes the influence of the
birefringence on the propagation of the signal. When this

x � 0

x < 0O

Y

ÿ458 458

x! �1 x! ÿ1

0 Z

Figure 1. Trajectory described by the end of the electric field vector of a
soliton-like ultrashort pulse as it passes through a fixed plane x � const in
the case m > 0. The ordinary component is polarised along the fast axis y,
the extraordinary one, along the slow axis z.O � (Eoey � Eeez)=Em,where
ey and ez are the corresponding unit vectors.
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parameter increases, the amplitude of the component polar-
ised along the fast axis varies insignificantly (given that in our
case Z2 5 1). On the contrary, the amplitude of the slow com-
ponent decreases as� 1=Z. As a result, the curve shown in the
Fig. 1 shrinks along the slow axis.With the further increase in
the anisotropy parameter Z, the slow component virtually dis-
appears and only the fast component remains in the pulse.
This conclusion also follows from the exact solution found
in Refs [18,19] for the case bo � be � a. In the limit e 2 4 1,
this solution is a unipolar pulse of the fast component and
the slow component is almost completely suppressed. This
soliton is virtually indistinguishable from a conventional
MKdV soliton polarised along the fast axis.

It follows from the expressions for bo, be, a, do, de, and A,
that a one-dimensional soliton-like bound state can be cre-
ated in a focusing medium ( w �3�e , w �3�o , w �3�eo > 0) with the
anomalous group dispersion ( we

00 � wo
00 < 0) or in a defocus-

ing medium ( w �3�e , w �3�o , w �3�eo < 0) with the normal dispersion
of the group velocity ( we

00 � wo
00 > 0).This agrees well with the

known results of the theory of optical solitons [23]. The fast
dispersion spreading is compensated by the nonlinear in-
crease in the steepness of the wave profile, resulting in the
creation of a soliton-like pulse. The effect of the slow birefrin-
gent beating is reduced to the asynchronous dependence of
the pulse polarisation along its profile, which manifests itself
in the asynchronous dependence of the components Eo and
Ee on x (see Eqn (10)). This is probably the primary distinc-
tion between the effect that the birefringence has on ultra-
short pulses and the analogous effect on monochromatic sig-
nals, which have a well-defined carrier frequency.

It is known [5] that in the latter case the polarisation
ellipse experiences continues periodic deformations accom-
panied by its rotation. In our case, the profile of the
propagating ultrashort pulse is stationary. However, the
direction of the electric field varies along the pulse in the
co-moving reference frame, deflecting slightly to the left or
to the right (due to the changing sign of the slow component)
from the polarisation of the central part of the pulse.

We will analyse the stability of the soliton-like pulse with
respect to transverse perturbations (self-focusing) using a
variational method, as in Ref. [22]. According to this method,
it is sufficient to assume that H? f 6� 0 in the expression for L.
This approach imposes important restrictions on the charac-
ter of the transverse perturbations. The fact that A, tp, and Z
vary slowly as functions of the arguments x and r? means that
the transverse perturbations weakly distort the pulse wave
front, i.e., the wave fronts differ only slightly from the planes
zÿ vt � const.

It is therefore reasonable to consider quasi-one-dimen-
sional perturbations propagating at small angles with
respect to the x axis. The more so as, at large angles, the
form of the constitutive equations (3) and (4) should change,
because in this case, the symmetry with respect to the oper-
ations y$ ÿy, z$ ÿz is violated. As a result, the wave
equations (5), (6) are also modified. At the same time, it fol-
lows from the form of the trial function (12) that these
perturbations do not change the polarisation structure of
the one-dimensional soliton-like pulse. This means that these
perturbations, as the one-dimensional pulse (10), are polar-
ised in the cone spanning angles from ÿ45 to 458 with
respect to the fast axis. The Euler ^ Lagrange equations for
the case Z2 5 1 then assume the form of the equations des-
cribing the hydrodynamics of an ideal liquid, with the co-
ordinate x serving as time:

qr
qx
� H?� rV � � 0, (15)

qV
qx
� �VH?�V � ÿ

1
r
H? p, (16)

p � ÿ bo � be � 2a
24A2

0
r 3 � const, (17)

where V � vm(H? f ); r � A2=tp; and A0 is defined in
Eqn (13).

The stability of the soliton under study with respect to
transverse perturbations is obviously equivalent to the stabil-
ity of the ideal liquid flow described by Eqns (15) ^ (17); both
are given by the condition qp=qr > 0. Employing the equa-
tion of state (17), which expresses the dependence of the
pressure p on the density r, we obtain

bo � be � 2a < 0. (18)

The physical meaning of equation (18) is quite clear: for
positive nonlinear third-order susceptibilities, the medium
is focusing, whereas for negative ones, it is defocusing.

It is much more interesting to consider the case of a non-
linear medium with mixed properties, when the diagonal ele-
ments of the tensor ŵ �3� ( w �3�e and w �3�o ) are positive, whereas
the nondiagonal elements ( w �3�eo ) are negative. It then follows
from Eqn (18) and the expressions for bo , be , and a that the
stationary bound state is stable if 2jw �3�eo j > w �3�e � w �3�o . The
pulses that are polarised strictly along the fast or the slow
axis will experience self-focusing in the medium. Only the
pulses whose polarisation plane forms a certain angle with
these axes can be stable.

We will now make some numerical estimates. Obviously,
jwe;o00 j � jwe;oj=o 2

0 . Then, according to Eqns (12) and (13), the
electric field amplitude of the ultrashort pulse is

Em �
e

o0tp

����� wo
w �3�o

�����1=2.
Here, we assume that the parameters w �3�o , w �3�e , and w �3�eo have
the same order of magnitude and the same sign. Taking the
following parameters for a solid focusing dielectric, such as
quartz glass, o0 � 1015 sÿ1, w0�0:1, w �3�o �10ÿ14 CGSE units
[24], we obtain Em � 107 V cmÿ1, which corresponds to the
intensity I � cE 2

m=4p � 1014 W cmÿ2. Only CO2 lasers can
produce pulses of such intensities. Note, however, that, since
w �3�o , w �3�o , w �3�eo > 0, these pulses are unstable with respect to
self-focusing.

In gases, liquids, and some polymers, the principal mech-
anism of the cubic optical nonlinearity in the transparency
region is thermal anharmonicity [25]; w �3�o , w �3�e , w �3�eo are neg-
ative in this case. Taking for a polymer solution, such as
dimethylformaldehyde, w0 � 0:1 and jw �3�o j � 10ÿ11 CGSE
units [26], we find Em � 106 V cmÿ1 and I � 1012 W cmÿ2.
Because o0 � 1015 sÿ1, the ultrashort pulse duration
tp � 10ÿ14 s satisfies condition (2).The fact that the nonlinear
susceptibilities are negative ensures that the considered soli-
ton-like bound state of the ordinary and the extraordinary
pulse components is stable in this polymer with induced ani-
sotropy.
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4. Conclusions
Thus, the proposed system of equations (5) and (6) describes
the nonlinear dynamics of the ordinary and the extraordi-
nary components of an ultrashort pulse that propagates
perpendicularly to the optical axis in a medium with induced
anisotropy. In the limit of monochromatic pulses, equations
(5) and (6) transform to the well-known system of coupled
equations for slowly varying amplitudes.

The solution of the system (5), (6), derived in the form of a
soliton-like bound state of ordinary and extraordinary com-
ponents can be realised in weakly birefringent media if the
beating length Lbs of the polarisation ellipse is much larger
than the dispersion spreading length lds. Under certain con-
ditions, this solution is stable with respect to small wave
front perturbations.

It would also be interesting to consider the soliton-like
solution whose polarisation ellipse undergoes nonstationary
beating in the case Lbs 5 lds. To perform the variational aver-
aging in these case, one should choose appropriate trial
functions for Fo and Fe. We plan to solve this problem in
the future.
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