
Abstract. The theoretical and practical uniqueness of the
results obtained by the method of nonlinear laser fluorim-
etry is considered. The theoretical uniqueness of measuring
three basic photophysical parameters (the absorption cross
section, the excited-state lifetime, and the quantum yield of
intersystem crossing) from fluorescence saturation curves is
proved rigorously mathematically. The practical uniqueness
of the results obtained by this method is proved by the
measurements of the absorption cross section and the
excited-state lifetime from the calculated curves of fluores-
cence saturation simulating fluorescence saturation of aque-
ous solutions of rhodamine 6G, eosin, and Bengal rose dyes.

1. Introduction

One of the methods of laser spectroscopy used for diagnos-
tics of organic compounds and complexes is the laser fluori-
metry. The central problem of such diagnostics is the identi-
fication of the states of these complexes, which is required for
measuring their concentration. To solve these problem, the
method of laser saturation fluorimetry has been suggested
[1, 2], which is based on the fact that the shape of fluores-
cence saturation curves of organic compounds depends on
their photophysical parameters, such as the cross section for
fluorescence excitation, the probability of intersystem cross-
ing, the probability of singlet^singlet annihilation, the
excited-state lifetime of molecules, etc. Analysis of fluores-
cence saturation curves allows one, in principle, to determine
these parameters, i.e., to solve the inverse problem of the
laser saturation fluorimetry.

Therefore, the inverse problem under study consists in the
determination of the above parameters and (or) their combi-
nation from the measured fluorescence saturation curve,
which represents the dependence of the number Nfl of de-
tected photons on the flux density F of photons of exciting
radiation (Fig. 1). This concerns not only organic dyes (and
related compounds) but also large natural organic complexes
such as cells of photosynthesising organisms, humus, protein
compounds, complexes of hydrocarbons in petroleum, etc.

2. Statement of the inverse problem
of saturation êuorimetry

We studied low-concentration aqueous solutions of dyes
(C < 10ÿ5 mol l ë 1). The intermolecular interaction between
dye molecules can be neglected at such low concentrations,
and we can use in our physical model only parameters re-
lated to intramolecular processes. In this case, photophysical
processes proceeding in dye solutions upon laser excitation
can be described using a simple three-level model (Fig. 2),
which includes the following processes: absorption of light,
radiative and nonradiative relaxation of the first excited sin-
glet state S1, and intersystem crossing. Transitions from the
T1 triplet state to the ground S0 state are ignored because the
duration of the exciting laser pulse (� 10ÿ8 s) is substantially
shorter than the triplet-state lifetime. The corresponding
mathematical model represents a system of kinetic equations
with three parameters: absorption cross section s13, the exci-
ted-state lifetime t3 � K ÿ13 , and the triplet-state quantum
yield ZT � K32=K3:

qn1�t; r�
qt

� K31 � K 031
ÿ �

n3�t; r� ÿ F�t; r�s13n1�t; r�,
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Figure 1. Typical dye fluorescence saturation curve.
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Figure 2. Three-level energy diagram for polyatomic organic molecules
neglecting intermolecular interactions.



qn2�t; r�
qt

� K32n3�t; r�,
(1)

qn3�t; r�
qt

� F�t; r�s13n1�t; r� ÿ K3n3�t; r�,

n1 � n2 � n3 � n0,

where F (t, r) is the flux density of exciting photons as a
function of time t and coordinate r � fx, yg in the beam
cross section; n1, n2, and n3 are the populations of levels
S0;T1, and S1, respectively; K3 � K31 � K 031 � K32; K31 and
K 031 are the rates of radiative and nonradiative S1 ! S0 tran-
sitions; and K32 is the rate of the S1 ! T1 transition. Because
the dye solution layer of thickness l is assumed optically thin
(s13n0l5 1), the dependence on the coordinate z along the
beam is absent. The calculations were performed for the dis-
tribution of the photon flux density F that was rectangular
over r and t.

The number Nfl of fluorescence photons emitted by the
solution volume V � Sl (where S is the beam cross section
area and l is the layer thickness) excited by a laser pulse is

Nfl � K31l
�1
0
dt
�
S
drn3�t; r�. (2)

3. Analysis of stability and uniqueness
of the inverse problem solution

The most important aspect of the inverse problem solution is
the study of its uniqueness and stability with respect to errors
in the input data (correctness of the problem statement). The
theoretical stability of the inverse problem solution is en-
sured by the fact that the number of the required parame-
ters is finite and the region of their variation is restricted [3].

We studied the uniqueness of the solution for a specified
distribution of the photon flux density in space and time in
the following way. Let us represent the system of equations
(1) in the form

dn3
dt
� sFn1 ÿ a1n3,

(3)

dn1
dt
� ÿsFn1 � a2n3,

where n3(0) � 0; n1(0) � n0; F (t) � F for 04 t4tp; F (t) �
0 for t5tp; tp is the laser pulse length; a1 � K3; a2 � K31�
K 031; and s � s13. By solving the system of Eqns (3), we ob-
tain

n3�t� � C0 exp�ÿm1t� ÿ C0 exp�ÿm2t�

�C0�exp�ÿm2tp� ÿ exp�ÿm1tp�� exp�a1tp� exp�ÿa1t�,
(4)

where

m1;2 � ÿk1;2 �
1
2

sF � a1 � �sF ÿ a1�2 � 4sFa2
h i1=2� �

. (5)

By integrating (4), we obtain the expression for Nfl(F ):

Nfl � K31

�tp
0
n3�t�dt �

K31C0

m1
1ÿ exp�ÿm1tp�
� �

ÿ K31C0

m2
1ÿ exp�ÿm2tp�
� �

� K31C0

a1
exp�ÿm1tp� ÿ exp�ÿm2tp�
� �

, (6)

where

C0 �
sFn0

�sF ÿ a1�2 � 4sFa2
h i1=2 .

The function Nfl(F ) defined in such an interval [F1,F2 ], that
04F1 4F2, is unique in the vicinity of points F � 0 and
F � �1.

To prove the uniqueness of the solution, we took asymp-
totics of the function Nfl(F ) for F ! �1 and also the
asymptotics of the limit

lim
F!0

dNfl�F�
dF

.

Let us show that the asymptotics of Nfl(F ) for F ! ÿ1
determines uniquely the parameter s. It follows from expres-
sion (6) that

lim
F!ÿ1

Nfl � lim
F!ÿ1

�b1�F� exp�sjF j� � b2�F��, (7)

where functions b1 and b2 have finite limits for F ! ÿ1 and

lim
F!ÿ1

b1�F� � ÿ
K31n0
a1

exp tp 6� 0. (8)

Let us prove that the rate of growth of the exponential at
infinity determines uniquely the parameter s. To do this, we
assume that two different parameters ^ s1 and s2 correspond
to the same Nfl for F !1. In this case, we obtain from
expression (7)

lim
F!ÿ1

N �s1�fl ÿN �s2�fl

� �
� lim

F!ÿ1
b �s1�2 ÿ b �s2�2

h

� b �s1�1 exp�s1jF j� ÿ b �s2�1 exp�s2jF j�
i
� 0. (9)

Let us assume that s2 < s1. In this case, we have

lim
F!ÿ1

N �s1�fl ÿN �s2�fl

h i
� lim

F!ÿ1
exp
+
1
�s1jF j�

�
(
b �s1�2 exp

+
0

�ÿs1jF j� ÿ b �s2�2 exp
+
0

�ÿs1jF j� (10)

� b �s1�1+
const 6� 0

ÿ b �s2�1 exp
+
0

�ÿ�s1 ÿ s2�jF j�
)
� 1:

Thus, the parameter s is uniquely determined by the rate of
growth of the exponential. Then, knowing s, from

dNfl

dF

����
F�0
� K31

sn0tp
a1

(11)
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we determine a1 � 1=t3.
To find K32 � a1 ÿ a2, consider the asymptotics Nfl(1):

lim
F!1

Nfl � N1fl �
K31n0
a1 ÿ a2

1ÿ exp ÿ�a1 ÿ a2�tp
� �� 	

� K31C0

a1
exp ÿ�a1 ÿ a2�tp
� �

. (12)

Let us show that the function a1 � f (a1 ÿ a2) defined by
expression (12) is monotonic. It follows from (12) that

a1 �
K31n0

N1fl exp x� K31n0tpxÿ1�1ÿ exp x� , (13)

where x � (a1 ÿ a2)tp. It follows from (13) that

a 01�x��ÿ
K31n0 N1fl exp x�K31n0tpx

ÿ2�exp xÿ1�
h i

N1fl exp x� K31n0tpxÿ1�1ÿ exp x�� �2 <0. (14)

Thus, the function a1(x) monotonically decreases every-
where in the region x E �0,1), and the dependence tp(a1ÿ
a2) � tpK32 � j(a1) is unique. Therefore, knowing a1, one
can uniquely determine a1 ÿ a2 � K32.

Thus, parameters s13, t3, and ZT can be uniquely deter-
mined from the fluorescence saturation curve within the
framework of the fluorescence model chosen. A more com-
plicated model, which considers non-rectangular distribu-
tions of F over the cross section and in time, takes into
account intermolecular interactions, etc., would require an
additional proof of the uniqueness. However, the analysis
of the saturation curve shows its monotonic dependence
on all real photophysical parameters, which allows one to
expect that the uniqueness is also retained in more compli-
cated cases.

4. Solution of the inverse problem of saturation
êuorimetry

We solved the inverse problem by minimising the function
that estimates the root-mean-square deviation of the data
calculated within the framework of a physical model from
the experimental data. We found that this function of many
variables has several local minima and a complex `gully'
structure, which strongly hinders the minimisation pro-
cess. For this reason, the minimisation was performed by
the quasi-Newton method, which uses a gradient calculated
analytically and a specific nature of the function being cal-
culated, namely, the fact that it is determined by a sum
of squares [4]. The method consists in the following: At
each algorithm step, instead of the residual function, the
function

f �X � DX� � f �X� � 2�J tj;DX� � �HDX;DX� , (15)

which approximates the residual function is minimised.
Here, X is the vector of parameters; DX is the vector of
their increments; j is the solution of the direct problem (in
our case, this is an analytic solution for Nfl(F ) for the rec-
tangular distribution of F in time and space); J t is the
transposed Jacobi matrix for the direct problem; and H is
the symmetric quadratic matrix with elements

Hij � J tJ
ÿ �

ij�
X
k

jkq
2jk

qxiqxj
, (16)

where jk is the solution of the direct problem at the kth
point: and xi and xj are the ith and jth parameters (in our
case, s13 and t3).

The possibilities of the variation approach were tested for
low-concentration aqueous solutions of three dyes with dif-
ferent values of photophysical parameters. The above algo-
rithm was used for solving the two-parametric inverse prob-
lem (we determined the absorption cross section s13 and the
excited-state lifetime t3 in the case of a rectangular distribu-
tion of the laser pulse in time and space) with the help of
model fluorescence saturation curves of aqueous solutions
of rhodamine 6G, eosin, and Bengal rose dyes. The initial va-
lues of photophysical parameters used in Tables 1 ^ 4 were
taken from paper [5]. The model saturation curves were
made `noisy' in calculations (the added noise was from 1
to 10%).

Table 1 presents the results obtained. One can see that the
errors of the reconstructed parameters proved to be even
smaller than the errors of the initial data. This result, which
appears unexpected at first glance, is explained by the fact
that we managed to obtain an analytic expression for the
saturation curve in a simplest case under study and thereby to
eliminate the errors that would appear in the numerical so-
lution of the system (1). In a certain sense, the results presen-
ted in Table 1 reflect the limiting possibilities of the method.

Then, we used this method to find two parameters (the
third parameter being specified) in the case of a `rectangular'
distribution of the laser pulse in space and time. We recon-
structed parameters s13 and t3 (the parameter ZT being
specified), t3 and ZT (the parameter s13 being specified), and
s13 and ZT (the parameter t3 being specified).

The values of parameters determined in the numerical
experiment for the same dyes are presented in Tables 2 ^ 4.
The parameters of rhodamine 6G and eosin were recon-
structed with good accuracy. However, in the determina-
tion of parameters of Bengal rose the practical instability
was manifested as local minima with parameters t3 that
strongly differed from real ones, although lied in the region
of the solution search. This is obviously explained by the
fact that the triplet quantum yield for Bengal rose is very
high (close to unity), whereas the value of t3 is very small.
Nevertheless, we managed to overcome the practical instabi-
lity in the reconstruction of parameters s13 and t3, with ZT
being specified, and in the reconstruction of parameters t3
and ZT , with s13 being specified, by using a priori information
obtained in the study of the direct problem: the absolute
values of Nfl on a plateau strongly differ for different t3, so
that the order of magnitude of t3 can be readily estimated.

However, the practical instability remained (as one can
see from Table 3) in the problem of determining ZT and
s13 (with t3 being specified). This question is a subject of fur-
ther studies.

Our preliminary calculations showed that complication of
the problem (consideration of non-rectangular distributions
of F , calculation of three parameters instead of two) drasti-
cally increases the dispersion, especially for the three-
parametric problem, and makes the dispersion substantially
greater than the noise of the initial data (resulting sometimes
in the practical instability [4] ).

We continue to study algorithms for solving such more
complicated problems. In this paper, we restricted ourselves
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Table 1. Parameters s13 and t3 obtained from model curves by the variation method.

Dye Noise (%) hs13i
�
10ÿ16 Ôm2 Dispersion (%) ht3i

�
ns Dispersion (%)

Rhodamine 6G

Real 2.50 ë 4.00 ë
0 2.50 ë 4.00 ë
1 2.50 0.1 4.00 0.1
3 2.50 0.5 3.98 0.5
5 2.50 0.7 3.97 0.7
10 2.54 1.2 4.03 1.0

Eosin

Real 1.10 ë 1.40 ë
0 1.10 ë 1.40 ë
1 1.10 0.1 1.40 0.3
3 1.10 0.3 1.39 1.0
5 1.10 0.4 1.41 1.4
10 1.10 1.0 1.37 3.5

Bengal rose

Real 1.20 ë 0.10 ë
0 1.20 ë 0.10 ë
1 1.20 0.1 0.10 2.0
3 1.21 0.2 0.11 5.0
5 1.21 0.3 0.12 7.0
10 1.22 0.5 0.14 8.0

Table 2. Parameters s13 and t3 of three dyes obtained, with ZT being speciéed, by the method of least squares.

Dye Noise (%) hs13i
�
10ÿ16 ÔÏ2 Dispersion (%) ht3i

�
ns Dispersion (%)

Rhodamine 6G

Real 2.50 ë 4.00 ë
0 2.50 ë 4.00 ë
1 2.50 0.01 3.93 0.1
3 2.50 0.01 3.92 0.3
5 2.50 0.01 3.92 0.7
10 2.50 0.2 3.94 0.8

Eosin

Real 1.10 ë 1.40 ë
0 1.09 ë 1.40 ë
1 1.10 0.2 1.41 1.5
3 1.10 1.0 1.33 7.4
5 1.10 1.3 1.27 11.0
10 1.09 2.6 1.21 18.8

Bengal rose

Real 1.20 ë 0.10 ë
0 1.20 ë 0.10 ë
1 1.20 0.1 0.10 0.01
3 1.22 0.5 0.10 0.01
5 1.19 0.7 0.10 0.01
10 1.17 1.0 0.10 0.01

Table 3. Parameters s13 and ZT of three dyes obtained, with t3 being speciéed, by the method of least squares.

Dye Noise (%) hs13i
�
10ÿ16 cm2 Dispersion (%) hZTi Dispersion (%)

Rhodamine 6G

Real 2.50 ë 0.002 ë
0 2.50 ë 0.002 ë
1 2.50 0.2 0.002 0.1
3 2.54 1.1 0.002 0.2
5 2.59 1.9 0.002 0.3
10 2.59 1.9 0.002 0.6

Eosin

Real 1.10 ë 0.68 ë
0 1.10 ë 0.68 ë
1 1.10 0.6 0.68 0.4
3 1.06 2.5 0.70 2.1
5 0.97 5.6 0.78 4.8
10 1.02 11.5 0.78 7.7

Bengal rose

Real 1.20 ë 0.95 ë
0 1.70 ë 0.66 ë
1 1.70 10.3 0.74 10.1
3 1.65 13.3 0.79 11.3
5 1.96 9.8 0.65 12.2
10 2.15 8.7 0.57 12.5
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to the establishment of the possibility of solving inverse prob-
lems of nonlinear laser fluorimetry by considering the
simplest case, as is usually done at the first stage.
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