
Abstract. A thermodynamically consistent model for calcu-
lating the equation of plasma state in the average-ion
approximation is proposed. The model takes into account
the chemical bonds in a solid, the pressure of electron shells
of an ion, which arises upon the ion compression, and also
the degeneracy of the electron gas at high densities and low
temperatures. The calculations of shock compression of dif-
ferent materials, such as liquid deuterium, Al, Be, Fe and
Au, carried out using this model showed that it provides a
satisfactory description both of the existing experimental
results and of the results of calculations involving the Tho-
mas ^ Fermi model over a broad range of pressure behind
the shock front. The isotherms of the above materials cal-
culated in the average-ion approximation and using the Tho-
mas ^ Fermi model are compared for different temperatures.

1. Introduction
Upon absorption of high-power laser radiation, the states
of a condensed matter with an extremely high energy
density can be produced. In particular, such states are
currently attained in the experiments on inertial plasma
conénement at the major laser facilities (NOVA in the
USA, ISKRA-5 in Russia, Gekko-12 in Japan, etc.). This
allows one to use these facilities for experimental studies of
the equations of state under extreme conditions. In
particular, experiments on the compression of liquid
deuterium were recently performed at the NOVA laser
facility in the USA [1]. Similar conditions are also realised
in ion beamëmatter interaction experiments, in experiments
with liners, pinches, and in explosion experiments, including
those with shock tubes.

Such experiments are analysed employing numerical gas-
dynamic simulations, which requires a knowledge of the
equations of matter state. The equations of state are usually
written in the form of the dependence of pressure p and the
energy E of the matter on the density r and temperature T.
The precision attained in the numerical simulations depends
substantially on the accuracy of the equation of state in use

(in particular, typical applications require that the data calcu-
lated from the equation of state should be accurate to about
15 ^ 20% or better). In addition, gas-dynamic simulations
involve significant difficulties unless the data calculated
from the equations of state are represented as relatively
smooth functions of the density and temperature. It is also
required that the specific heat cV � (qE=qT )r�const and the
sound velocity c 2s � (qp=qr)S�const (where S is the entropy)
would be positive throughout the parameter range of interest
(i. e., the density and temperature ranges involved in the sim-
ulation) while the energy and the pressure would be
thermodynamically consistent.

Many experimental (see the review [1] and references
therein) and theoretical (see, e. g., Ref. [2]) papers have
been devoted to the study of the equations of state. Among
the models widely used to calculate the equation of state
of any material is the model based on the Thomas ^ Fermi
approximation [2]. Alhough this model is a universal one,
it nevertheless has several limitations. First, this model can
be applied only in the case of a local thermodynamic equili-
brium. Second, numerical calculations of the solution of the
nonlinear differential equation for the self-consistent poten-
tial and electron density distributions are time-consuming.
For this reason, this model can be used in gas-dynamic codes
only in the form of pre-calculated tables.

The range of density and temperature variations which
characterises the state of matter in a laser-produced plasma,
is extremely broad: from densities that are higher than and
equal to the solid-state density and temperatures close to
zero (strongly compressed material behind the shock wave
front) to extremely low densities and high temperatures
� 1 keV (nonequilibrium hot coronal plasmas). Therefore,
there is demand for a universal technique capable of describ-
ing the equation of matter state in broad temperature and
density ranges.

The development of multilevel kinetic models in the aver-
age-ion approximation permits constructing a model of the
equation of state, which is valid under the conditions remote
from the state of local thermodynamic equilibrium (which is
impossible within the framework of the Thomas ^Fermi
model). Such conditions are realised, for instance, in the
corona of a laser-produced plasma. The term corona is
used in reference to the region of a hot and tenuous
(T � 1 keV, r � 1 mg cmÿ3) plasma, which strongly absorbs
intense laser radiation. The average-ion model permits us to
take into account the states of matter whereby the effect of
pressure of the cold material proves to be significant (for
instance, the material behind the shock wave front). This
allows us to extend the range of the model validity to a broad
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temperature and density range to describe the states of matter
which include, on the one hand, the states of a strongly com-
pressed material with densities exceeding those of solids and,
on the other, the states of a hot and tenuous plasma.

2. Energy of the electron component
of a nonideal plasma

Consider a plasma consisting of ions of a different sort with
nuclear charges Zj, atomic numbers Aj , and densities Cj. As
is accepted in the average-ion approximation we will des-
cribe the distribution of the occupation numbers of ions
over the degree of ionisation of the jth element by a single
ion. For this ion, the distribution of the occupation num-
bers or the populations Pjk (which now are treated as conti-
nuous functions of the plasma parameters) over the atomic
levels with quantum numbers k is such that the degree of
ionisation of this average ion Z �j � Zj ÿ

P
k Pjk is equal to

the average degree of ionisation of the jth element.
Let r, Te, and Ti are the plasma density and the electron

and ion temperatures, respectively.The average degree of ion-
isation and the average atomic weight of the plasma are
calculated from the expressions

hZi �
X
j

CjZ
�
j ; hAi �

X
j

CjAj .

The electron and ion densities are deéned in terms of the
plasma density, the average atomic weight, and the average
charge as follows: Ni � NAr=hAi, ne � hZini, where NA is
the Avogadro number.

The electron and ion plasma components can be treated
as two weakly interacting components each of which makes
an additive contribution to the complete equation of state.
For ions, the ideal Boltzmann gas approximation is adequate
for the calculation of the equation of state virtually over the
entire pressure and temperature ranges of interest to us,
which are typical of laser ^matter interactions. This means
that the ion energy Ei per unit plasma mass and their pressure
can be calculated from the expressions

Ei � cV iTi; pi �
cV iTir
gÿ 1

; cV i �
NA

hAi ; g � 5
3
. (1)

The electron state can be described by the equation of
state of the type (1), only at very high temperatures and
low densities, when the plasma ions are fully ionised and,
on the one hand, the energy expenditures for the ionisation
are small compared to the energy of thermal motion of
free electrons and, on the other hand, the degeneracy of
the electron gas can already be neglected, i. e., the electron
energy is much higher than the Fermi energy. For a low-den-
sity plasma ( r4 10ÿ2 g cmÿ3) at a temperature of about
1 keV (typical parameters for the corona of a laser-produced
plasma), such conditions are realised for a relatively small
(below 20) charge of the ion nucleus, i. e., for relatively light
elements. For heavy elements or lower temperatures that are
characteristic of the X-ray corona (Te � 0:09ÿ 0:3 keV,
r � 0:2ÿ 1 g cmÿ3), the plasma is no longer fully ionised
and, even if the degeneracy can still be neglected (i. e., the
electron temperature is still higher than the Fermi energy),
the ionisation losses of the thermal energy should be included
in the equation of state. For still lower temperatures and
higher densities, the contribution of the electron-gas degener-
acy becomes the crucial one.

Nevertheless, in this case of a strongly nonideal plasma,
all the electrons may also be considered as being distributed
between two subsystems with a discrete (bound electrons) or
a continuous (free electrons) energy spectrum. The bound
electrons are described by the occupation numbers Pjk as
before, whereas free electrons can be characterised by a tem-
perature Te. If the exchange interaction energy for these two
systems can be neglected, the total energy of the electron
plasma component can be calculated as the sum of energies
of its different subsystems:

Ee � Efe � Ebe � Eci � Ecb, (2)

Apart from the above-mentioned free- (Efe) and bound-
electron (Ebe) energies, expression (2) also takes into
account the correlation energy Eci of the Coulomb
interaction between ions and the chemical binding energy
Ecb in a solid. We consider each term in expression (2)
separately.

2.1. Energy of free electrons

If it is assumed that free electrons do not interact with ions,
the Fermi statistics can be applied to them and we can use
the known formula for the energy of a Fermi gas [3]

Efe �
���
2
p

m3=2
e T 5=2

e

p2�h3r
I3=2

m
Te

� �
. (3)

Here, I3=2(m=Te) is the Fermi integral of degree v � 3=2 (by
deénition, Iv(x) �

�1
0 yv�exp (yÿ x)� 1�ÿ1dy) and m is the

chemical potential of free electrons. For I3=2(x), the
approximation

I3=2�x� �
3
2
I1=2�x� 1� 1:031 I1=2�x�

� �2=3n
� 0:144 I1=2�x�

� �2o1=3
. (4)

can be used.
This approximation ensures proper (correct to second-

order terms of the Taylor expansion) passages of Efe (3) to
the limit of Efe in the equation of state of an ideal Boltzmann
gas at high temperatures of free electrons and to the limit of
Efe in the equation of a degenerate Fermi gas at low temper-
atures.

The Fermi integral of degree 1/2 is in turn related to the
free-electron density ne by the normalisation condition [3]

ne �
���
2
p �meTe�3=2

p2�h3
I1=2

m
Te

� �
. (5)

Therefore,

Efe �
3
2
Tene
r

1� 1:031I 2
1=2

m
Te

� �
� 0:144I 2

1=2
m
Te

� �� �1=3
. (6)

Indeed, in the limit of very high temperatures and low
densities, we obtain from (6) the expression for the energy
of an ideal Boltzmann gas

Efe �
3
2
neTe

r
.

In the opposite limit of low temperatures and high densities,
we obtain the expression for the energy of a degenerate
Fermi gas:
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Efe � E �0�fe �
c�0�Ve

2
T 2
e ; E �0�fe �

3 3p2
� �2=3

�h2n5=3e

10mer
,

c�0�Ve �
p
3

� �2=3 me

�h2
n1=3e

r
.

2.2. Energy of bound electrons

For known level populations Pjk of the jth ion, the energy
of bound electrons is deéned as in the standard model of
hydrogen-like average ion [4, 5]:

Ebe � b
X
j

CjEj ; Ej � ÿ
XN max
j

k�1
Pjk�Qjk=k�2, (7)

where Ej is the energy of bound electrons of the jth ion; Qjk
is the screened-nucleus charge in the kth level of the jth ion;
b � IHNA=hAi; IH � e 2=2a0 is the ionisation potential of
hydrogen; a0 � �h 2=mee

2 is the Bohr radius of an electron;
and Nmax

j is the maximum number of levels for the jth ion.
In the general case of arbitrary temperatures, the popula-

tion of each ion is found by solving a system of kinetic
equations [5]. However, in the limit when the electron temper-
ature tends to zero, the solution of this system of equations is
only slightly different from the population density distribu-
tion in accordance with the statistical weights (zero-
temperature populations) gk of each level. For an isolated
hydrogen-like atom, gk � 2k 2 and electrons occupy the low-
est-energy levels up to some level with the principal quantum
number kmax determined from the atom neutrality condition.
Taking into account that in the general case, each level of the
jth ion is also characterised, in addition to the principal quan-
tum number k, by the orbital quantum number l, we can write

glk �
Xkÿ1
l�0

gjkl ; gjkl � 2�l � 1�; l � 0; 1; :::; kÿ 1.

Let P �0�jkl be the population of the kth level (with an orbital
quantum number l) of the jth neutral isolated atom; then,

P �0�jk �
Xkÿ1
l�0

P �0�jkl ; P �0�jkl � gjkl ; Zj �
Xkmax

k�1
P �0�jk .

When atoms are compressed, the degeneration is lifted and
some electrons become free. In addition, the interaction of
atoms or ions with each other also changes the bound-state
energies. This effect is automatically taken into account
both in the simple Thomas ëFermi model [6] and in the
more sophisticated models of self-consistent éeld of the
Hartree ëFock model type [7].

Generally speaking, the effect of surrounding ions on the
electron distribution in the average-ion model can be taken
into account only phenomenologically. Thus, it was proposed
in Ref. [8] to introduce such a dependence of the statistical
weight of the state x on the material density, which is char-
acterised by two quantum numbers k and l, that the
statistical weight of the isolated ion state would be obtained
at low densities, while at high densities the statistical weight
would tend to zero. Such a dependence models the lift of the
degeneration of the state x caused by the interaction with the
surrounding ions (e. g., due to the Stark level splitting), with
the result that a part of the bound states transfer to the con-
tinuous spectrum.

The simplest function possessing these properties is the
function of the form

gjx �
P �0�jx

1� aj1�R �0�jx =R0�aj2
, (8)

where R0 � (hAi= 4
3 pNAr)

4=3 is the radius of the ion sphere
and R �2�jx is the effective radius of the orbit of the level x of
an isolated jth ion. It has been proposed [5] that the average
dipole interaction radius Rjkl � h1=r2iÿ1=2 be used as the
effective shell radius in the average-ion model with
inclusion of the l splitting. For given quantum numbers
k and l and with hydrogen-like electron wave functions, this
radius is calculated by the formula

Rjkl �
a0k

3=2

Qjk
l � 1

2

� �1=2

. (9)

Therefore, the average degree of ionisation hZi of a cold
material with the density r can be calculated from
expressions (8) and (9) as

hZi �
X
j

Cj

X
x

P �0�jx ÿ gjx
� �

. (10)

Following Refs [5, 8], we found the coefficients aj1 and aj2
in (8) at which the density dependence of the degree of ioni-
sation of a cold (for T � 0) material determined by expres-
sions (8) ^ (10) was most close to a similar dependence derived
using the Thomas ^ Fermi model [6]. Fig. 1 shows the cons-
tants aj1 and aj2 for elements with different nuclear charges
(different atomic numbers) Zj from 1 to 100. One can see
that coefficients aj1 and aj2 are quasi-periodic, slowly increa-
sing (in the sense of the average value) functions of the atomic
number of the element with the period corresponding to the
structure of electron shell filling in different elements. As Zj
increases, the average values of the coefficients vary from 8.5
to 11 for aj1 and from 2 to � 3 for aj2. Fig. 2 compares the
density dependences of the average degree of ionisation cal-
culated by the Thomas ^Fermi model and by formulas (8) ^
(10) for a number of chemical elements with different nuclear
charges Zj and constants aj1 and aj2 corresponding to these
elements.

By returning to the case of arbitrary temperatures, we can
separate from the general expression for the energy of bound
electrons (7) the term related to the pressure-induced ionisa-
tion and the term caused by the temperature increase, i. e., to
represent Ebe in the form:

1.0
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aj2

0 20 40 60 80 Zj
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aj1 aj1
aj2

Figure 1. Constants aj1 and aj2 as functions of the atomic number of an ele-
ment.
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Ebe � E p
be � E T

be. (11)

In this case, Ebe is calculated by formula (7) with the
populations determined from the solution of the system of
kinetic equations for a given plasma density and temper-
ature; E p

be is calculated from formula (7) but with the
populations corresponding to a given density for a zero
temperature, i. e., equal to the statistical weights calculated
by formulas (8) and (9). The second term in expression (11)
accounts for the thermal energy losses by ionisation. (The
losses by ionisation deéned in precisely this way are taken
into account in the conventional equation of state for the
average-ion model in the SNDP code [9]). This term only
weakly depends on the density and therefore makes no
contribution to the electron pressure, whereas the érst term
depends only on the density and determines the contribu-
tion of electron shells to the 'cold' pressure, which will be
discussed below.

2.3. Correlation energy of the Coulomb interaction
between ions

Another density effect, which was mentioned above, results
from a reduction in the bound-state energies of the ion of
the jth element located in the Coulomb éeld of its
neighbours. The correlation energy of plasma particles in
the zero-temperature limit can be calculated as in Ref. [3]
for the case of an ideal Boltzmann plasma:

Eci � ÿ0:5ba0
hZi2
R0

1ÿ exp ÿ R0

RD

� �� �
, (12)

where

RD �
VF���
3
p

ope
� �3p

2�1=3�h
2e

�����������
3pme
p hAi

hZirNA

� �1=6

is the Debye radius for a degenerate plasma; ope is the
electron plasma frequency; and the Fermi velocity VF [10] is
used instead of the electron thermal velocity. The lowering
of the ionisation potential of the level x is determined from
the expression

DEx � ÿ
qEci

qhZi . (13)

2.4. Chemical binding energy
The free-electron pressure of the plasma of a metal
calculated in the degenerate Fermi gas approximation at
solid-state densities and a zero temperature amounts to tens
and even hundreds of kilobars. In real materials, so high a
pressure is balanced by chemical binding forces. In order to
obtain a correct equation of state that is valid at densities
close to the solid-state density, corrections should therefore
be introduced to take into account the chemical bond of
atoms and molecules in a material.

Following Refs [2, 11], we define the chemical binding
energy by the semiempirical formula:

Ecb � e0

�
1ÿ exp

�
b
�
1ÿ rs

r

� �1=3 ���
, (14)

where rs is the density of a solid. The constants e0 and b in
formula (14) are found from the condition that the total
pressure of the electron component p tot

e for the initial
density equal to the solid-state density rs under normal
conditions and at a zero material temperature is equal to
zero [ p tot

e (rs,0) � 0] and that the compressibility B is equal
to the experimental compressibility of the material meas-
ured under normal conditions [B(rs, 0) � Bexp]. Then, the
total electron energy is written as

E tot
e �r;Te� � Efe � Ebe � Eci � Ecb � E0, (15)

where

E0 � ÿ�Efe � Ebe � Eci � Ecb�jr�rs;Te�0

� ÿEe�r � rs;Te � 0�.

3. Pressure of the electron component

In accordance with thermodynamic equalities, the electron
pressure is deéned in terms of the derivative of the total
electron energy E tot

e with respect to the density for a
constant entropy or in terms of the derivative of the total
free energy E tot

e with respect to the density for a constant
temperature:

p tot
e �r;Te� � r2

qE tot
e

qr

����
S�const

� r2
qF tot

e

qr

����
Te�const

.

In this case, the total free energy can also be represented as
the sum of the corresponding free energies
[F tot

e ( r,Te) � Ffe � Fbe � Fci � Fcb] and the total pressure
is equal to the sum of partial pressures [p tot

e (r,Te) �
pfe � pbe � pci � pcb].

Because Eci and Ecb depend only on the density, the cor-
responding free energies are merely equal to the correlation
energy and the chemical binding energy. We represented
the bound electron energy as the sum of two terms (11),
the first of which depends only on the density and the second
one only on the temperature. Hence, the bound-electron pres-
sure will be determined only by the first term in formula (11).
For free electrons, we obtain a conventional pressure^energy
relationship [3], but with a correction arising from the fact
that the average plasma charge hZi depends on the density
r when the material is compressed at a zero temperature.

0

hZi=Zj

0.2

0.4

0.6

0.8

0.01 0.1 1 � r=�Z �j A��1=3

Figure 2. Dependence of the `cold' degree of ionisation on the density cal-
culated using theThomas ^Fermi model (the solid curve) and the average-
ion model for a nuclear charge Zj � 1 (&), 10 (*), 20 (~), 40 (!), 60 (^),
and 80 (+).
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Eventually we arrive at the following expressions for the
calculation of partial pressures:

pfe �
2
3
rEfe � hZifZ

qEfe

qhZi
����
Te�0
� 2

3
rEfe �

5
3
fZrE

�0�
fe ,

fZ �
r
hZi

qhZi
qr

����
Te�0

; pbe � r2
qE p

be

qr
,

pci �
2
3
rEci

�
0:5� 3fZ (16)

� 0:25� fZ ÿ 1� �R0=RD� exp�ÿR0=RD�
1ÿ exp�ÿR0=RD�

�
,

pcb � ÿ
E0brs
3

�
r
rs

�3=2

exp
�
b
�
1ÿ

�
rs
r

�1=3 ��
.

Accordingly, knowing the total pressure and having
calculated the density derivative of the pressure, one can
énd the sound velocity cs and the compressibility B:

cs �
�
qp tot

e

qr

�1=2

; B � r
qp tot

e

qr
.

Therefore, formulas (3) ^ (5), (7), (11), (12), and (14) ^ (16)
completely describe the thermodynamically self-consistent
equation of electron state for the ionisation model in the aver-
age-ion approximation.

4. Results of calculations

The approach outlined above was realised in the SNDP and
MIMOZA-ND gas dynamic codes. The results of calcu-
lations of the shock compression of a material in our model
were compared with experimental data and also with the
results of calculations employing the ThomasëFermi model.
The calculations were performed for liquid D2, Be, Al, Fe,
and Au for pressures behind the shock wave front varied
from 0.01 to 1000 Mbar.

Our calculations showed that using in expression (8) the
constants aj1 and aj2 determined from the fit to the `cold' ion-
isation curve (see Fig. 1) proved to be a relatively crude
approximation when the results of calculations made by
the SNDP code were compared with experiments and with
the Hugoniot adiabat using the equation of state according
to the Thomas ^Fermi model. This is illustrated in the
pÿ r diagram of iron (Fig. 3).Generally speaking, the degree
of ionisation in the Thomas ^Fermi model is not a well-
defined quantity, being conventional in character. A physi-
cally well-posed, uniquely determined characteristic is the
total electron energy.

In the average-ion model for T � 0, the total electron
energy (neglecting the chemical binding energy) is uniquely
determined by formulas (3), (7), and (12). These formulas
ensure qualitatively correct density dependences both in
the high- (E / r3=2 as r!1) and low-density (E ! const
as r! 0) limits. Therefore, constants aj1 and aj2 determined
from the fit to the `cold' pressure dependence of the total elec-
tron density should be the best approximation. Fig. 4 depicts
the calculated `cold' plasma-density dependences of the total
electron energy (counted from the energy of the electrons E �0�

of an isolated, completely neutral atom) for the Thomas ^

Fermi model and the energies of the ions of several elements
for the average-ion model with the optimised constants aj1
and aj2. One can see that it is possible to select the constants
aj1 and aj2 so that the electron energy calculated using the
average-ion model agrees satisfactorily with the results of cal-
culations within the framework of the Thomas ^ Fermi model
over a broad range of plasma density.

The SNDP calculations of shock compression performed
for iron with the new constants aj1 and aj2 are also illustrated
in Fig. 3. In this case, it has been possible to obtain a better
agreement between the results of calculations and experimen-
tal data throughout the pressure range up to 30 Mbar. The
largest deviation from the calculations employing the Tho-
mas^Fermi model arises at high pressures (above
100 Mbar) where, unfortunately, we failed to find experimen-
tal data. This disagreement is caused by shell effects, which
should, broadly speaking, manifest themselves at high plasma
pressure and temperature and which are disregarded in the
Thomas ^Fermi model.

Considering the aforesaid, we optimised the constants aj1
and aj2 and then calculated the shock adiabats of the remain-
ing materials (liquid D2, Be, Al, and Au) employing the
SNDP code and the constants obtained. The results of calcu-
lations as presented in the form of pÿ r diagrams in Figs 5 ^
8. As a whole, our model is in satisfactory agreement both

5 10 15 20 25 30 r
�
g cmÿ3

10ÿ1

1

10

102

103

104

p
�
Mbar

3

2

1

Figure 3. Shock adiabat of iron calculated using the equation of matter
state in the average-ion model (1, 2) for the constants a1 � 7:64 (1 ) and
3.72 (2 ), a2 � 2:14 (1 ) and 3.03 (2 ) and the results of experiments
[1, 12, 13] (*) and calculations employing the equation of matter state in
the Thomas ^Fermi model (3 ).

10ÿ4 10ÿ2 1 102 103

rZÿ1j Aÿ1
�
g cmÿ3

10ÿ8

10ÿ6

10ÿ4

10ÿ2

1

�Eÿ E �0��AZÿ7=3j

�
107 J gÿ1

102

Figure 4. Density dependences of the electron energy at zero temperature
for the Thomas ^ Fermi model (the curve) and of the energies of Al (+), Fe
(*), and Au (~) ions for the average-ion model for optimal aj1 and aj2
constants.
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with experiments and the calculations performed using the
Thomas ^Fermi model. As for iron, the deviation for the
selected elements is largest in the high-pressure domain
(over 10 Mbar), where experimental data are scarce (with
the exception of aluminium, Fig. 7). In this case, the calcula-

tions based on the average-ion model reveal the atomic shell
structure, which is, naturally, absent in the Thomas ^Fermi
approximation.

One can see from Fig. 5 that the average-ion model can-
not describe the latest data on the shock compression of
liquid deuterium obtained in the experiments on the
NOVA laser facility [15]. This is primarily explained by the
fact that the average-ion model does not take into account
the structure of deuterium molecules and therefore cannot
describe the molecule dissociation upon the shock compres-
sion of liquid deuterium.Meanwhile, it is the dissociation that
causes a sharp increase in the compressibility of deuterium in
the 1 ^ 3 Mbar pressure range (see, e. g., Ref. [16]).

Figs 9 and 10 depict the isotherms of aluminium and gold
for T � 0:01, 0.1, 0.5, and 1 keV obtained using the average-
ion model and also the corresponding dependences calculated

p
�
Mbar

0.2 0.4 0.6 0.8 r
�
g cmÿ3

0.01

0.1

1

10

3

4

1

2

Figure 5. Shock adiabat of liquid deuterium calculated using the equation
of matter state in the average-ion model (1 ) as well as the results of experi-
ments of Refs [14] (^) and [15] (&), of the calculations using the equation
of matter state in the Thomas ^ Fermi model (2 ), and of Refs [16] (3 ) and
[17] (4 ).
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Figure 6. Shock adiabat of beryllium calculated employing the equation of
matter state in the average-ion model (1) and results of the experiments of
Ref. [18] (!), of the calculations employing the equation of matter state in
the Thomas ^Fermi model, and of Ref. [1] (3 ).
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Figure 7. Shock adiabat of aluminium calculated employing the equation
of matter state in the average-ion model (the dashed line) and also the res-
ults of experiments of Vladimirov et al. (*), Ragan (&), Al'tshuler et al.
(~), Volkov et al. (&), Kormer et al. (!), and Mitchell et al. (*) (see
Ref. [2]) and of calculations employing the equation of matter state in the
Thomas ^Fermi model (the solid line).
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Figure 8. Shock adiabat of gold calculated employing the equation of mat-
ter state in the average-ion model (1) and also the results of experiments of
Ref. [1] (!, 3 ) and of calculations employing the equation of matter state
in the Thomas ^ Fermi model (2 ).
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Figure 9. Dependences p�r� (a) and E�r� (b) for aluminium calculated in
the average-ion model (the dotted lines) and in the Thomas ^Fermi model
(the solid lines) for T � 10 (&, 1 ), 100 (*, 2 ), 500 (~, 3 ), and 1000 eV
(^, 4 ).
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in the Thomas ^ Fermi model. The dependences p(r) are in
close agreement in both these cases. As for the dependences
E(r) (in Figs 9b and 10b, the energy is counted from the ener-
gy of the material for a solid-state density and T � 0), the
agreement is satisfactory for gold, while a somewhat larger
discordance is seen in the case of aluminium. In particular,
a nonmonotonic behaviour of the E(r) dependence is sup-
posedly due to the shell effects in the average-ion model.

It should be noted that as a whole the proposed model of
the equation of state for the ionisation kinetics in the average-
ion approximation describes adequately the behaviour of a
broad spectrum of materials (from the lightest to heavy
ones) over a broad temperature and density range, provided
the constants aj1 and aj2 for the calculation of the statistical
weight of the levels at high plasma densities are selected from
the 'cold' electron energy curve rather than from the `cold'
ionisation curve, as was done previously.
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