
Abstract. The propagation of a laser beam near the interface
between a linear dielectric and a photorefractive crystal is
considered. The specific features of formation of surface
waves are studied, the profiles of such surface modes are
numerically calculated, and guiding properties of the inter-
face are analysed. Using the method of effective particles,
the second-order ordinary differential equation describing
the trajectory of a beam reflecting from the interface is
obtained and analysed.

1. Introduction

The propagation of a laser beam near the interface between
two media with different optical properties is a classical
problem, which is important both from the theoretical and
practical points of view. In this respect, of special interest are
nonlinear interfaces when at least one of the media is non-
linear. During the propagation of a laser beam near such an
interface, a surface wave can appear, the beam filamentation
or fanning can occur, etc.

The features of the interaction of a laser beam with the
interface between two media strongly depend on the type
of nonlinearity of the latter. The interfaces of Kerr materials
(including the linear-nonlinear [1, 2] and nonlinear-nonlinear
[3] interfaces), materials with quadratic nonlinearity [4], as
well as the interface between a Kerr medium and an absor-
bing medium [5] were earlier studied in many papers.

However, of prime interest for practical purposes is a
study of the interaction of laser radiation with interfaces
between media having more complicated nonlinearities. Con-
siderable achievements [6, 7] in the generation of solitons in
photorefractive crystals (PRCs), which possess nonlinear
properties at rather low radiation intensities, stimulated stu-
dies of the features of formation of surface waves in photore-
fractive media.

The authors [8] considered the possibility of excitation of
a surface wave near the interface between a PRC having
purely diffusion nonlinearity and a linear medium (dielectric
or metal). They showed that the energy of such a wave could
concentrate within a thin surface layer of a PRC. In this case,

the surface wave appears due the interference and energy
exchange between the waves reflected from the interface
and a Bragg grating formed inside the crystal. Later [9,10],
the near-surface propagation of a laser beam in the presence
of the drift and diffusion components of the nonlinear
response of a PRC was interpreted as a result of the balance
of the beam self-bending, caused by the presence of the dif-
fusion component of the nonlinear response of a PRC, and
reflection [11].

One of the important features of the near-surface propa-
gation of a laser beam is that the energy concentration within
a thin layer of a substance considerably reduces the charac-
teristic response time of a PRC.This allows one to increase
substantially the operation rate of optical devices based on
photorefractive materials without the use of additional wave-
guide optical structures [12,13]. The use of the competition
between the beam self-bending and reflection of radiation
from the interface permits the construction of waveguide
structures, which play the role of logical elements and devices
for controlling light by light.

Although photorefractive surface waves have been
studied in many papers, this problem is not adequately
studied so far. In fact, the authors of the most of earlier
papers [8 ^10] studied surface waves in PRCs that had a spe-
cific logarithmic nonlinearity, which allowed one to obtain
linearised equations for the envelope of a surface wave in
the case of a low dark conductivity of the PRC.

In this paper, we consider the interaction of a laser beam
with the interface between a linear dielectric and a PRC with
a sufficiently high dark conductivity. We took into account
both the drift and diffusion component of a nonlinear
response. This means that we considered the addition to
the refractive index, which is proportional to the first deri-
vative of the incident radiation intensity and results in the
beam self-bending [14]. An analytic treatment of the beam
trajectory is based on the method of effective particles, which
is well known in quantum mechanics (the detailed description
of the method is presented in paper [3]). In addition, we cal-
culated numerically exact profiles of surface modes.

2. Theoretical model

Consider the propagation of a slit (infinite along the y-axis and
finite along the x-axis) beam along the z-axis near the interface
between a linear dielectric occupying the half-space x5 0 and
a PRC occupying the half-space x < 0. We assume that the
beam is polarised along the y-axis. The propagation of the
beam is described by the standard truncated wave equation
for the normalised complex amplitude q(Z,x ) of the field
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where Z � x=x0 is the normalised transverse coordinate; x0 is
an arbitrary transverse scale; x � z=Ld is the normalised
longitudinal coordinate; Ld � k0x

2
0 is the diffraction length

corresponding to x0; k0 � n0o=c is the wave number; n0 is
the refractive index of the dielectric; o is the central freq-
uency of the radiation spectrum; q(Z,x) � A(Z,x)(Rdr=Id)

1=2;
A(Z,x) is the complex amplitude of the light field; Rdr �
kLd=k0Lr; Lr � 2=kreffn

2E0 is the length of nonlinear refrac-
tion; k � no=c; n (5 n0) is the unperturbed refractive index
of the PRC; reff is the effective electrooptical coefficient; E0 is
the static electric field applied to the PRC along the trans-
verse x-axis; Id describes the dark conductivity of the PRC;
the parameter p � x20(k

2 ÿ k 2
0 )=2 is proportional to the dif-

ference of the squares of refractive indices of the dielectric
and a photorefractive medium and characterises reflecting
properties of the interface; and the parameter m describes the
diffusion component of the nonlinear response of the PRC.
In fact, equation (1) generalises the known equation from
paper [15], which describes the propagation of a laser
beam in an infinite PRC.

In (1), the step function

S�Z� � 1 for Z E �ÿ1; 0�;
0 for Z E � 0;�1�;

�
(2)

is also used, which allows one to describe the propagation of
a laser beam both in a linear dielectric (Z5 0) and a non-
linear photorefractive medium (Z < 0) using one truncated
wave equation (1).We assume that the tangential component
of the electric field of the light and the normal component of
the magnetic induction vector are continuous at the interface
Z � 0, which, as can be easily shown, corresponds to the con-
tinuity of q and qq=qZ.

The last term in the parentheses in the right-hand side of
Eqn (1) describes the beam self-bending caused by energy
transfer from low-frequency spatial components of the laser
beam to the high-frequency ones. The first term in the paren-
theses characterises the interaction of the laser beam with the
interface between a dielectric and a PRC, while the second
term describes the beam self-focusing caused by the drift
component of the nonlinear response of a PRC. Finally,
the term containing the second derivative over the transverse
coordinate Z characterises the diffraction spreading of the
beam. Inside a linear dielectric (where S(Z) � 0), Eqn (1)
transforms to a usual parabolic equation describing diffrac-
tion of a light beam in a linear medium. Written in a sca-
lar approximation, this equation can be readily generalised
to the case of vector fields taking into account optical activity
of a crystal [16]. Note that the propagation of a laser beam in
crystals with high optical activity (for example, BSO) can be
appreciably affected by the additional modulation of radia-
tion polarisation [17,18].

Equation (1) was solved numerically using the method of
splitting over physical factors. The initial condition at the
medium input was specified in the form

q�Z; x � 0� � wsech�w�Zÿ Zin��,

where w is the form factor and Zin is the coordinate of
the soliton centre. When parameters m and p are positive, a

laser beam that entered into a PRC far from the interface
will bend toward the interface under the action of the
diffusion component of a nonlinear response of the PRC.
By approaching the interface between a dielectric and a
PRC, the laser beam will experience repulsion from the inter-
face, which can finally result in the total internal reflection
from a dielectric medium, which has the lower optical density
(see Fig. 1a).

After the first reflection, the beam moves away from the
interface and then returns to it because of self-bending. Such
consecutive reflections from the interface result in the pro-
pagation of the laser beam near the surface. If the angle of
incidence is lower than the angle of total internal reflection,
the beam is partially refracted to a linear medium and then
undergoes the diffraction spreading (see Fig. 1b).

Another propagation regime is possible when the beam
was initially incident close to the interface, so that the reflec-
tion dominates over its self-bending. In this case, the beam
first moves away from the interface by the distance that is
determined by the initial distance from the interface and
then it returns to the interface. The most interesting propaga-
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Figure 1. Interaction of a laser beam having the hyperbolic secant profile
with the interface for m � 0:1, p � 1:0, Zin � ÿ5:0 (a),ÿ28:0 (b), andÿ1:81
(c). The interface is located at the point Z � 0.
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tion regime is realised when the repulsion from the interface is
completely compensated by the self-bending, resulting in the
formation of a stable surface wave (Fig. 1c)

3. Proéles of stationary surface waves

We will find the exact profiles of surface modes and study the
guiding properties of the interface between a linear dielectric
and a PRC.We will seek the stationary localised solutions of
equation (1) in the form

q�Z; x� � r�Z� exp�ibx�,

where the envelope p! 0 for Z! �1. By substituting this
expression in (1), we obtain the following second-order ordi-
nary differential equation for the real envelope r :

d2r
dZ2
� 2brÿ 2S�Z�r p� r2 ÿ 2mr

dr
dZ

� �
. (3)

Equation (3) can be solved numerically by applying the so-
called shooting method.This method is based on the fact that
inside a linear dielectric (Z > 0) the function r and its deriva-
tive dr=dZ have the following asymptotics, which are valid
for Z!1:

r�Z > 0� � exp ÿ�2b�1=2Z
h i

,

(4)

dr�Z > 0�
dZ

� ÿ�2b�1=2 exp ÿ�2b�1=2Z
h i

.

By specifying the initial conditions in the form (4) in the
integration of equation (3) and selecting the corresponding
values of parameters b, p, and m, we can obtain localised soli-
ton solutions, whose amplitude r! 0 for Z! �1. To sim-
plify the numerical integration, we approximated the step
function S(Z), which describes the properties of the dielec-
tric-PRC interface, by the smoothed function

S�Z� � 1
2

1ÿ tanh
Z
Z0

� �
, (5)

whose form is close to a step. A small parameter Z0 in (5)
characterises the width of the smoothing region (the typical
value Z0 � 0:05).

Except the convenience of numerical integration, the
advantage of this approximation is that it takes into account
the spreading of the real interface. By applying the approxi-
mation of a narrow intermediate region (Z0 5 1), we can use
below (see section 4) the following expression for the deriva-
tive of the step function

qS
qZ

� �����
Z0!0

� ÿd�Z�, (6)

where d(Z) is the Dirac delta function. In the numerical
integration, we varied the propagation constant b in order
to obtain various distributions of the light field, i.e., the
surface modes of different orders with asymptotics r �
exp�2(bÿ p)1=2Z� ! 0 for Z! ÿ1.

Fig. 2 shows profiles of the first three surface modes,
which can appear at the dielectric-PRC interface in the

case of a comparatively strong diffusion component of the
nonlinear response m � 0:2 and the waveguide parameter
p � 0:5. One can see that the wave profiles are asymmetric
and their maxima are somewhat shifted to the interface
because of the influence of the asymmetric diffusion compo-
nent of the nonlinear response of the PRC. The width of the
intermediate region between a dielectric and a PPC does not
virtually affect profiles of surface modes for Z0 4 0:5.

As the surface mode order increases, its amplitude
decreases and the total power P � � r2(Z)dZ per unit length
along the y-axis increases. As the role of diffusion effects
increases (i. e., with increasing parameter m), the amplitude
and the degree of spatial localisation of the surface wave
increase. In the limit of purely cubic nonlinearity ( m � 0),
localised solutions are absent and surface waves are trans-
formed to periodic, semi-infinite cnoidal waves.

Note that the spatial half-period of the surface wave
increases from right to left in fact linearly (Fig. 2). The wave-
guide parameter p weakly affects the surface wave profile (we
will show below that this parameter noticeably affects only
the left wing of the wave) and mainly determines the value
of the propagation constant b. Note that the profile of the
first-order surface mode can be well approximated by the
known soliton solution in the form of a hyperbolic secant.
We will use this fact in the following for the analytic study
of the trajectory of a beam with the specified transverse pro-
file near the dielectric-PRC interface.

We also considered the stability of the obtained surface
modes using the technique of dispersion diagrams based
on the graphical analysis of the dependence of the soliton
power on the propagation constant b [19]. Not presenting
here the corresponding diagrams, note that the surface wave
power P(b) is a monotonically increasing function of the pro-
pagation constant b. This suggests that the surface waves in
this geometry are stable with respect to small perturbations
of input profiles in accordance with the well-known stability
criterion qP=qb > 0 [20].

In addition, we studied the mode stability with the help of
a direct computer simulation of the propagation of perturbed
surface waves using the method of splitting over physical fac-
tors.We considered the effect of substantial (up to 10% in the
intensity) harmonic and noise perturbations on the dynamics
of propagation of surface waves.

Fig. 3 shows the dynamics of propagation of surface
waves of the first and second order in the case of harmonic
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Figure 2. Profiles of the first three surface modes at the dielectric-PRC
interface for m � 0:2, p � 0:5, Z0 � 0:05 and the propagation constants for
the first three modes b � 1:202 (1 ), 0.904 (2 ), and 0.775 (3 ).
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perturbation (dr � dr0 cos (OZ)) of the input profiles. One
can see that the perturbation amplitude exhibits oscillations,
which decay during the beam propagation. In this case, the
energy excess caused by the perturbation of the initial profile
passes to the dielectric.

A similar picture was also observed upon excitation of
surface modes by beams with profiles close to those of the
surface waves. In this case, the energy excess was also rapidly
scattered inside the dielectric, and a surface wave of the cor-
responding amplitude was formed. Note that the stability of
the surface waves for a three-dimensional boundary problem
was considered in Ref. [21].

We also studied the guiding properties of the dielectric-
PRC interface. Fig. 4 shows the dependences of the diffe-
rence between the propagation constant and the waveguide
parameter bÿ p on the waveguide parameter p for the first
three surface waves. One can see that there is no cut-off for
the higher-order modes and the propagation constant b is in
fact an almost linear function of the waveguide parameter p.

An increase in p results mainly in an increase in the dif-
ference between the propagation constants of the modes of
different orders and in an increase in the steepness of the
left wing of the surface wave (in accordance with the asymp-
totics r(Z! ÿ1) � expf�2(bÿ p)�1=2Zg). One can see from
Fig. 4 that the distance between the curves describing the dif-
ference between the propagation constant and the waveguide
parameter as a function of p reduces with increasing the mode
number. As the mode number m tends to infinity, the diffe-
rence between the propagation constant b and the waveguide
parameter p tends to zero.

Fig. 5 shows the propagation constants b corresponding
to fixed modes as functions of the parameter m describing the
amplitude of the diffusion component of the nonlinear
response of a PRC, the waveguide parameter being specified.
One can see that the propagation constant varies within a
broad range for the values of m really accessible in experi-
ments.

Note that the propagation constant b increases infinitely
when the parameter m tends to zero, i. e., in passing to a purely
cubic nonlinearity. As we mentioned above, the propagation
constant b determines the asymptotics of the right wing of the
wave.Therefore, this wing is smoothed with increasing propa-
gation constant. This means in fact that the wave is shifted to
the nonlinear medium and is transformed to a nonlinear
semi-infinite periodic wave in the limiting case m � 0.

As was mentioned above, the profile of the first surface
mode, which can appear at the dielectric-PRC interface, is
quite close to a hyperbolic secant. This circumstance allows
one, by using the method of effective particles [3], to obtain
analytically the equation for the beam trajectory near the
interface in the aberration-free approximation, to find the
position of the equilibrium point corresponding to the forma-
tion of the surface wave, and to determine the depth of the
field penetration into a linear dielectric upon reflection.

4. Reêection of a beam from an interface
and the surface wave formation

The equilibrium point corresponding to the formation of a
surface wave can be readily found by the method of effective
particles if the distribution of the light field in a laser beam is
known. The method of effective particles is based on a direct
analogy between soliton-like objects propagating in a non-
linear medium and quantum-mechanical particles found in a
known potential field (in this case, the equilibrium point
corresponds to a minimum of the potential energy, provided
the latter can be introduced). This method allows one to
obtain the trajectory of a particle in the known potential if
its localised wave function satisfies equation (1) (the per-
turbed nonlinear Schr�odinger equation) [3].

Using this method, we obtained the ordinary, second-
order differential equation

w0
d2

dx 2 Zc�x��
�1
ÿ1

p
qS
qZ
jqj2� 1

2
qS
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jqj4� mS
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qZ

 !224 35dZ. (7)
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Figure 3. Propagation dynamics of surface modes of the first (a) and
second (b) orders with perturbed input profiles for the harmonic perturba-
tion amplitude dr0 � 0:3 and the perturbation frequency O � 4:0.
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for the trajectory of a spatially-localised beam (i.e., a beam un-
der the conditions q(Z! �1, x) � 0 and qq(Z! �1,x)=qZ
=0) near the dielectric-PRC interface . Here,

w0 �
�1
ÿ1

qq �dZ

is the laser beam power and

Zc�x� �
�1
ÿ1

q �ZqdZ

,�1
ÿ1

q �qdZ (8)

is the coordinate of the laser beam centre.
The first term in the integrand in expression (7) describes

the influence of reflection from the dielectric-PRC interface
on the beam trajectory. The second term characterises the
specific self-action of the laser beam in the presence of a gui-
ding surface and, finally, the third term is responsible for the
beam self-bending. As the beam is moving away from the
interface into the PRC volume (for Z! ÿ1), the influence
of the interface on the beam trajectory weakens and, finally,
equation (7) transforms to the equation describing the self-
bending of the localised beam in the PRC with the diffusion
component of the nonlinear response.

Then, within the framework of the method of effective
particles,we assume that the beam self-bending and repulsion
from the interface do not distort its initial profile. (The nume-
rical simulation showed that this assumption remains valid
even when the reflection from the interface occurs at the angle
close to the angle of total internal reflection.) This allows one
to obtain the trajectory of the laser beam centre by inserting
into the right-hand side of equation (7) the approximate ex-
pression for the envelope q(Z,x) in the form of a hyperbolic
secant: jq(Z,x)j � wsechfw�Zÿ Zc(x)�g (where w is the form fac-
tor), which is a solution of the standard unperturbed Schr�o-
dinger equation.

By substituting this solution into equation (7) and taking
into account expressions (5) and (6) for the step function S
and its derivative qS=qZ, we obtain the equation

q2Zc
qx 2 � ÿ

1
2
w sech2�wZc� ÿ

1
4
w 3sech4�wZc� �

4
15

mw 4

(9)

� 2
5
mw 4�sech4�wZc� ÿ 1

�
tanh�wZc� �

2
15

mw 4 tanh3�wZc� .

which describes the trajectory of the localised beam with the
envelope in the form of a hyperbolic secant near the dielec-
tric-PRC interface.

As mentioned above, as the beam is moving away from
the interface inside a PRC, i. e., for Zc ! ÿ1, expression
(9) transforms to the known equation describing the beam
self-bending along the parabolic trajectory

d2Zc
dx 2 �

8
15

mw 4. (10)

Equation (9) is analogous to the equation describing the
motion of a particle under the action of the nonlinear force
f (Zc). In the absence of energy dissipation, it is convenient
to use the potential U(Zc) � ÿ

�
f (Zc)dZc for a qualitative

analysis of possible trajectories of the motion. This potential
can be easily calculated and has the form

U � ÿ 4
15

mw 4Zc ÿ
1
12

w 2 tanh3�wZc� �
�
p
2
� w 2

4

�
tanh�wZc�

� mw 3
�
tanh2�wZc� ÿ 1

15
� sech4�wZc�

10
� 4 ln�2 cosh�wZc��

15

�

ÿ p
2
ÿ w 2

6
. (11)

The constants in the right-hand side of expression (11) appear
due to a convenient normalisation of the potential U to zero
for Zc !1.

Fig. 6 shows the dependences of the potential U on Zc for
different values of the waveguide parameter p and different
parameters m (hereafter, the form factor w is assumed unity).
One can see that the dependence U(Zc) has the form of a
potential well of the infinite depth for Zc ! ÿ1 and of the
zero depth for Zc !1. This suggests that both the finite peri-
odic and infinite motions can take place. The slope of the left
wing of the potential well increases linearly with increasing
parameter m (see Fig. 6b).

When m is zero, the potential has the form of a step, i. e.,
finite motions are impossible in this case. The waveguide
parameter p determines the depth of the potential well, which
increases with increasing p (Fig. 6a). The minimum of the
potential energy corresponds to the stable equilibrium point,
which is characterised by an exact energy balance between
the beam self-bending and repulsion from the dielectric-
PRC interface. Thus, for m � 0:1, p � 1:0, and w � 1:0, the
equilibrium point is located approximately at Zin � ÿ1:81.

Fig. 1c shows the dynamics of propagation of the laser
beam with a profile described by a hyperbolic secant. The
beam was introduced into a nonlinear photorefractive
medium at the point Z � Zin [Fig. 1c presents the results of
numerical integration of the truncated wave equation (1)].
One can see that the beam centre coordinate weakly oscillates
in the transverse direction during the beam propagation. This
is caused mainly by the transformation of the initial secant
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Figure 6. Form of the potentialU(Zc) for a PRC for Z0 � 0:05, m � 0:1 and
different values of p (a) and p � 1:0 and different values of m (b).
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envelope to a slightly asymmetric profile of the first surface
mode.

The trajectories of the beam propagation calculated for
different initial distances Zin using equation (9) well agree
with the results of a direct numerical integration of the initial
truncated wave equation (1).

The potential (11) also allows one to estimate the critical
distance Zcr of the beam penetration into a nonlinear medium.
A laser beam incident on a PRC at the point separated from
the interface by the distance above Zcr will refract into a linear
dielectric. The critical distance Zcr can be found from the rela-
tion U(Zcr) � 0, which determines the boundary between the
regions of finite [U(Zc) < 0] and infinite [U(Zc) > 0] types of
the motion.Taking into account that for large negative values
of Zc, the function tanh (wZc)! ÿ1 and sech(wZc)! 0,we can
obtain the simple expression for the critical distance:

Zcr � ÿ
15p� 5w 2

8mw 4 . (12)

The turning points corresponding to the finite motion
(i. e., in fact the depth of penetration of the laser beam inside
a linear dielectric or the minimal distance to which the beam
centre approaches the interface) can be readily found graphi-
cally from the form of the potential U , which is clearly seen
from the first integral of equation (9)

�dZc=dx�2 � 2U�Zin� ÿ 2U�Zc�, (13)

where Zin is the coordinate of the point of entry of the laser
beam centre into a nonlinear medium. The turning points
can be determined from the condition dZc=dx � 0, i. e.,
knowing Zin, we can find the second turning point from
the condition U(Zc) � U(Zin).

One can see from Fig. 6 that the right wing of the poten-
tial well near the point Zc � 0 also can be approximated by a
linear function. This circumstance allows us to derive the fol-
lowing relation between the positions of the right and left
turning points lying on linear parts of the potential U :

1
2
pw� 1

4
w 3 ÿ 4

15
mw 4

� �
Zright

� 3
2
p� 1

2
w 2 ÿ 1

3
mw 3 ÿ 4

15
w 3 ln 2� 8

15
mw 4Zleft. (14)

In conclusion, note that the method of effective particles
is well applied to the beams with the envelope that is close to
the envelope of the first surface mode. However, the applica-
tion of this method to higher-order modes involves certain
difficulties because of the lack of even approximate analytic
expressions for the mode envelopes.
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