
Abstract. The lasing dynamics of a wide-aperture laser with
an intracavity saturable absorber is theoretically studied.
The saturable absorber inserting gives rise to an autowave
profile of the optical field. The characteristic equation for
the perturbations of the laser field is derived and solved. The
spatial spectrum of autowaves is determined. The relevant
set of equations was numerically solved for two types of
resonant boundary conditions: total reflection of light
from the side boundaries of the cavity and a coaxial laser
geometry.

1. Introduction

Wide-aperture lasers are capable of generating light beams
with complex time-dependent transverse profiles. When a
saturable absorber is placed inside the cavity of such a
laser, lasing may occur either in the pulsed or continuous-
wave regime. Even an elementary point model of such a
system is still to be adequately explored.

New regimes of lasing arising in systems with large trans-
verse sizes have been recently revealed within the framework
of a distributed model. It is of considerable interest to analyse
the qualitative difference between these regimes of lasing.

In lasers with sufficiently wide apertures, where the Fres-
nel parameter may be of the order of several tens, regular
structures may appear in the profile of a laser beam. Specif-
ically, isolated islands of lasingö laser autosolitons [1]ö
may arise in the bistability region.When the gain is high, peri-
odic wave structures may also appear. The properties of such
autowaves in lasers with infinite apertures were examined in
[2]. Some specific features of finite-aperture lasers were
studied in [3]. No detailed analysis of the spectral composi-
tion of autowaves was performed in [2, 3], although such
an analysis would be extremely important for forecasting
the behaviour of laser systems.

In this paper, we investigate the spatiotemporal spectrum
of autowaves in the radiation field of a wide-aperture laser
with a saturable absorber. The active and nonlinear media
were considered within the framework of a two-level model.
We will study the dynamics of the laser field in the case when
the field is totally reflected from the edges of the aperture, i.e.,

in the case of mirror side boundaries of the system. We will
also consider a laser with a coaxial geometry (when the active
medium has a ring-shaped cross section).

2. The spectrum of autowaves

The set of equations governing the optical field in a laser
with a saturable absorber can be found, for example, in [2].
Using dimensionless variables, we can represent these equa-
tions in the following form:
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� Nfe ÿNf�1� Id�. (3)

Here, v is the ratio of the lifetimes of inversion and field
decay in the cavity; N and Nf are the population differences
of two-level particles in the active and nonlinear media,
respectively; Ne and Nfe are the same population differences
in the absence of lasing; E and I � jEj2 are the amplitude
and the intensity of the laser field, respectively; t is the ratio
of population relaxation times in the active and nonlinear
media; and d is the ratio of saturation intensities of the active
and nonlinear media.

The set of equations (1)^(3) describes the dynamics of
lasers that belong to class B. The autowave phenomena pre-
dicted by these equations occur only within some (sufficiently
broad) range of parameters [3]. The possibility of autowave
generation in a real CO2 laser was demonstrated in [4].

The characteristic equation for the set of equations (1) ^
(3) was derived and analysed in [2]. Especially illustrative
results can be obtained in the case when t5 1. The main
qualitative conclusions for this regime are virtually independ-
ent of t. Keeping this circumstance in mind, in what follows,
we present only the results for t � 0.

Let us introduce small deviations e, n, and nf from the
equilibrium parameters of stationary lasing Est, Nst, and
Nfst in the form: E � Est(1� e), N � Nst(1� n), and Nf �
Nfst(1� nf ). We will search for these small deviations assum-
ing that e, n, nf � exp (ltÿ iQx). Then, linearizing Eqs. (1) ^
(3), we arrive at the dispersion equation:

a3l
3 � a2l

2 � a1l� a0 � 0, (4)

where

A P Zaikin P N Lebedev Physics Institute, Samara Branch, Russian
Academy of Sciences, Novo-Sadovaya ul. 221, 443011 Samara, Russia

Received 19 November 1999; revision received 29 June 2000
Kvantovaya Elektronika 30 (11) 959 ^ 962 (2000)
Translated by A M Zheltikov

PACSnumbers:42.60.Mi; 42.60.Fc
DOI:10.1070/QE2000v030n11ABEH001845

The spectrum and competition of autowaves
in a wide-aperture laser with a saturable filter

A P Zaikin

398/848 -3Vol SVERKA

Quantum Electronics 30 (11) 959 ^ 962 (2000) ß2000 Kvantovaya Elektronika and Turpion Ltd
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Equation (4) has two complex-conjugate roots and one
real root, which will be denoted below as l1;2 � R� iQ
and l3 � L. Typical dispersion curves are presented in
Fig. 1. Fig. 1a shows the evolution of autowaves for v � 8.
One can see that autowaves may arise if their wavelengths
are less than some critical length Lcr of the relevant bifurca-
tion. However, the wavelength of autowaves is not limited
from below. The increment R of autowaves grows as the
wave numberQ increases from zero (at the bifurcation point),
asymptotically approaching some constant value R1. Conse-
quently, a whole family of autowaves with arbitrary Q > Qcr

may arise in a laser if some special precautions are not taken.

For v � 30 (Fig. 1b), the gain of autowaves is positive for
any spatial frequency, increasing with the growth in the spa-
tial frequency. Pulsed, rather than autowave, lasing occurs in
this regime.The increment of perturbations is positive for any
wavelength of these perturbations, including infinitely large
wavelengths. Detailed calculations demonstrate that the opti-
cal field virtually simultaneously increases and decays within
the entire laser aperture [3].

Fig. 2 displays the increment of autowavesR as a function
of parameters v andQ.This plot shows that, as v increases, the

region of positive R expands, reaching the coordinate Q � 0.
Pulsed lasing builds up in the system when this point is
reached.

3. Competition of autowaves
in a laser under different conditions

The spectral dependences calculated above allow us to find
the increment of autowaves for an idealised case of an infin-
ite aperture. For any real conditions, the choice of the
frequency of autowaves depends on many factors. Specifi-
cally, detailed calculations of the optical field in a one-
dimensional open cavity have revealed the presence of a
system of autowaves with approximately equal frequencies
and wavelengths in a laser [3]. This finding indicates the
existence of selective factors, which may be associated with
losses through open sides of the cavity and diffraction from
aperture edges.

More definite conclusions concerning the behaviour of
spectral components can be made if we ensure resonant con-
ditions for autowaves. In particular, a cavity with reflecting
side walls can be employed. A discrete set of harmonics
will be excited in a laser then, with an integer number of
half-waves falling within the aperture. Calculations for a
broad range of parameters were performed in order to inves-
tigate this situation.

An iteration procedure similar to the method described in
[3], but modified to include the presence of side walls was
used in these calculations. The equation for a single cavity
round trip was solved at each iteration using an implicit dif-
ference method (a nonmonotonic sweep method involving the
Crank ^Nicolson scheme). The active and nonlinear media
were considered as infinitely thin amplitude^phase screens
placed adjacent to a semitransparent mirror. The intensities
thus determined were then used to solve kinetic equations
(2) and (3). The boundary condition on the side walls was
written as qE=qxjx��a � 0,which corresponds to a total spec-
ular reflection.

Typical results of these calculations are presented in
Fig. 3. For the situation illustrated in Fig. 3a, the initial field
was represented as a sum of harmonics:
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Figure 1. The incrementR and the frequencyO of autowaves and the nega-
tive root L of the dispersion equation as functions of the wave number Q
forNe � 10, Nfe � 7, d � 3, and v � 8 (a) and 30 (b).
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Figure 2. The increment R of autowaves as a function of the parameters v
andQ for the conditions of Fig. 1.
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1� 0:2

X5
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2mpx
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�
. (5)

One can see from Fig. 1a that harmonics with Q < Qcr � 3
should decay as functions of time. This condition is satisfied
for the first three harmonics in Eq. (5), since Q � 0:65, 1.3,
and 2.6 for m � 1, 2, and 3. Fig. 3a shows that these har-
monics decay with time, while two harmonics with the
highest orders (among the harmonics constituting the initial
field) experience amplification and completely determine the
field profile. One can also notice that oscillations with
shorter wavelengths also arise and build up.

In the regime illustrated in Fig. 3b, the initial field is writ-
ten as

E�x� � Est

�
1� 0:6 cos

2px
a

�
. (6)

In this case, the wavelength corresponds, in accordance with
Fig. 1a, to a decaying harmonic. This decay occurs after*20
cavity round trips. Under these conditions, high-frequency
oscillations arise in the profile of a uniform field. Amplifi-
cation of these oscillations results in a strong modulation of
the optical field after *100 cavity round trips.

Hence, it is unlikely that the considered closed cavity may
ever allow efficient spectral selection of autowaves. However,
several simple measures can be taken in this case. In partic-
ular, by choosing the material of the walls with appropriate
properties, the magnitude of losses for high-order autowave
modes can be increased. One can also choose a suitable pro-
file of the walls for this purpose (e.g., a section with a
discontinuity of side walls would introduce considerable
losses for high-order harmonics).

Along with a system with `mirror' boundary conditions, a
laser with periodic boundary conditions

E;N;Nf jf�0 � E;N;Nf jf�2p;

qE
qf

;
qN
qf

;
qNf

qf

����
f�0
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;
qN
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;
qNf

qf

����
f�2p

.

has been also considered. Such a model of a laser can be
easily implemented by using a two-dimensional ring-shaped

semitransparent mirror with an inner radius r1 and an outer
radius r2 and a reflection coefficient R1(r) and employing an
active medium whose cross section has a shape of a similar
ring. The reflection profile of the mirror was smoothed up
around the edges. The radial dependence of the reflection
coefficient can be written in this case as R1(r) � R0 for
r1 < r < r2 and R1(r) � R0 exp�ÿ�rÿ r1;2�2=d 2� around the
inner and outer edges, respectively. Our simulations have
shown that the specific form of the function chosen to
smooth the reflection profile up is not very important. It
was assumed also that the Fresnel parameter is NF � 40,
r1� 0:66a, r2� 0:94a, and d � 0:04a. The second mirror
was assumed to be totally reflecting and infinite.

We deal with a two-dimensional problem in the case
under study. However, the width of the ring mirror was
chosen not very large, and the field had a simple structure
along the radius (similar to a single-mode regime). As a
result, the field distribution along one of the axial coordinates
can be easily calculated. The resonant properties of auto-
waves in this regime were similar to the resonant
properties of autowaves in the one-dimensional case. There
are two differences of the problem under study from the cor-
responding one-dimensional problem. The first difference is
that the system is characterised by losses due to the leaking
of the optical field in the radial direction. Therefore, we can-
not perform an exact comparison of the results of two-
dimensional analysis with the results of one-dimensional con-
sideration. However, taking these additional losses into
account,we can reduce losses due to the coupling of radiation
out of the system through the semitransparent window and
examine qualitatively the same lasing regimes as above.

The second difference of the considered problem from the
one-dimensional case is that the trajectories of autowaves
deviate from straight lines, which gives rise to the leaking
of autowaves through the outer edge of the ring mirror.
The autowave-modulated optical field is also shifted along
the propagation direction of autowaves, which results in a
partial leaking of this field in the same direction.

Figs. 4 and 5 display typical results of calculations for the
laser field under the above-specified conditions. Autowaves
running only in one direction were simulated in these calcu-
lations for the sake of clarity by assuming that the phase of
the initial field is equal to the polar coordinate a. Figs. 4a
and 5a show the cross sections of the field at different
moments of time by a circumference with a radius equal to
0:8a, i.e., the field distribution along the central line of the
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Figure 3. The profile of an optical field at different moments of time in a
cavity with mirror side walls for the conditions of Fig. 1a with the initial
field defined by Eq. (5) (a) and Eq. (6) (b). The time variable in Figs. 3 ^ 5
is normalised to the total round-trip time.
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Figure 4. The profile of an optical field at different moments of time along
a circumference with a radius equal to 0:8a (a) and field distribution (b)
simulated for v � 4, Ne � 20, Nfe � 14, d � 3, and e � 0:3.
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ring mirror. Figs. 4b and 5b present the simulated transverse
intensity profile of a laser beam. One can see that a ring-
shaped periodic light structure rotating with a constant speed
arises in a laser. The initial light field was taken in the form of
a step: E (r,f) � (1� e)Est for x < 0 and x > 0, respectively.
Therefore, ordered structures were produced exclusively due
to the intrinsic properties of the system under consideration.

Figs. 4a and 5a show how a quasi-periodic field emerges
from a steplike field distribution and how this quasi-periodic
field evolves in time, acquiring a profile close to the profile of
a single harmonic. Under conditions of Fig. 4, a field profile
similar to the profile of an ideal harmonic is achieved. Under
the conditions of Fig. 5, the periodicity is perturbed: one of
the wave periods is partially doubled. A more detailed anal-
ysis of this regime has shown that the dependence of the
intensity on the angular coordinate becomes virtually exactly
periodic after *200 iterations.

The results of these simulations demonstrate that a
coaxial laser is characterised by a strong spectral selection
of autowaves. Both high- and low-frequency spectral compo-
nents are suppressed in such a system, and only one harmonic
survives. One can be see from Figs. 1^3 that only low-fre-
quency perturbations are suppressed in lasers with an
infinite aperture or ideal side mirror walls. Comparison of
these results suggests that high-frequency autowaves are sup-
pressed due to the choice of the cavity shape. Obviously, high-
frequency components of autowaves produce rays with a con-
siderable transverse component of the wave vector, i.e., rays
with a considerable tilt, in the optical field. Such rays rapidly
escape from the ring-mirror cavity in the lateral direction, i.e.,
in the direction of leaking of high-frequency autowaves.

The rotating optical field obtained in our simulations is
similar to some extent to a spiral light field [5]. Visually,
this field is reminiscent of the so-called multipass modes
(M modes) of a stable cavity [6]. However, autowave light
structures differ from spiral beams by their properties and
their origin. First, an autowave profile is always strongly
modulated, while spiral beams are not necessarily modulated.
Second, an autowave profile is a nonstationary running or
standing structure, while spiral beams are usually stationary.
In this paper, we investigated the light field in a Fabry ^ Perot
cavity rather than in a stable cavity. Therefore, the main spa-
tiotemporal features of the optical field are due to the
interaction of rays with an autowave profile rather than

due to the cavity geometry. When both of these two factors
(the presence of autowaves and the stable cavity geometry)
are important, the scenario of lasing becomes much more
complicated. This situation requires further analysis.

4. Conclusions

The results obtained in this paper allow us to conclude that
an autowave profile of the optical field with a broad spatial
spectrum may arise in a wide-aperture laser with a saturable
absorber above the bistability threshold. Boundary condi-
tions on the side walls of the cavity play a dominant role
in the formation of the spectrum of these autowaves.

Apparently, quasi-stationary quasi-periodic autowaves
arise in an open cavity due to the competition of the ampli-
fication of autowaves and the losses of autowaves through
the side boundaries of the active volume. As one might
expect, the set of autowaves arising in cavities with mirror
side walls is characterised by discrete frequencies and the
presence of a lower bound in spatial frequency. Spectrum
control in this case requires special measures. In particular,
the properties and the geometry of side walls can be chosen
in a proper way.

A high efficiency of spectral selection of autowaves is
achieved when these waves propagate along a closed trajec-
tory, as in the case of a coaxial laser. Calculations
performed in this paper demonstrate that, starting with an
arbitrary initial field, such a system may produce a single
autowave mode reminiscent in its form of an ideal harmonic.
It seems of considerable interest to investigate such a laser
field within a broad range of geometric parameters of the cav-
ity, especially in the case of a stable cavity. Apparently, such
optical fields can be also generated due to autowaves of some
other nature, e.g., in the case when a phase nonlinear medium
is placed inside a cavity.
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Figure 5. The profile of an optical field at different moments of time along
a circumference with a radius equal to 0:8a (a) and field distribution (b)
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