
Abstract. The features of the propagation of soliton-like
light beams through a fully ionised two-dimensional cold
plasma are considered employing analytical and numerical
methods commonly used in nonlinear optics. Exact soliton
profiles for the lower and upper soliton branches are found
numerically in the presence of optical bistability. It is shown
that the interaction of incoherent soliton-like laser beams in
such a plasma may result both in the destruction of one of
the beams and in production of new ones. The regime of the
modulation instability of a plane wave propagating through
a cold laser-produced plasma is studied.

1. Introduction
The interaction of high-power laser radiation with a plasma
is among the branches of plasma physics that have been
studied most actively in the past decade. This interaction is
accompanied by a variety of processes, such as the relativistic
self-trapping of a laser beam [1 ^ 3], excitation of coherent
radiation at frequencies that are multiples to the plasma
frequency [4], excitation of high-amplitude plasma waves
[5, 6], the shift of the incident-radiation frequency induced
by the plasma wave, particle acceleration [7], fast-electron
production [8 ^11], etc. The rate of these processes increases
significantly in the relativistic case, when the incident radi-
ation intensity is so high that the velocity of electron quiver
in the radiation field is comparable with the velocity of light.

In the general case, the study of collective processes in the
plasma^light field system under study requires the use of
numerical multiparticle techniques of the 3D PIC type
[12, 13] or consideration of the infinite system of Bogolyubov
chains for the multiparticle distribution function. Neverthe-
less, under specific conditions a plasma can be treated as a
nonlinear medium with the refractive index that depends
on the intensity of incident radiation.The nonlinear refractive
index, in particular, can be introduced when employing a
hydrodynamic plasma model in the quasi-static approxima-
tion [14, 15], when the plasma liquid in the coordinate
system moving at the velocity of light finds itself in the field

of quasi-stationary radiation with a slowly varying intensity.
The implementation of this approach permits applying the
analytical and numerical methods of nonlinear optics to
the analysis of propagation of high-power laser radiation
through plasmas.

In this paper, we investigate the principal features of the
self-action of high-power light radiation during its propaga-
tion through a fully ionised cold laser-produced plasma and
the development of modulation instability. The study is made
on the basis of a truncated wave equation and the known
expression for the nonlinear addition to the refractive index
[16].

2. Theoretical model
To describe the self-action of high-power laser radiation
propagating along the z-axis in a fully ionised two-dimen-
sional (with one transverse coordinate x) cold laser-produced
plasma, we employ a dimensionless scalar potential f( x,
z, t ) � eF ( x, z, t )=(21=2m0c

2) and a dimensionless transverse
vector potential a( x, z, t ) � eA?( x, z, t )=(2

1=2m0c
2) written

using the Coulomb gauge HA( x, z ; t ) � 0 [16, 17] (the
gauge implies that the longitudinal z-component of the vec-
tor potential is Az � 0). Such is the case, e.g., when the laser
plasma is produced with a cylindrical lens.

The theoretical model used below involves simultaneous
solution of a conventional truncated wave equation

i
qas
qz
� ÿ 1

2k
q2as
qx 2 ÿ k

dnNL

n
as (1)

for the intensity envelope of the perturbing electromagnetic
field as( x, z, t ) � a ( x, z, t )=exp ( ikzÿ iot ) slowly varying in
z and t (where k � o=c is the wave number, o is the central
frequency, and dnNL is the nonlinear addition to the unper-
turbed refractive index n) and a set of constitutive equations
in the form of relativistic hydrodynamic equations for a cold
liquid (in which the thermal effects are disregarded), which
describe approximately inherently nonlinear response of the
plasma.

The following assumptions were made in the analysis of
the obtained closed system of nonlinear equations [16]: (i)
the polarisation of the incident radiation is arbitrary; (ii)
the ions remain immobile because their mass is large com-
pared to the electron mass; (iii) the radiation pulse
duration t greatly exceeds the characteristic plasma time
tp � 1=op (where op � (4pnee

2=m0)
1=2 is the characteristic

plasma frequency, ne( x, z, t ) is the average electron density
in the plasma, and m0 is the electron rest mass); (iv) the cen-
tral frequency o of the incident radiation considerably
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exceeds the plasma frequency op; (v) the characteristic trans-
verse dimension of the light beam is x04c=op; and (vi), the
pulse duration is t4 x0=c, allowing us to neglect the disper-
sion effects compared to the diffraction ones.

Under the above assumptions, the following expression
for the nonlinear addition to the refractive index of the
plasma can be obtained from the hydrodynamic equations
[16, 18]:

dnNL �
1
2
o 2

p

o 2

ÿ
1� jasj 2

�1=2 ÿ 1ÿ
1� jasj 2

�1=2 . (2)

In the limit of weak electromagnetic fields, the plasma
behaves like a Kerr medium with a cubic nonlinearity. As
the field intensity increases, the nonlinear response exhibits
saturation. After substitution of expression (2) in the trun-
cated wave equation, we eventually obtain that the radiation
propagation is described by the following equation (the non-
linear Schr�odinger equation):

i
qas
qx
� ÿ 1

2
q2as
qZ2
ÿ Sas

ÿ
1� jasj 2

�1=2 ÿ 1ÿ
1� jasj 2

�1=2 , (3)

where Z � x=x0 is the normalised transverse coordinate; x0
is the characteristic transverse scale of the beam; x � z=Ld is
the normalised longitudinal coordinate; Ld � kx 2

0 is the dif-
fraction length corresponding to x0; S � Ld=LNL is a para-
meter that determines the relative contributions of self-
action and diffraction spreading; LNL � 2no2=( ko 2

p ) is the
characteristic nonlinear length; and n � 1ÿ 0:5(op=o)

2 is
the unperturbed refractive index.

The characteristic transverse scale x0 of the beam intro-
duced in Eqn (3) is conveniently identified with the beam
width determined at the level of half the light field intensity
at the centre of the beam.This scaling results in the condition
as(x � 0, Z � 1) � 2ÿ1=2as(x � 0, Z � 0), which will be fre-
quently used to find the profiles of soliton-like solutions
for the lower and upper soliton branches. It is evident from
Eqn (3) that the nonlinear plasma medium acts as a focusing
lens in our case. A stable balance between the diffraction
spreading and the nonlinear focusing is possible in such a
focusing medium, which may result in a soliton-like beam
propagation mode.

3. Profiles of soliton-like beams
and their interaction
We will seek the stationary spatially localised solutions of
Eqn (3) that describe soliton-like beams travelling at consi-
derable distances without significant distortions of the initial
profile. Because of saturation of the nonlinear response of
the plasma, the profiles of soliton-like beams cannot be
obtained analytically for arbitrary values of the parameter
S and a numerical integration is required. Nevertheless, in
the limiting case of low amplitudes of the normalised vector
potential as, we can find an approximate analytic solution
because in this case Eqn (3) transforms to the nonlinear
Schr�odinger equation, which describes the propagation of
solitons in Kerr media:

i
qas
qx
� ÿ 1

2
q2as
qZ2
ÿ 1
2
Sasjasj 2. (4)

The solution of Eqn (4) represents a well-known bright sol-
iton which is described by the hyperbolic secant:

as�Z; x� � 2�b=S�1=2e sech��2b�1=2Z�exp�ibx�, (5)

where b is the propagation constant and e is the unit polar-
isation vector of the incident radiation. It is evident from
expression (5) that passing to the Kerr nonlinear response
model is justified for large parameter values S4 1 or, more
precisely, for b=S5 1.

To determine the profiles of soliton-like beams for arbi-
trary values of the parameter S, we will use the iterative
technique [19, 20]. In accordance with this technique, we
will seek the stationary spatially limited solutions of
Eqn (3) in the form

as�Z; x� � er�Z� exp�ibx�, (6)

where r(Z) is a real function describing the soliton envelope.
By substituting this expression in the truncated wave equa-
tion (3), we obtain the following second-order differential
equation for the soliton envelope:

d2r
dZ2
� 2brÿ 2Sr

�
1ÿ 1ÿ

1� r2
�1=2 �. (7)

Eqn (7) can be integrated once and reduced to the first-order
equation for the envelope r(Z):

dr
dZ
� �2br2 ÿ 2Sr2 � 4S

�ÿ
1� r2

�1=2 ÿ 1
�	1=2. (8)

Because of the saturation of the nonlinear response, the
right-hand side of the equation obtained does not permit
one more integration, which could yield an implicit depen-
dence of the envelope r on the transverse coordinate Z.
For numerical integration, it is convenient to transform the
differential equation (8) into the integral equation

r�Z� � r0 exp
�
ÿ 2S1=2

� Z

0

� �
1� r2�z��1=2 ÿ 1

r2�z�

ÿ
ÿ
1� r20

�1=2 ÿ 1
r20

�1=2
dz
�
. (9)

It has been taken into account in Eqn (9) that the propaga-
tion constant b can be uniquely determined using Eqn (8)
taking into account that dr=dZjZ�0 � 0 :

b � S ÿ 2S
� ÿ

1� r20
�1=2 ÿ 1
r20

�
. (10)

Here, r0 � r (Z � 0) is the amplitude of a spatially localised
soliton solution. The numerical solution of the integral equa-
tion (9) can be obtained employing an iterative procedure.
When performing integration, we set the function r�0�(Z) �
r0sech Z as the initial one and took into account the above-
mentioned requirement that r (Z � 1) � 2ÿ1=2r0, which fol-
lows from the normalisation of the transverse coordinate x.
The iterative procedure quite rapidly converges to the precise
soliton solution if the selected soliton amplitude r0 corre-
sponds to a given S.

Fig. 1a shows the amplitude r0 of the soliton solution as a
function of the parameter S. One can see that no localised
soliton solutions exist for S < Scr � 1:8. For S > Scr (the cor-
responding soliton amplitude is r0(Scr) � 2:2), there exist two
solutions with different amplitudes (the so-called upper and
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lower soliton branches). The sech-profiled solution given
above describes only a portion of the lower soliton branch
corresponding to the value of the parameter S that is
much greater than the critical one.

Note that already for S > 3 the amplitude of upper-
branch solitons depends almost linearly on S,while the ampli-
tude of lower-branch solitons is proportional to Sÿ1=2. The
envelopes of the lower- and upper-branch solitons for
S � 1:9 and 2.5 are shown in Fig. 2.These soliton profiles dif-
fer substantially from sech Z: the width of an exact soliton
solution profile is smaller than the width of a sech-soliton
with the same energy. Nevertheless, for small parameter va-
lues S � 2ÿ 3, an approximation of the form r0sech

m(qZ)
(where m > 1 for upper-branch solitons, m < 1 for lower-
branch solitons, and the parameter q describes the soliton
width) can be safely used.

The stability of the above soliton solutions to small per-
turbations of the initial profile is confirmed by the well-
known stability criterion stating that the solution is stable
if the derivative qP( b )=qb > 0, where P( b ) is the beam
power [21 ^ 23]. Employing expression (10) for the propaga-
tion constant and the results of numerical integration of
the integral equation (9), we can verify that the power P of
the soliton beam is a monotonically increasing function of
the propagation parameter b for all S5Scr (see Fig. 1b).
This means that the condition qP( b )=qb > 0 is fulfilled
within the entire region of the existence of soliton solutions,
which points to the stability of both lower- and upper-branch
solitons. This theoretical statement was verified with the aid
of numerical integration, which also indicated that the soli-

tons of both branches were stable to significant (up to 10%
in intensity) harmonic and noise perturbations of the input
profiles.

The studies of specific features of the interaction of
intense light beams in the plasma medium under considera-
tion are also of immediate practical interest. We analysed
the interaction and collisions of soliton-like beams by
numerically integrating Eqn (3) using the technique of
decomposition in the physical factors. The initial conditions
at the entrance to the plasma were specified in the following
form:

as�Z; x � 0� � er�Z� Z0� exp�ÿia�Z� Z0� � ij�

� er�Zÿ Z0� exp�ia�Zÿ Z0��: (11)

Here, Z0 is the initial distance between the centres of the
beams, a is the angle of their convergence, and j is the
relative phase difference. Subsequently, the amplitudes of
soliton-like beams were determined by numerical integration
for a selected value of the parameter S and exact profiles
were found employing the iterative procedure described
above.

The collision dynamics of the soliton-like beams belong-
ing to the upper soliton branch is given in Fig. 3 for different
angles a and relative phase differences j. Note that for the
sake of convenience we can take as the initial soliton profiles
not the exact profiles obtained numerically through the iter-
ative procedure but approximate profiles described by the
function r(Z) � r0sech

m(qZ), which adequately approximates
the exact solution (for instance, for S � 2:5 and the upper-
branch soliton, r0 � 5:98, m � 1:12, and q � 0.96). The use
of this approximation permits avoiding a number of nume-
rical operations and virtually does not distort the collision
dynamics, manifesting itself only in the weak scattering of
excess energy during propagation of the beams.

As in the case of a Kerr medium, two in-phase (j � 0)
soliton-like beams launched parallel to each other (a � 0)
are mutually attracted. As the relative phase difference is
increased from zero to p, the attraction gradually becomes
weaker and then is replaced with repulsion. For small inter-
section angles a < 0:2, two in-phase soliton-like beams may
merge upon their interaction, forming a specific bound state
(Fig. 3a). In this case, during propagation the in-phase beams
periodically come together, intersect, and become separated
by a certain distance. The maximum distance that separates
the beams after their intersection decreases with decreasing
the intersection angle a and the initial separation Z0 between
the beams; in the limit for a! 0 and Z0 ! 0, a complete
merging of the solitons can be attained.

The out-of-phase solitons cannot form a bound state,
because this is hindered by their mutual repulsion. As the
intersection angle increases, new beams can appear because
of the interaction (to be more precise, the fraction of energy
of the interacting beams imparted to the generated beams
rises significantly with increasing angle a). Fig. 3b, for
instance, depicts the generation of the third beam in the inter-
section of two in-phase soliton-like beams at an angle of
a � 1:0. Because of the energy transfer from the two parent
beams to the generated beam, the former two lose their sol-
iton properties; however, they do not spread out but pro-
pagate experiencing quasi-periodic oscillations. With an in-
crease in the energy of the colliding solitons, i.e., in a me-
dium with large S, the number of solitons generated at the
same intersection angles increases.
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Figure 1. Dependences of the soliton amplitude r0 on the parameter S (a)
and of the soliton power on the propagation constant b (b). The point A
divides the lower and upper soliton branches.
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Figure 2. Profiles of the soliton-like beams belonging to the lower (the
solid curves) and upper (the dashed curves) soliton branches for S � 1:9
and 2.5.
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Collisions of antiphase beams can also result in the gen-
eration of new beams; however, this is possible only when the
intersection angles are much higher than those in the in-phase
case. When the relative phase difference j of the intersecting
beams is intermediate between zero and p, the inelastic
energy transfer becomes quite significant, which results in
the amplitude asymmetry of the beams that have experienced
the interaction. The asymmetry of collision products is most
pronounced for small angles a. Fig. 3c shows the intersection

of two beams, which belong to the upper soliton branch, for
a � 0:04 and j � p=4. One can see the distinct difference in
both the amplitudes of the emergent beams and their prop-
agation angles. All the above features of the interaction of
soliton-like beams in a plasma with saturation also take place
for the beams of the lower soliton branch.

4. Modulation instability of a plane wave
In this Section, we will consider the modulation instability of
a plane wave in a fully ionised two-dimensional cold plasma
using the truncated wave equation (3). The stationary solu-
tion of Eqn (3) that corresponds to a continuous wave with a
constant amplitude has the form:

as � er0 exp
�
iSx
�
1ÿ 1ÿ

1� r 2
0 �1=2

��
. (12)

A plane-wave model can be employed, for example, to
describe the time evolution of small perturbations of the
profile of a high-power laser beam when the beam radius
greatly exceeds the characteristic perturbation scale. To
investigate the modulation instability of a plane wave, we
introduce a small perturbation in the initial field distribution:

as � e�r0 � dr�Z; x�� exp
�
iSx
�
1ÿ 1ÿ

1� r 2
0 �1=2

��
, (13)

where dr (Z, x)5 r0 is the slowly varying envelope of the
modulation of the plane wave. By using a conventional lin-
earisation technique and assuming that the amplitude of the
initial harmonic perturbation varies according to the law
dr (Z, x) � exp (igxÿ iOZ) during propagation, where g and
O are the dimensionless wave number and spatial modula-
tion frequency, we can obtain from Eqn (3) that for the
frequencies O lying in the range from 0 to (2S )1=2r0
�(1� r 2

0 )
ÿ3=4, the amplitude of a small perturbation during

propagation will increase exponentially with the increment

G � Img � 1
2
Im
�
O 2
�
O 2 ÿ 2Sr 2

0ÿ
1� r 2

0

�3=2 ��1=2

. (14)

The dependences of the increment G on the dimensionless
spatial modulation frequency O for different amplitudes r0 of
the plane wave are given in Fig. 4. The increment attains a
maximum at the frequency Omax � S 1=2r0(1� r 2

0 )
ÿ3=4. Be-

cause of the saturation of the nonlinear response, the mo-
dulation instability range narrows when the amplitude of
the plane wave exceeds a certain value. For a fixed value of
S, the maximum width of the modulation instability range
is attained for r0 � 21=2 and amounts to 2S 1=2=33=4. If the
modulation frequency lies outside the modulation instability
range, no exponential perturbation occurs and harmonic os-
cillations of the perturbation amplitude with a period 2p=g
arise.

The linearisation technique exactly predicts the bounda-
ries of the modulation instability range but does not enable
considering the mode of a developed instability. The most
popular technique of investigating this mode, which involves
the approximation of a finite (up to 5) number of harmonics
in the emission spectrum, can be applied for a medium with
saturation only in a narrow range of modulation frequencies
O adjacent to the upper boundary of the modulation instabi-
lity region.We will analyse the developed instability mode on
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Figure 3. Dynamics of the collision of soliton-like beams belonging to the
upper soliton branch in a medium with S � 2:5 for an intersection angle
a � 0:1 (a), 1.0 (b), and 0.04 (c) and a relative phase difference j � 0 (a, b)
and p=4 (c).
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the basis of numerical simulations, nevertheless invoking
the spectral criterion to determine the instability develop-
ment length.

Fig. 5 shows the dynamics of the development of a small
(dr � 0:05) harmonic perturbation of a plane wave with the

amplitude r0 � 0:3 for the modulation frequencies O1 �
Omax � 0:45 and O2 � �2=3�Omax � 0:3 corresponding to the
maximum increment. The initial exponential growth of the
perturbation amplitude (broadly speaking, the growth law
is described by the hyperbolic cosine), which leads to the fil-
amentation of the plane wave into several localised beams
(filaments), is followed by the reverse energy transfer to the
plane wave (the zero harmonic).

This energy transfer may even result in the reconstruction
of the initial profile of the perturbed plane wave (Fig. 5a).
The dynamics of modulation instability development is
more complicated at lower frequencies O (Fig. 5b). This is
related to the fact that the spatial modulation period is in
fact proportional to the energy that participates in the forma-
tion of a filament or a group of filaments and increases
with lowering O as 2p=O. As a consequence, the number
of filaments to which the plane wave decomposes increases
significantly as the frequency O is lowered (Fig. 5b).

The dynamics of instability development, which is rather
complicated in the time domain, allows a simple interpreta-
tion in the spectral domain. In spectroscopic terms, a fila-
mentation means the energy transfer from the zero harmonic
(a plane wave) to two harmonics at frequencies �O (which
represent harmonic modulation) and the generation of new
harmonics at multiple frequencies. In this connection the
length of modulation instability development in the deve-
loped mode can be conveniently defined as the length L
that corresponds to the maximum energy transfer from the
zero harmonic (the plane wave) to the harmonics that are
multiples of the frequency O. As the frequency O is reduced,
the number of harmonics generated during propagation and
the fraction of energy transferred from the zero harmonic
increase significantly. In particular, the situation depicted in
Fig. 5a corresponds to the excitation of four side harmonics
at frequencies �O and �2O and to a 45% energy transfer
from the zero harmonic. The situation in Fig. 5b corresponds
to the excitation of as many as eight harmonics and the 80%
energy transfer.

Fig.6 shows the length L of modulation instability devel-
opment as a function of the dimensionless modulation freq-
uency O for several values of the plane-wave amplitude. Note
that the frequency obtained by numerical integration, which
corresponds to the fastest instability development, coincides
with the frequency Omax � S 1=2r0=(1� r 2

0 )
3=4 predicted

using the linearisation technique. Interestingly, the closer
the amplitude of a plane wave to the amplitude r0 � 21=2 cor-
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Figure 4. Dependences of the increment G on the dimensionless spatial
modulation frequency O for different amplitudes of the plane wave for
S � 2:5.
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Figure 6. Length L of modulation instability development as a function of
the dimensionless modulation frequency O for several amplitudes of the
plane wave for S � 2:5.
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responding to the maximumwidth of the instability range, the
broader the modulation frequency range in which the length
of instability development is nearly constant. This is substan-
tially different from the function (14). As the modulation
frequency approaches the boundary of the instability region,
the length L of instability development tends to infinity.

Apart from the modulation frequency, the length of insta-
bility development depends substantially on the ratio between
the amplitudes of the start-up perturbation and of the plane
wave. Fig. 7 shows the dependence of Lon this ratio dr=r0 for
the frequency Omax corresponding to the fastest instability
development. It is evident that L exhibits, as in the previous
case, a weak dependence on the dr=r0 ratio when the ampli-
tude of the plane wave approaches the value r0 � 21=2, which
corresponds to the maximum width of the instability range.
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