
Abstract. An analytic solution is obtained for the equations
of resonance coherent SRS by neglecting the population of
the final level of the Raman transition for the systems with
the active-medium length that is smaller than the wave-
length of the incident light. For the extended systems, a
numerical solution is obtained. The energy distribution of
the Stokes pulses is found. The large-scale (about 100%)
fluctuations of the Stokes radiation energy were observed in
the case of unsaturated amplified spontaneous emission.

1. Introduction
Raman scattering of laser radiation under the conditions of
conservation of the phase memory of scattering centers,
which is accompanied by the population of one of the inter-
mediate levels, is called resonance transient (nonstationary)
or coherent (cooperative) stimulated Raman scattering
(SRS) [1 ^ 9]. A number of properties of this phenomenon
have been established to date. In particular, upon excitation
by a rectangular pulse, the Stokes radiation in resonance
coherent SRS represents a single pulse for a transverse exci-
tation (spatially homogeneous model) [5]. However, when the
propagation effects (longitudinal excitation) are taken in
account, the Stokes radiation is a set of decaying pulses [6,
7, 9].

Upon excitation by a high-power laser pulse, many mol-
ecules participate in the scattering, and it manifests coo-
perative properties [5, 7]. In addition, the excitation and
Stokes waves exhibit a modulation [1, 2, 4 ^ 7] due to the oscil-
lations of populations caused by the incident radiation [4, 6].
Upon weak coherent Raman scattering of 2p-pulses, station-
ary Stokes modes can be formed [3], whereas in nonlinear
case the complete transformation of the excitation pulse
into the Stokes pulse takes place [8].

In papers [1 ^ 9], radiation at the shifted frequency is
formed due to amplification of the input Stokes pulse [1 ^
4, 8] or spontaneous Stokes radiation [1 ^ 7, 9]. However, in
the latter case, the stochastic nature of the SRS amplification
onset is not taken in account. At the same time, since the
place and time of creation of first Stokes photons and the

direction of their propagation are random, one can expect
that the Stokes pulse, which has been developed from a spon-
taneous noise, also will reveal random changes in its shape
and energy. Indeed, such fluctuations were observed experi-
mentally [10 ^12] and they were studied quite well theore-
tically [13 ^17] for nonresonance SRS. If the excitation radi-
ation frequency is close to one of the intermediate transition
frequencies, the phenomenon can reveal features that were
not observed previously.

The aim of this paper is to study the statistical properties
of the Stokes radiation energy in the resonance coherent SRS
in the case of an exact resonance using the semiclassical
approach and neglecting a change in the population of the
final level of the Raman transition.

2. Basic equations

Let a laser wave

EL�r; t� � eLEL�r; t� exp�ÿioLt�+c.c. (1)

with frequency oL be incident on a Raman-active medium
containing identical atoms. Here, eL is the unit polarisation
vector, and EL is the laser-wave amplitude.

We assume that the inequalities

joL ÿ o31j5 joL ÿ oiaj; o21;

jdiaELj; jdiaEsj � �hjoL ÿ oiaj; �hjos ÿ oiaj; (2)

jd32ELj; jd31Esj � �ho21: (3)

are fulfilled. Here, os � oL ÿ o21 is the central frequency of
the scattered (Stokes) wave; oia; dia and dba are the frequen-
cies and dipole moments of the molecular transitions, where
subscripts a; b �a 6� b� � 1; 2; 3 correspond to the levels
involved in the scattering, and the subscript i � 4; 5; . . . is
related to all other levels (the j1i ÿ j2i transition is forbidden
in the dipole approximation); and Es is the Stokes wave
amplitude. Inequalities (2) allow one to restrict the consid-
eration to three levels (Fig. 1) and to neglect anti-Stokes
scattering. Owing to the inequalities (3), one can neglect
the j2i ÿ j3i transitions induced by the field EL and the
j1i ÿ j3i transitions induced by the field Es.

In the one-dimensional approximation, the Stokes field is
determined by the expression [18]

Es�z; t� � ÿ
2p
c

�L
0

_Ps tÿ jzÿ z0j
c

� �
dz0; (4)
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where the z-axis is directed along a sample of length L.
The polarisation of the medium at frequency os has the

form [6, 7]

Ps�z; t� � esnd23R32�z; t� exp�ÿiost�+c.c. (5)

Here, R32(z; t) is the amplitude of the nondiagonal element of
the density matrix for the j3i ÿ j2i transition, i.e., r32�z; t� �
R32(z; t) exp (ÿ iost); n is the concentration of atoms; and es
is the unit polarisation vector of the Stokes wave.

Let us separate the fast dependence on time in the Stokes
field:

Es�z; t� � esEs�z; t� exp�ÿiost�+c.c. (6)

By substituting expressions (5) and (6) into (4) and neg-
lecting the derivations of the slowly varying amplitudes,
we find

Es�z; t� � ÿ
2pos

c
nd23

�L
0

_R32 z0; tÿ jzÿ z0j
c

� �

� exp ios
jzÿ z0j

c

� �
dz0: (7)

The elements of the density matrix for the coherent res-
onance SRS at an exact resonance satisfy the equations [6, 7]

qR21

qt
� i

�h
�d23E �s R31 ÿ d31ELR

�
32�; (8)

qR32

qt
� i

�h
�d32EsN23 � d31ELR

�
21�; (9)

qR31

qt
� i

�h
�d31ELN13 � d32EsR21�; (10)

qN13

qt
� 2

�h
Re i�2d13R31E

�
L � d23R32E

�
s �� �; (11)

qN23

qt
� 2

�h
Re i�d13R31E

�
L � 2d23R32E

�
s �� �; (12)

where Ra1�z; t� is the amplitude of the nondiagonal element
of the density matrix for the jai ÿ j1i �a � 2; 3� transition,
i.e., r21�z; t��R21�z; t� exp�ÿio21t�; r31�z; t��R31�z; t� exp�ÿi
�oLt�; and Na3 � raa ÿ r33�a � 1; 2� is the difference of the
populations.

We assume that the boundary conditions for the reso-
nance SRS are the same as those for the nonresonance
SRS,which was studied earlier [19], i.e., atoms are not excited
at the initial instant, and there are no fields in the medium.
Raman scattering arises under the action of a rectangular

pulse of height E �0�L and duration tL. Spontaneous Raman
scattering from which the SRS amplification starts, is des-
cribed by a given small initial Raman polarisation which is
treated as a random quantity [19].

3. Solution of MaxwellëBloch equations

3.1. Short sample

Consider first a medium small in size, i.e., a medium with
L5 ls;L (ls;L is the wavelength of Stokes (laser) radiation). In
this case, one can neglect a retardation and dependence of
the polarisation on z. Then,

Es�t� � i
2pnosL

c
d23R32�t�: (13)

Taking into account that the pump pulse changes only
slightly during its propagation in short systems [20], we use
the approximation of a given pump field.

After substitution of expression (13) into (8) and (12), we
obtain

dR21

dt
� R31R

�
32 ÿ eLR

�
32; (14)

dR32

dt
� ÿN23R32 � eLR

�
21; (15)

dR31

dt
� N13eL ÿ R21R32; (16)

dN13

dt
� ÿ2eL�R31 � R�31� � 2jR32j2; (17)

dN23

dt
� ÿeL�R31 � R�31� � 4jR32j2; (18)

where t � t=ts; ts � �hc=2pnosjd23j2L is the characteristic
time scale of the resonance coherent SRS in the absence of
propagation effects; and eL � id31ELts=�h:

Assume that the pulse intensity is such that the pulse pro-
duces oscillations of the populations of the resonance
transition levels (i.e. of the levels j1i and j3i) during the deve-
lopment of the process, but is not sufficient to populate the
final level j2i of the Raman transition. It is possible if

TR 4 tL < t0;

where TR � 2p=oR; oR � 2jd13jjE �0�L j=�h is the Rabi oscilla-
tion frequency for the j1i ÿ j3i transition and t0 is the delay
time of the Stokes pulse in a completely nonlinear problem
[7]. In this case, one can neglect the effect of Stokes scattering
on the pump. In addition, one can neglect terms in (16) and
(17) that are proportional to R32. Then, these equations take
the form

dR31

dt
� eLZ13; (19)

dZ13

dt
� ÿ2eLRe�R31�; (20)

where Z13 � 0:5N13. If eL is real, then one can see from the
latter equations that R13 can be also considered as real.

It follows from (19) and (20) that

d
dt

R 2
31 � Z 2

13

� �
� 0;

oL os

3

2

1

Figure 1. Energy level diagram.
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which gives

R 2
31�t� � Z 2

13�t� � R 2
31�0� � Z 2

13�0� � 0:25: (21)

One can conclude from (21) that

R31�t� � 0:5 sin y�t�; Z13�t� � 0:5 cos y�t�: (22)

Substituting expression (22) into (19), we obtain

dy
dt
� 2eL: (23)

In the case of a rectangular pulse, this equation has the solu-
tion:

y�t� � yRt; t4tL;
yRtL; t5tL;

�
(24)

where yR � 2e�0�L � oRts:
Because r11 � r33�1, then r33 � 0:5ÿZ13 and N23 �

ÿr33: Therefore,

N23�t� � 0:5�cos yÿ 1�: (25)

We will seek the solution of equations (14) and (15) for R21�t�
and R32�t� in the form

R32�t� � R�t� sin a�t�; R �21�t� � R21�t� � R�t� cos a�t�: (26)

Substituting (26) into (15), we find

dR
dt
� 0:5�cos yÿ 1�R

� �
sin a� R

da
dt
ÿ 0:5yR

� �
cos a � 0:

Let us choose R�t� and a�t� such that

da
dt
ÿ 0:5y � 0; (27)

dR
dt
ÿ 0:5�cos yÿ 1�R � 0: (28)

Equation (27) can be readily solved:

a�t� � 0:5yRt; t4tL;
0:5yRtL; t5tL:

�
(29)

The solution of equation (28), which contains separable
variables, has the form

R�t� � a exp 0:5�tÿ �t
0

cos y dt0�
" #

where

R�t� �

a exp 0:5
�
tÿ 1

yR
sin yRt

�� �
; t4tL

a exp 0:5
�
�1ÿ cos yRtL�t� tL cos yRtL ÿ

1
yR

sin yRtL

� ��
; t5tL:

8>><>>:
(30)

Here, a is the integration constant, which can be easily found
from expressions (26) and (30) as a � R21�0�.

Let us define the intensity of Stokes radiation as the num-
ber of Stokes photons that leave the sample during the unit
time per one atom:

Is �
cjEsj2

2p�hosnL
� R2

32=ts: (31)

The energy of the Stokes pulse for the time tL is

~Ws �
�tL
0

Is�t�dt �
�tL
0

R2
32�t�dt; (32)

or, taking into account expression (30),

~Ws � a2
�tL
0

sin20:5tR exp tÿ 1
yR

sin yRt
� �

dt � a2k2; (33)

where

k2 � 1
2

exp tL ÿ
1
yR

sin yRt
� �

ÿ 1
� �

: (34)

In the general case, the initial polarisation R21�0� is a
complex random quantity described by a Gaussian distribu-
tion [19]. Taking into account that only long-wavelength
fluctuations of the initial polarisation are mainly developed
in the equations (14) ^ (18) [13], we will assume that the ran-
dom quantity R21�0� is homogeneous over the sample for
short systems. Then, a � R21�0� is a random quantity with
the distribution

P0�a� �
2a
g2

exp ÿ a2

g2

 !
; (35)

where g � 1=
�����
N
p

is the width of the distribution [19] (N is a
total number of atoms in the sample).

We see that the Stokes pulse energy fluctuates. The cor-
responding distribution function can be found using the
expression

P�Ws� � d� ~Ws ÿWs�

 �

�
�
d� ~Ws�a� ÿWs�P0�a�da '

P0�b�
j ~W 0

s�b�j
; (36)

where d�xÿ x0� is the delta function, and b is determined
from the equation

~Ws�b� �Ws; ~W 0
s�b� �

d ~Ws

da

����
a�b

;

which can be easily solved to give:

b � 1
k

�������
Ws

p
: (37)

Calculating the derivative ~W 0
s(b) and taking into account

expression (19), we obtain the final expression for the distri-
bution function:

P�Ws� �
1

g2k2
exp ÿ Ws

g2k2

� �
: (38)

The average energy of the Stokes pulse is

�Ws �
�1
0

WsP�Ws�dWs � g2k2; (39)
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and its standard deviation is

d �
�1
0

�Ws ÿ �Ws�2P�Ws�dWs

24 351=2

�W ÿ1
s � 1: (40)

Thus, the distribution of Stokes pulses over their energies
at the linear stage (r22 � 1) of the development of the reso-
nance SRS has the exponential form

P�Ws� �
1
�Ws

exp ÿWs
�Ws

� �
; (41)

and the fluctuations of pulse energies about their average
value reach 100%. The average energy �Ws of the Stokes
pulse depends on the duration of the pump pulse and its
field (see expressions (34) and (39)). The increment as �
tL ÿ yÿ1R sin yRtL is mainly determined by the excitation
pulse width (the first term), and to a minor extent by its
intensity (the second term). If tL and yR are chosen so that
their product is equal to pm (m is an integer), i.e., the pump-
pulse duration is multiple of the half period of Rabi oscil-
lations, then as � as;0 � tL.

In the general case, the deviation of as from as;0, given by
the second term, is insignificant. This deviation and its sign
are determined by the velocity _Z13 of the transition of atoms
from the level j1i to the level j3i at the moment t � tL. How-
ever, note that a change in the parameters tL ande

�0�
L does not

cause qualitative changes in the distribution P(Ws).

3.2. Extended system

During propagation in extended systems, a pump pulse
changes substantially its shape due to the resonance interac-
tion with the medium [20]. Therefore, we have to discard the
approximation of a given pump field. In addition, a consid-
eration of the effects of propagation and retardation of the
Stokes radiation becomes important. In this case, it is con-
venient to use Maxwell equations rather than the integral
relations for fields.

Consider an excitation wave propagating along an
extended sample. By neglecting back scattering and by
separating the fast dependence Ef ! Ef exp (ikf z), (kf is
the wave number, f � L; s) on the z coordinate in slowly-
varying amplitudes introduced above, we represent the
field in the sample as a superposition of the laser and for-
ward Stokes waves. Similarly, we have for nondiagonal
elements of the density matrix, R21!R21 exp�ÿi(kL ÿ ks)z�,
R31 ! R31 exp (ÿ ikLz), R32 ! R32 exp (ÿ iksz). Then, for
the three-level model of an atom, the truncated Maxwell
equations for the amplitudes of the fields have the form [6, 7]

qeL
qx
� ÿbLR31; (42)

qes
qx
� ÿbsqsR32: (43)

Eqs (8) ^ (12) for the medium can be transformed to

qR21

qt
� ÿbse�sR31 ÿ b�LeLR

�
32; (44)

qR31

qt
� b�LeLN13 � b�s esR21; (45)

qR32

qt
� b�s esN23 � b�LeLR

�
21; (46)

qN13

qt
� ÿ2Re�2bLR31e

�
L � bsR32e

�
s �; (47)

qN23

qt
� ÿ2Re�bLR31e

�
L � 2bsR32e

�
s �: (48)

Here, we use the dimensionless quantities x � zO=c, t �
O(tÿ z=c); and ef � id31Ef =�hO ( f � L; s), where Oÿ1 is the
time scale and cOÿ1 is the spatial scale, taking into account
the propagation effects in SRS; O � jd13j(pnoL=�h)

1=2; bL �
d13=jd13j; bs � d23=jd13j; and qf � of =oL( f � L; s).

Consider SRS in extended systems of length l4 1 at
which an attenuation of the pump is insignificant, where
l � LO=c [7]. Assume also that bL � bs � 1 and qs � 1.
The pump pulse duration tL � tLO is chosen such that the
population of the level j2i during the exposure does not
exceed 0.001.

To study the statistical properties of SRS in an extended
medium, we accomplished a series of calculations of the
kinetics of scattering radiation. As in the case of short sam-
ples, the Stokes pulse energy (the average number of Stokes
photons emitted by a single atom)

�Ws �
1
l

�tL
0

jes�L; t�j2dt (49)

fluctuates from one realisation of random polarisation to
another. To provide a sufficient smoothness of the distribu-
tion, we considered an ensemble of the comparatively large
number m of trajectories (about 1500). The range of the
energy values �0; 4 �Ws� was divided into intervals of length
DWs � h �Ws (h � 0; 2). A number of trajectories with the va-
lues of �Ws lying in the interval �Wsÿ 0:5DWs;Ws � 0:5DWs�,
was calculated, where Ws � ih �Ws. The function

P�Ws� �
mi

hm �Ws

is the required distribution.
We assumed in calculations, that l � 1, and a total num-

ber of atoms in the sample is N � 5� 1013. The number n of
transverse layers, into which the sample was divided upon
specifying a random initial polarisation, was varied from 1
to 100 [19]. For a homogeneous random polarisation
(n � 1; g � ���

2
p � 10ÿ7), the distribution P(Ws) is exponen-

tial, and the deviation of the Stokes pulse energies from
their average value is 98% (Fig. 2). By comparing this result
with expressions (40) and (41),we can see that the shape of the
distribution P(Ws) did not change in passing from a short
sample to the extended one. An increase in the number n
of layers did not virtually affect the distribution and the mag-
nitude of the variation (d � 100, 102 and 97% for n � 10; 50
and 100, respectively).

As in the case of a short sample, the average Stokes energy
increases with the duration of the pump pulse (Table 1), but
much weaker than it follows from expressions (34) and (39).
This result is explained by the behaviour of the excitation
pulse in the resonance medium. The pump pulse propagates
in a such medium slowly at the group velocity that depends on
the pulse intensity [20], and therefore the excitation of atoms
occurs gradually as the field eL penetrates inside the sample.
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Moreover, the field is inhomogeneous over the sample,
and hence, Rabi frequencies yR � 2eL are different in differ-
ent sites of the sample. It also explains the dependence of �Ws
on the input field e�0�L even when the half-period of Rabi oscil-
lations related to e�0�L is a multiple of the pump pulse duration
of (this case is considered in Table 1). The energy �Ws
increases with the pump intensity.

4. Conclusions

Thus, the resonance coherent SRS,which is not accompanied
by the population of the final level of the Raman transition,
exhibits large-scale fluctuations (of the order of 100%) of
the Stokes energy. The energy distribution of Stokes pulses
is close to the exponential one. The average Stokes energy
increases with the pump pulse duration and intensity. The
dependence of �Ws on tL and e�0�L in the extended system is
more complicated due to the features of the coherent inter-
action of the pump radiation with the resonance medium.

The resonance SRS was observed at the electronic suble-
vels of alkali metal vapours [21 ^ 23] and for a number of
other elements with relatively simple atomic energy level dia-
grams [24, 25]. Under typical experimental conditions, for
instance, for the electronic SRS in In vapours upon excitation
with a dye laser [24], d13 � d23 � d ' 0:1 D, p ' 1 kPa,
T ' 1 kK, T21 ' 10ÿ8 s, GL ' 107 W cmÿ2, oL ' 4:6�
1015 cÿ1, tL ' 3� 10ÿ9 s, L ' 1 cm.

Under such conditions, oR � dEL=�h ' 1:5� 1010 sÿ1,
O � d(pnoL=�h)

1=2 ' 3:2�1010 sÿ1; cOÿ1 ' 1 cm, so that eL
� dEL=�hO � oR=O ' 0:5tL� tL=O

ÿ1' 100; l � L=cOÿ1 ' 1,
which is close to the values of the parameters used in the cal-
culation. Moreover, the condition tL < T21 is fulfilled. How-
ever, a comparison of the above theory with experiment seems
to be impossible. To date, no experimental data on the statis-
tical properties of the resonance coherent SRS are available.
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Table 1. Average energies and standard deviations of the Stokes pulse
energy

tL e�0�L
�Ws d�%�

18p 0.25 8.7�10ÿ7 100.0

24p 0.25 8.6�10ÿ5 96.5

30p 0.25 3.8�10ÿ3 94.7

24p 0.125 1.1�10ÿ6 104.2

24p 0.50 9.2�10ÿ4 98.5

1

�WsP

10ÿ1

10ÿ2

0 1 2 3 4 Ws= �Ws

Figure 2. Probability density distribution over the energies of Stokes pul-
ses for e�0�L � 0:25, l � 1, and tL � 24p:
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