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The influence of the spatial inhomogeneity of the field
on the nonlinear-optical response of an atom

AV Andreev, A B Kozlov

Abstract. The theory of the interaction of a centrosymmet-
ric atom with a superstrong spatially inhomogeneous laser
field is developed. This theory employs the two-level ap-
proximation to describe the dynamics of spatially nonlocal
interactions related to variations in the populations of the
levels. We propose a model that includes spatially nonlocal
interactions, such as magnetic-dipole and quadrupole inter-
actions and interactions due to the gradient of the pondero-
motive potential of the field. We consider the interaction of
a homogeneous medium of centrosymmetric atoms with a
superstrong laser field, which is represented as a superpo-
sition of two plane-wave ultrashort pulses propagating at
some angle with respect to each other. Perturbation theory,
which is valid for the fields of moderate intensity, is develo-
ped for the atomic response. The results of numerical sim-
ulations are compared with the predictions of this pertur-
bation theory. The specific features of the nonlinear-optical
response of an atom in a superstrong field are investigated.
The angular distribution of the second- and third-harmonic
emission is calculated in the constant-field approximation
for different polarisations of the incident field.

1. Introduction

In recent years, a permanent interest has been expressed in
the physics of propagation of ultrahigh-power femtosecond
light pulses and the interaction of these pulses with both
single atoms and dense media. This interest is associated
with nonlinear-optical processes that cannot be described
within the framework of conventional approximations of
nonlinear optics [1 —5]. The current level of optical technol-
ogies allows the generation of laser pulses with a duration
less than 5 fs [6], which corresponds to a few optical cycles.

Nonlinear-optical effects in isotropic media forbidden
due to the symmetry properties of a medium have been exten-
sively studied in the last few years [7]. This class of effects
includes, for example, second-harmonic generation (SHG).
As is well known, SHG is forbidden in the electric-dipole
approximation in media with a central symmetry [8]. How-
ever, if a spatially inhomogeneous field, ie., a tightly
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focused laser pulse [9] or two plane waves propagating at
some angle with respect to each other [10], interacts with a
medium, then the prohibition on SHG can be removed.

Three main mechanisms may give rise to SHG in an iso-
tropic medium in the presence of a spatially inhomogeneous
field. First, a strong field may ionise a part of atoms, resulting
in a spatially nonuniform distribution of free electrons. This
distribution is determined by the spatial structure of the inci-
dent field. Second-harmonic generation in a nonuniform
plasma is now well understood [11, 12].

The second mechanism is referred to as dc-field-induced
SHG [13 -18]. In this regime, similar to the case considered
above, a strong field ionises some part of atoms in the me-
dium. The initial spatial distributions of electrons and ions
coincide with each other. However, charges become separated
in space with time. This charge separation gives rise to a mac-
roscopic dc electric field, which induces SHG.

In this paper, we investigate the third mechanism of SHG
in a spatially inhomogeneous field. The second harmonic can
be generated due to spatially nonlocal atom—field interac-
tions. The phase-matching condition, providing efficient
energy conversion from the fundamental wave to the second
harmonic, can be satisfied in this case due to the spatially
inhomogeneous structure of the external field. Second-har-
monic generation becomes possible in such a situation due
to the fact that a superstrong spatially inhomogeneous field
changes the symmetry of wave functions of atomic electrons.

The third mechanism dominates over the first two mech-
anisms if the ionisation probability of atoms in the medium is
low and the pulse duration is much less than the build-up time
of the induced dc field. Several experimental and theoretical
studies have confirmed the possibility of generating the sec-
ond harmonic due to spatially nonlocal interactions.

Second-harmonic generation accompanying the noncol-
linear interaction of two waves was considered in Ref. [19].
The authors of [19] found that the highest efficiency of
SHG is achieved in the direction of the bisectrix of the angle
between the wave vectors of the pump waves. The second har-
monic is s-polarised in this case. Below, we will show that
these predictions are valid only within the framework of per-
turbation theory, when population variations are ignored.

Generally, the amplitude of the second harmonic depends
also on the polarisations of the waves interacting with the
medium. The theory of interaction of an atom with a super-
strong spatially inhomogeneous field developed in [20] was
employed to explain the results of experiments on SHG in
spatially periodic media [10].

This paper considers the interaction of a homogeneous
medium of centrosymmetric atoms with a superstrong spa-
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tially inhomogeneous field, which can be represented as a
superposition of two plane-wave pulses propagating at an
angle to each other. Our analysis involves equations for the
field that are free of the assumptions of the slowly varying
envelope approximation and equations for the medium writ-
ten in the two-level approximation.

In the case of ultrashort light pulses with a moderate
intensity, when ionisation is negligible, the ground and first
excited levels coupled with each other by a dipole-allowed
transition have the largest populations. The influence of other
levels is included in the model within the framework of per-
turbation theory.

Our model will include spatially nonlocal interactions
(magnetic-dipole and quadrupole interactions, as well as
interactions due to the gradient of the ponderomotive poten-
tial of the field) with an accuracy up to the first spatial
derivative of the vector potential of the field. The set of equa-
tions for the atomic response derived within the framework of
this model allows both resonant and nonresonant interac-
tions of an atom with a field pulse to be analysed. Since
we abandon the approximation of slowly varying amplitudes
and phases, the light pulse may also have an arbitrary dura-
tion.

The main advantage of the approach proposed in this
paper over the conventional perturbation theory is that
this approach allows us to investigate the dynamics of the
atomic response related to the evolution of level populations
in the process of interaction. The contributions of different
spatially inhomogeneous interactions change in time, which
implies that we deal with a nonstationary response of an
atom.

2. Equations governing the dynamics
of the atomic response

The response of an atom to an external electromagnetic field
can be conveniently characterised with a set of variables
defined as quantum-mechanical means of the Hamiltonian
ﬁo of a free atom and operators of the atomic dipole moment
d = ef, the canonical electron momentum p, and the electron
velocity &. Operators of current density j = ep/m and J = e
are usually introduced instead of the operators of the elec-
tron momentum and velocity.
Thus, we deal with the following set of variables:

d= JW*[ilPdV, j= JlP’f}"PdK J= JW*]‘PdV,

E:JT*HOEPdV, (1)

where E is the energy of the electron subsystem of an atom.
The difference of current densities j and J in the dipole
approximation is proportional to the vector potential 4 of
the field. Spatially nonlocal interactions of an atom with an
external field give rise to differences in the dynamics of
current densities j and J.

The change in the vector potential of the field within char-
acteristic sizes of orbits of atomic electrons will be included in
our approach with an accuracy up to the first derivative. In
other words, spatially nonlocal interactions, such as mag-
netic-dipole and quadrupole interactions, as well as inter-
actions due to the gradient of the ponderomotive potential
of the field, will be included in our analysis along with dipole

interactions. We should note that the variables d and j in a
two-level atom are proportional to two quadrature compo-
nents of polarisation.

Consider the atomic response of a medium within the
framework of the model of a two-level atom. In this case,
we have E = Rhiw,/2, where R is the population difference
for atomic levels and w is the frequency of the atomic tran-
sition. Because of selection rules for matrix elements of
transitions in a centrosymmetric atomic potential, the model
of a two-level atom does not allow us to include all the spa-
tially nonlocal interactions of an atom with an external field.
If two levels are coupled by an electric-dipole transition, then
magnetic-dipole and quadrupole transitions between these
levels are forbidden. Thus, the model of a two-level atom
with electric-dipole transitions includes only dipole interac-
tions and interactions due to the gradient of the pondero-
motive potential of the field.

To include all the spatially nonlocal interactions in a cor-
rect way, we should generalise the model of a two-level atom.
Consider two atomic energy states coupled by an electric-
dipole-allowed transition. Suppose that the atom can be
found in one of these states with a probability close to unity,
i.e., the sum of populations of these two levels is nearly unity.
The population of all the other atomic states will be assumed
to be small, but nonzero.

Let us examine the changes in the population of these
states due to magnetic-dipole and quadrupole interactions
of an atom with the external field. The probability of transi-
tions induced by these interactions is low as compared to the
probability of the considered electric-dipole transition. There-
fore, we can neglect changes in the atomic energy due to the
above-specified spatially nonlocal interactions, thus assum-
ing that magnetic-dipole and quadrupole interactions may
change the polarisation of an atom, but never change the
atomic energy. The Stark shift of atomic levels plays an
important role in the interaction of a superstrong field
with an atom. This effect will be included within the frame-
work of perturbation theory.

Consider the electromagnetic field propagating in a
homogeneous medium with a concentration of atoms equal
to N/V. With the assumptions specified above, the set of
equations for the vector potential A4 of the field and atomic
variables (1) can be written as

1 0’4 4n N
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=(1—-——+ 4 ———— RA, — —dgVA
ot < fi2e2 Ja F hc P e PP
Yo 24 2|d|2A2d ¢ iv4
5 = @o(1- PEIG ot IpVadp
2
+€w0\2d| RVMA2, )
mc<h
OR 2wy e . 2
—=———dA,—— A
ot he hwomczjav‘x ’
e’ e
J=j——A—— (dV)A,
mc me

where | d | is the matrix element of the dipole moment of the
transition; e and m are the charge and the mass of an elec-
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tron; ¢ is the speed of light; and o and f are the coordinate
indices, which take the values x, y, and z. Since we abandon
the approximation of slowly varying amplitudes and phases,
the set of equations (2) allows us to investigate both resonant
and nonresonant interactions of a two-level atom with an
ultrashort pulse of the electromagnetic field with an arbitrary
duration.

3. Perturbation theory

Consider the specific features of the atomic nonlinear-optical
response caused by the spatial inhomogeneity of the external
field in terms of stationary perturbation theory, i.e., assum-
ing that the population of atomic levels remains unchanged.
We will assume that none of the harmonics of the external
field is resonant with the frequency of the atomic transition.

The ratio of the Rabi frequency Qr = 2|d |E;/h (where
E, is the amplitude of the electric field strength) to the fre-
quency ®, of the atomic transition will be taken as a small
parameter of perturbation theory. Such an approach is quite
reasonable if the amplitude of the external field is much less
than the amplitude of the intraatomic field.

Suppose that an atom interacts with a field that can be
represented as a superposition of two plane waves propagat-
ing at an angle of 20 to each other. We choose a system of
coordinates where the wave vectors can be written as k; =
{0,ksin0,kcos0} and k,={0, — ksin0, k cos 0} (see Fig.1).
Generally, both waves are elliptically polarised:

A ~
A, = 70 (eacos @) + e, bsin®,),
(3)

A .
Ay, = 70 (exccos @, + epdsin @,),

where A, is the amplitude of the vector potential; a, b, ¢, and
d are the dimensionless constants describing polarisation
ellipses; and e, and e, are the unit vectors related to the
unit vectors of the initial system of coordinates by the expres-
sions e, =e,cosl) — e sin0 and e, = e,cos0 + e, sin0.
The phases of the first and second waves are given @; =
ot —kir+96 and @, = wt — kyr — 9§, respectively, where o
is an arbitrary phase shift and w is the frequency of the
external field.
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Figure 1. Geometry of the external field.

In what follows, we will employ a conventional terminol-
ogy: the s component of the vector will be understood as the
component perpendicular to the plane of the wave vectors,
while the p component will be defined as the component lying
in the plane of the wave vectors. Thus, the constants ¢ and ¢
determine the s component of the external field, while the
constants b and d control the p component of the external
field.

A spatially inhomogeneous filed interacting with an atom
changes its symmetry properties. The violation degree of the
central symmetry of an unperturbed atom can be character-
ised by a permanent dipole moment induced by the external
field. Integrating Eqgs. (2) and using the assumptions speci-
fied above, we can readily derive an expression for the
constant dipole moment which have the only the transverse
nonzero p component:

e sz\ d |2R0A5
- 2me? hay (wf — o)

d,(0) sin 0(ac + bd cos20) sin2¢, (4)

where R, is the initial population inversion and & = k sin 0y—
0. The dipole moment is modulated in the transverse coor-
dinate, and its sign depends on the ratio of the frequency of
the external field to the frequency of the atomic transition.
Note that the interference of two waves is necessary to
induce a permanent dipole moment of an atom.

Let us examine the response field of a medium consisting
of centrosymmetric atoms at the frequency of the second har-
monic. Using Egs. (2), we can easily derive expressions for the
current density at the frequency of the second harmonic.
Then, substituting these expressions into the wave equation
and integrating this equation in the constant-field approxima-
tion, we can find the response field of a homogeneous
medium with a length L at the frequency of the second har-
monic. The p component of the second harmonic is equal to
zero regardless of the polarisation of the external field. The
expression for the s component of the second harmonic is
written as

4t N e ka'twy|d[*RyA]sin26
E.(20) = - 20U o2 2 2 2 2
ky V me? h(of — 0?)(of —40?)
inAL
x(ad — be)LX22E Sin(owt — kyz), ©)

where k, is the modulus of the wave vector of the second
harmonic and 4 = k, — 2k cos 6 is the phase mismatch. One
can see from Eqn (5) that the s-polarised second harmonic
propagates along the bisectrix of the angle between the wave
vectors of two waves interacting with the medium.

The amplitude of the second harmonic depends on the
polarisation of the external field. Specifically, if two s-polar-
ised or two p-polarised waves interact with a medium, then
the response field at the frequency of the second harmonic
is equal to zero. Conversely, if one s-polarised and one p-
polarised waves interact with a medium, then the second-har-
monic response field differs from zero. When two circularly
polarised waves interact with a medium, the rotation direc-
tion of the electric field vector plays an important role. If
the incident waves are characterised by the same rotation
direction of the electric field vector, then the second-har-
monic response field vanishes. Otherwise, the response
field at the frequency of the second harmonic differs from
Zero.
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4. A two-level atom in a superstrong field

Consider the specific features of the nonlinear-optical response
of a two-level atom interacting with a superstrong external field.
The term ‘superstrong’ indicates that the Rabi frequency of the
field is of the order of the frequency of the atomic transition.
Suppose that the external field can be represented as a superpo-
sition of two s-polarised plane waves propagating at an angle to
each other. We assume that all the harmonics of external field
are not resonant with the frequency of the atomic transition.

Numerical simulation of the set of equations (2) will be
performed for the following parameters: Ry = —1, i.e., the
atom is not excited before the interaction with a field pulse;
the angle is 0 = ©/6; the pulse duration at the ¢! level cor-
responds to 15 field cycles; and the difference of the phases of
interacting waves is 20 = 1/2, which corresponds to the max-
imum transverse gradient of the ponderomotive potential of
the field. Calculations were carried out for two different fre-
quencies of the external field. In the first case, the field
frequency was lower than the frequency of the atomic tran-
sition (w/w, =0.75). In the second case, the field
frequency exceeded the frequency of the atomic transition
(w/wy = 1.25).

Computer simulations of the atomic response suggest that
all the odd harmonics of the atomic response are s polarised,
while all the even harmonics are p-polarised. As the ampli-
tude of the external field increases, the amplitude of the
current density at the frequency of the external field deviates
from the linear dependence, which is characteristic of the
weak-field regime (Fig. 2a). Perturbation theory yields the
following expression for the refractive index of the medium:

4n N ¢?
2

S L
n () ¢V w?

e’ 2dPwiRy

mc hc(woz — wz)

3 \d|4w03w2(3w§ + wz)
hc3 (wo2 - 2) }
This expression provides a reasonable explanation of the
dependences presented in Fig. 2a.
Let us apply Eqn (6) to consider the self-focusing of a linear-

ly polarised Gaussian beam in a homogeneous medium of two-
level atoms. The condition of self-focusing can be written as

Rywi P
o = 1, (M
(0f —»?) Py

where P is the power of laser radiation;

Ro A coszg} . ©6)

el (woz - w2)2n0

P =
" 16r(N/V)|d o (3o + 0?)

®)

is the critical power of laser radiation, and #n, is the unper-
turbed refractive index of the medium in the absence of the
external field. When the dimensionless factor Rymd(wi —
w?)™! in Eqn (7) is positive, we deal with self-focusing.
When this factor is negative, self-defocusing occurs. Thus,
a laser beam undergoes self-focusing in a nonexcited medium
when the field frequency exceeds the frequency of the rele-
vant atomic transition. For a medium consisting of two-level
atoms with a concentration equal to N/¥ = 10" cm ™, tran-
sition dipole moment |d| =1 D, and the ratio of the field
frequency to the frequency of the atomic transition w/w, =
1.25, the critical power P, required for the self-focusing of
the beam is ~ 30 kW.
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Figure 2. Amplitudes of the s component (a) of the current density at the
frequency of the external field J; (), the p component (b) of the current
density at the frequency of the second harmonic Jg (2w), and the s compo-
nent (¢) of the current density at the frequency of the third harmonic
J; (Bw) (c) as functions of the Rabi frequency normalised to the frequency
of the atomic transition with (/) w/w, = 0.75 and (2) 1.25.

Fig. 2b displays the amplitude of the p component of the
current density at the frequency of the second harmonic as a
function of the Rabi frequency normalised to the frequency of
the atomic transition. The second order of perturbation
theory does not contribute to the atomic response at the fre-
quency of the second harmonic. Conse-quently, the response
at the frequency of the second harmonic comes from the
fourth and higher orders of perturbation theory. This implies
that the current density should be described by a quartic func-
tion of the amplitude of the external field in the weak-field
regime.

As the amplitude of the external field increases, this
dependence saturates, i.e., the exponent of the power function
becomes less than four. In a strong field, the cubic depend-
ence of the amplitude of the current density at the
frequency of the third harmonic on the amplitude of the
external field, which is characteristic of the weak-field regime,
saturates (Fig. 2c). In other words, the exponent of the power
function in this case becomes less than three.

5. The angular spectrum
of the response field of a medium

Consider the interaction of a homogeneous medium of two-
level atoms with a superposition field of two plane-wave
pulses propagating at an angle to each other. The dashed
lines in Fig. 1 show the areas whose sizes are determined
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by pulse durations. The transverse sizes of the medium of
two-level atoms and the area where the wave packets overlap
are equal to H and S, respectively.

The atomic response of a homogeneous medium of length
L interacting with the field of two plane waves propagating at
an angle to each other is described by a periodic function of
the transverse coordinate y. Therefore, we can represent the
response field in the form of a Fourier series:

i I = 1 sind, L\ -
S,p __ mp s,p
=Y S (g e )a, ©)

m=1 p=—00 mp

where g, = (k2 — p?k?sin® 0)'/? is the z-component of the
wave vector, k,, is the modulus of the wave vector of the mth
harmonic, and 4,,, = q,,, — mkcos 0 is the phase mismatch
of the wave vectors. The index m numerates harmonics of the
carrier frequency, while the index p corresponds to different
propagation directions of the response field of the medium.
The set of these propagation directions is discrete because of
the periodic structure of the incident field.

The phase-matching condition for the mth harmonic
propagating along the direction characterised by parameter
p has the form

n 2 2
(e [ e
n m

where n,, and n are the refractive indices of the medium for
the mth harmonic and the incident field, respectively.

Let us introduce the angle ¢,,, between the propagation
direction of the mth harmonic, which corresponds to the
parameter p, and the z-axis. Generally, the angle ¢,,,, depends
on the ratio of the refractive indices of the medium at the rel-
evant frequencies. However, if the phase-matching condition
is satisfied for some propagation direction of the response
field corresponding to the parameter p, then the angle ¢,
is determined by the expression

2 ~1/2
sin(pmp:%sin(){lqt{(%)—l}sinz()} ST

Our numerical simulations were aimed at calculating the
angular spectrum of the response field (;‘;,f,'g for different
polarisations of the incident field. The following parameters
were employed in our numerical simulations: 6 = /6, w/w,
=0.75, Ry = —1 (the medium is not excited before the inter-
action with the field); Qg /wy = 0.2; the pulse duration at the
¢! level corresponds to 15 field cycles; S = 30X, where 4 is
the wavelength of laser radiation; and H = 604.

Fig. 3 shows the angular spectra of the amplitude of the
response field at the frequencies of the second and third har-
monics for (s, s), (s, p), and (p, p) polarisations of the incident
field. The propagation direction determined by Eqn (11) and
the phase-matching condition (10) for each of the spectral
components of the angular spectrum depend on the angle
between the wave vectors of the waves and the refractive indi-
ces of the medium at the relevant frequencies. The sign of the
parameter p corresponds to the sign of the projection of the
wave vector of the response field on the y-axis.

In the case of an s, s polarised incident field, the response
of the medium at the frequency of the second harmonic is p-
polarised, while the polarisation of the field at the frequency
of the third harmonic coincides with the polarisation of the
incident field. The spectral component of the field response
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Figure 3. Angular spectra of the amplitudes of the response field for s (b)
and p components (a, ¢, d) of the second harmonic and s (e, f) and p com-

ponents (g, h) of the third harmonic for different polarisations of the exter-
nal field: s,s (a, €), s,p (b, ¢, f, g), and p,p (d, h) polarisations.

at the frequency of the second harmonic (p = 0, Figs. 3a,
3d) has a double-humped structure, which is determined by
the derivative of the profile of the incident field in the trans-
verse coordinate. Second-harmonic radiation corresponding
to this component propagates at a small angle to the z
axis. This angle is inversely proportional to the pulse dura-
tion. The spectral components with p = +2 (Figs. 3a—3d)
correspond to second-harmonic generation in the direction
coinciding with the propagation direction of incident pulses.

The second harmonic is generated due to a noncollinear
interaction of two waves. Therefore, the angular spectrum
of the second harmonic involves only broad spectral compo-
nents, whose widths are inversely proportional to the trans-
verse size S of the area where the wave packets overlap. Along
with broad spectral components, the angular spectrum of the
response field at the frequency of the third harmonic contains
also narrow spectral components with p = +3, which corres-
pond to third-harmonic generation in the direction coinciding
with the propagation direction of incident pulses. The widths
of these spectral components are inversely proportional to the
transverse size H of the medium, since each of these pulses
independently generates the second harmonic not only in
the area where the wave packets overlap, but also in the entire
volume of the medium of two-level atoms.

In the case of an s, p-polarised incident field, no interfer-
ence field is produced by the incident pulses. The response of
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the medium in this case is asymmetric with respect to the z-
axis (Figs. 3b, 3c, 3f, 3g). The angular spectrum of radiation
at the frequencies of the second and third harmonics involves
components of both polarisations, which, however, emerge
from the medium at different angles. The highest efficiency
of SHG is achieved along the bisectrix of the angle between
the wave vectors of the incident pulses (p = 0). In agreement
with predictions of perturbation theory, the second harmonic
generated in this direction is s polarised.

Polarisation of third-harmonic radiation propagating in
the direction corresponding to p = +1 (Figs. 3f, 3g) agrees
well with the predictions of perturbation theory. An s polar-
ised pulse propagating in the direction p = +3 generates the
third harmonic propagating in the same direction and pos-
sessing the same polarisation. This result is confirmed by
numerical simulations (Fig. 3f). A similar statement is also
true for a p-polarised pulse of the field propagating in the
direction p = —3 (Fig. 3g).

In the case of p,p-polarised field, the response field at the
frequencies of the second and third harmonics is p-polarised.
The s component of the atomic response is equal to zero in
this case. We have additionally studied the dependences of
the response field on the pulse duration and the amplitude
of the external field in the case of a p,p-polarised incident
field. As is clear from general physical analysis, the ampli-
tudes of broad spectral components are proportional to the
volume of the region where the wave packets overlap. If
S < H, then this volume is proportional to the pulse duration
squared.

However, not all the spectral components display these
features. The spectral component with p = 0 (Fig. 3d) has
a double-humped structure, which is determined by the deriv-
ative of the envelope of the external field. As a consequence,
the amplitude of the spectral component with p = 0 is a linear
function of the pulse duration. Narrow spectral components
with p = £3 (Fig. 3h) are produced in the entire volume of
the medium of two-level atoms. Therefore, the amplitudes
of these components are linear functions of the pulse dura-
tion.

Numerical simulations confirm the results of this qualita-
tive analysis. The amplitudes of the spectral components of
the second harmonic with p = +2 and p = +4 are quartic
functions of the amplitude of the external field. In other
words, these components are generated due to the fourth-
order nonlinearity. The spectral component with p = 0 is gen-
erated due to the second-order nonlinearity. The spectral
components of the third harmonic with p = +1 and p =
43 are cubic functions of the amplitude of the external field,
while the components with p = +5 increase with the fifth
power of the amplitude of the external field.

Consider now the main results of numerical simulations
for the cases when one of the pulses is circularly polarised
or both pulses are circularly polarised. If the first pulse is
s- or p-polarised and the second pulse is circularly polarised,
then, in agreement with predictions of perturbation theory,
the most intense signal at the frequency of the second har-
monic is s polarised and propagates along the bisectrix of
the angle between the wave vectors of incident pulses.

In contrast to the cases considered above, the second and
third harmonics are generally elliptically polarised. In partic-
ular, polarisation of third-harmonic radiation with p = —1 is
close to the circular one. The spectrum of the response at the
frequency of the third harmonic features only one narrow
spectral component with p = +3, which corresponds to the

third harmonic generated by a linearly polarised field pulse
in the entire volume of the medium of two-level atoms.

Third-harmonic generation with a circularly polarised
pulse is characterised by a low efficiency. Therefore, the nar-
row spectral component with p = —3, corresponding to the
emission of the third harmonic in the direction of propaga-
tion of the circularly polarised pulse, is not observed in
this case. The response field at the frequency of the second
harmonic is an order of magnitude weaker than the field
at the frequency of the third harmonic.

When two circularly polarised pulses interact with a
medium, we can distinguish between two cases. In the first
case, both pulses have either right- or left-hand circular polar-
isation. In the second case, one of the pulses has a right-hand
polarisation, while the other pulse has a left-hand circular
polarisation. In agreement with predictions of perturbation
theory, the highest efficiency of SHG is achieved in the latter
case. Each of the circularly polarised pulses generates the
third harmonic with a very low efficiency. Therefore, narrow
spectral components are not observed in the angular spec-
trum of the third harmonic.

The most intense spectral components of the third har-
monic with p = +1 correspond to radiation propagating at
an angle @3, ~ 11° with respect to the z-axis. Polarisation
of this radiation is close to the circular polarisation. In the
latter case, the amplitudes of the second and third harmonics
are of the same order of magnitude. We should note that the
angular spectrum of the response field in both cases is sym-
metric with respect to the longitudinal z-axis.

6. Conclusions

Thus, the developed theory of interaction of atoms with a
superstrong spatially inhomogeneous laser field describes, in
the two-level approximation, the dynamics of spatially non-
local interactions determined by variations in level popu-
lations. The proposed model includes spatially nonlocal
interactions (magnetic-dipole and quadrupole interactions,
as well as interactions due to the gradient of the ponder-
omotive potential of the field) with an accuracy up to the
first spatial derivative of the vector potential of the field. The
developed model can be employed to analyse both resonant
and nonresonant interactions of an atom with ultrashort
pulses of the field of arbitrary durations.

Comparison of the results of numerical simulations with
the predictions of stationary perturbation theory has shown
that, within the framework of stationary perturbation theory,
the second harmonic is generated only along the bisectrix of
the angle between the wave vectors of the waves interacting
with the medium. The response field at the frequency of the
second harmonic is s-polarised, and the amplitude of this
field depends on the polarisation of the incident field. The
inclusion of the dynamics of populations in atomic levels
and a finite pulse duration gives rise to new spectral compo-
nents in the angular spectrum of the response field.

We have investigated the specific features of the nonlin-
ear-optical response of an atom in a strong field. As the
field amplitude grows, variations of level populations
increase the refractive index of an initially nonexcited
medium if the field frequency exceeds the frequency of the
atomic transition. In the opposite case, the refractive index
of the medium decreases. The atomic response at the frequen-
cies of the second and third harmonics saturates with the
growth in the amplitude of the incident field.
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We have performed numerical simulations for the angular
spectra of the response field of the second and third harmon-
ics for different polarisations of the external field. We have
also derived analytic expressions for the phase-matching con-
dition and the dependence of the angular distribution of the
response field on the angle between the wave vectors of the
interacting waves and the refractive indices of the medium
at the relevant frequencies.
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