
Abstract. A version of the perturbation theory is developed
for determining the field distribution of spatial solitons with
a 2D transverse profile in a medium with saturable absorp-
tion and gain in the case of small deviations from paraxial
conditions. Starting from the unperturbed paraxial soliton
with the linear polarisation of radiation, an approximate
master equation is derived for transverse components of
the electric field in the case of wide solitons. It is shown
that its solution represents a stable weakly nonparaxial dis-
sipative optical vector soliton with an axially asymmetric
field distribution.

1. Introduction
Conservative spatial optical solitons represent stable self-
channelling structures (pseudoparticles) in a transparent
medium with the self-focusing nonlinearity of the refractive
index, for which the diffraction spread of a beam is compen-
sated by its nonlinear compression. They served as one of the
first objects of nonlinear optics and have been actively
studied since the early 1960s. [1]. Conservative solitons rep-
resent a family with a continuous spectrum of their basic
characteristics, for instance, the maximum radiation inten-
sity. Solitons of a qualitatively different kind, namely, dis-
sipative optical solitons (DOSs) or autosolitons with a dis-
crete spectrum of characteristics, are formed in dissipative
systems, such as passive nonlinear interferometers excited by
external radiation [2, 3], lasers with saturable absorption [4,
5], etc. (see also [6 ^ 8]).

The discrete nature of the spectrum of DOSs and a rigid
(threshold) character of their excitation lead to an increased
stability and an efficient suppression of noise, which is of in-
terest for applications in optical data processing. For the
majority of applications, generally speaking, of both conser-
vative and dissipative solitons, it is desirable to minimise their
size. When a soliton becomes comparable in size with the
optical wavelength, its nonparaxiality becomes of substantial
importance. Note that this feature is not taken into account
within the framework of the standard quasi-optical approx-
imation (the approximation of slowly varying variables or
envelopes). The nonparaxiality may also have a strong effect

on the polarisation structure of the soliton field, even in the
case of rather wide solitons.

As far as we know, the nonparaxiality has been previously
considered in the literature only for conservative solitons. For
weakly paraxial solitons, the method of the perturbation
theory was proposed [9 ^11] in which the ratio of optical
wavelength to the soliton width was used as a small param-
eter. In the region of strong nonparaxiality, optical needles,
i.e., spatial solitons with the width smaller than the wave-
length of light, were found by semianalytical and nume-
rical methods [12]. In this paper, the emission of weakly non-
paraxial DOSs is studied. To reveal the nonparaxiality, we
consider monochromatic optical beams with a 2D transverse
profile in a scheme without a cavity, which represents a con-
tinuous medium with saturable gain and absorption (see, e.g.,
[7]). We will be predominantly interested in polarisation
effects, which are absent in the paraxial approximation.

2. Master equation
We start from the Maxwell equations for monochromatic
radiation with frequency o in a nonmagnetic medium (the
magnetic permeability is equal to unity)

rotE � i
o
c
H ; rotH � ÿi

o
c
D; divH � 0; divD � 0: (1)

Here, E and H are the electric and magnetic field strengths
[in the complex notation, the factor exp�ÿiot� is omitted]
and c is the speed of light in vacuum. The third- and higher-
harmonic generation is assumed to be inefficient (the corre-
sponding phase-matching conditions are not fulfilled). To
separate the nonparaxiality, we use the simplified equation
for the electric induction D, which corresponds to the stric-
tion nonlinearity in the case of self-focusing

D � �e0 � de
ÿjEj2��E; (2)

where e0 and de are the linear (real) and nonlinear permitti-
vites of a medium.

Using the method, which was previously employed in
Ref. [11] for conservative solitons, we will derive an approx-
imate closed equation for the transverse field components
E? � fEx;Eyg of a stationary dissipative spatial soliton.
For this soliton, the longitudinal (along the coordinate z) field
variation is described by the factor exp (iGz) with a real prop-
agation constant G. Excluding from (1) the magnetic field
strength, we obtain the generalised nonlinear Helmholtz
equation

N N Rozanov Research Institute of Laser Physics, Birzhevaya liniya 12,
199034 St Petersburg, Russia

Received 28 April 2000
Kvantovaya Elektronika 30 (11) 1005 ^1008 (2000)
Translated by A N Kirkin

PACSnumbers:42.65.Tg; 42.55.Ah
DOI:10.1070/QE2000v030n11ABEH001852

Nonparaxiality of dissipative optical solitons

N N Rozanov

545/840 AI ^ 25/i-01 ^ SVERKA - 4ÒÑÎÑÔ ÍÑÏÒ. å 1

Quantum Electronics 30 (11) 1005 ^1008 (2000) ß2000 Kvantovaya Elektronika and Turpion Ltd



D?E? �
ÿ
k2 ÿ G2�E? � k2

e0
deE? ÿ �grad divE�? � 0; (3)

where

D? �
q2

qx2
� q2

qy2

is the transverse Laplacian and k � (o=c)
����
e0
p

is the wave
number of light in the linear medium. Taking into account
the smallness of jdej, we obtain from the last of the Maxwell
equations (1) the following equation for the longitudinal field
component:

Ez �
i

G
div?E? �

1
e0 � de

ÿ
E?; grad?de�jE?j2

��� �

� i

k
div?E?: (4)

As a result, we obtain a closed approximate equation for the
transverse field components of wide stationary spatial soli-
tons

D?E? � k2 ÿ G2
� �

E? �
k2

e0
de
ÿjE?j2�E? � Q?�E?�; (5)

where

Q?�E?� � ÿ
1
e0

de0
ÿjE?j2�jdiv?E?j2E?h

� grad?
ÿ
E?; grad?de

ÿjE?j2���; (6)

de0�I� � dde
dI

; I � jEj2: (7)

For the Kerr nonlinearity (de � e2jEj2, e2 > 0), these rela-
tions are transformed into the corresponding equations of
Ref. [11].

To emphasise the role of energy dissipation, we consider a
medium with nonlinearity of the absorption and gain only. In
this case,

de
ÿjEj2� � ÿie0mf

ÿjEj2�;
(8)

f
ÿjEj2� � ÿ1ÿ a0

1� jEj2=Ia
� g0
1� jEj2=Ig

;

where km is the coefficient of constant (nonresonance) absor-
ption (in intensity); m5 1; a0 and g0 are the linear coef-
ficients of resonant absorption and gain, which are normal-
ised to the nonresonance absorption coefficient; and Ia and
Ig are the saturation intensities for amplification and absorp-
tion. For the characteristic shift of the propagation constant,
we introduce the dimensionless quantity

a � k2 ÿ G2

k2m
; (9)

and the dimensionless transverse coordinates that are
obtained by multiplying the dimensional coordinates by
k
���
m
p

. As a result, Eqn (5) takes the form

D?E? � aE? ÿ i f
ÿjE?j2�E? � imq?

ÿ
E?
�
; (10)

where

q? � E?jdiv?E?j2f 0
ÿjE?j2�

� grad?
ÿ
E?; grad? f

ÿjE?j2��; f 0�I� � df
dI
: (11)

In Cartesian coordinates,

qx �
qEx

qx
� qEy

qy

���� ����2Ex f
0 � q

qx
Ex

qf
qx
� Ey

qf
qy

� �
;

(12)

qy �
qEx

qx
� qEy

qy

���� ����2Ey f
0 � q

qy
Ex

qf
qx
� Ey

qf
qy

� �
:

The parameter a, which plays the role of an eigenvalue in
Eqn (10), should be determined. Recall that the spectrum of a
for DOSs being studied here is discrete,whereas the spectrum
for conservative solitons is continuous. Moreover, the field
envelope of DOSs is described by complex functions, i.e.,
the wave front of DOSs is necessarily curved, whereas the
class of conservative solitons contains solitons with a plane
front.

3. Solution of the master equation
in the perturbation theory
When deriving Eqn (10), we restricted our consideration to
the lowest corrections to the standard quasi-optical (nonpar-
axial) approximation, assuming that the nonlinearity is weak
and the soliton width is sufficiently large (compared to the
wavelength l). Therefore it is reasonable to solve this equa-
tion using the perturbation theory, with m � (l=w)2 con-
sidered as a small parameter, where w is the characteristic
soliton width. Note that expression (11) enables one to deter-
mine the desired quantities only in the zero and first orders
of the perturbation theory. To find them in higher orders of
the perturbation theory, one should include in (11) additional
terms.

The solution of Eqn (10) is sought in the form

E? � E?0 � mdE? � :::; a � a0 � mda� ::: (13)

The zero approximation (E? � E?0 and a � a0) corresponds
to the standard paraxial description in which q? � 0 and (10)
is transformed into the vector quasi-optical equation

D?E? � a0E? ÿ i f
ÿjE?j2�E? � 0: (14)

In the first order of the perturbation theory, we obtain for
dE? the inhomogeneous linear equation

D?dE? � a0dE? ÿ i f
ÿjE?0j2�dE? ÿ iE?0 f

0��E �?0; dE?�

� �E?0; dE �?�� � ÿdaE?0 � iq�E?0�: (15)

Let us write Eqn (14) in Cartesian coordinates

D?Ex0 � a0Ex0 ÿ i f
ÿjEx0j2 � jEy0j2

�
Ex0 � 0;

(16)

D?Ey0 � a0Ey0 ÿ i f
ÿjEx0j2 � jEy0j2

�
Ey0 � 0:

The solutions of this system are most completely studied in
the literature for the linear polarisation. We shall restrict our
further analysis to this case (note that more general relations,
which are presented in Ref. [11] for conservative solitons, are
valid for DOS as well). For definiteness, we consider the
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lowest (fundamental) solitons with linear polarisation and an
axially symmetric (in the zero approximation) field distribu-
tion:

Ex0 � Ex0�r�; Ey0 � 0; r � ÿx2 � y2
�1=2

: (17)

In the first order of the perturbation theory, the equations
linearised with respect to a small perturbation dE? can be
written in the form

Lx�dEx� � ÿdaEx0 � iqx0; Ly�dEy� � iqy0; (18)

where

Lx�dEx� �
�
D? � a0 ÿ i

ÿ
f � f 0jEx0j2

��
dEx ÿ i f 0E 2

x0dE
�
x ;

Ly�dEy� �
ÿ
D? � a0 ÿ i f

�
dEy; (19)

qx0 � f 0Ex0

���� qEx0

qx

����2 � q
qx

Ex0
qf
qx

� �
; qy0 �

q
qy

Ex0
qf
qx

� �
:

The solutions of the homogeneous system

Lx�dEx� � 0; Ly�dEy� � 0 , (20)

which corresponds to (18), for finite boundary conditions and
a sufficiently fast decrease in dE? with increasing transverse
coordinates have the same form as for conservative solitons
[11].

To solve linear inhomogeneous equation (18), we repre-
sent q?0 in the form

qx0 � q0�r� � q2�r� cos 2j; qy0 � q2�r� sin 2j; (21)

where

q0�r� �
1
2

d
dr
� 1
r

� �
G; q2�r� �

1
2

d
dr
ÿ 1
r

� �
G;

(22)

G � Ex0 f
0 djEx0j2

dr
:

The second of the equations (18) takes the form

�D? � a0 ÿ i f �dEy � iq2�r� sin 2j: (23)

The corresponding homogeneous equation has the unique
nontrivial axially symmetric solution dEy � Ex0(r). Because
this solution (as well as the solution of the corresponding
orthogonal equation) is orthogonal to the right-hand side
of Eqn (23), this equation can be solved.Without loss of gen-
erality one may equate to zero the solution of the
homogeneous equation that corresponds to the rotation of
a DOS as a whole in the plane xy. Then, we can assume
that Eqn (23) with appropriate boundary conditions has a
unique solution of the form

dEy � dEy2�r� sin 2j: (24)

The function dEy2(r) is determined as a solution, finite on
the interval 0 < r <1, of the ordinary differential equation

d2dEy2

dr2
� 1
r
ddEy2

dr
� a0 ÿ

4
r2
ÿ i f

� �
dEy2 � iq2�r�: (25)

The linearised equation for dEx has the form�
D? � a0 ÿ i

ÿ
f � f 0jEx0j2

��
dEx ÿ i f 0E 2

x0dE
�
x

� ÿdaEx0 � iq0�r� � iq2�r� cos 2j: (26)

One may claim that Eqn (26) also has a unique solution of
the form

dEx � dEx0�r� � dEx2�r� cos 2j: (27)

The determination of the radial functions dEx0(r) and
dEx2(r), taking into account the value found for da, is re-
duced to finding the solution of two linear homogeneous
ordinary differential equations

d2dEx0

dr2
� 1
r
ddEx0

dr
� ÿa0 ÿ i f ÿ i f 0jEx0j2

�
dEx0

ÿ i f 0E 2
x0dE

�
x0 � iq0�r� ÿ daEx0�r�;

(28)

d2dEx2

dr2
� 1
r
ddEx2

dr
� a0 ÿ

4
r2
ÿ i f ÿ i f 0jEx0j 2

�
dEx2

�

ÿ i f 0E 2
x0dE

�
x2 � iq2�r� ,

which is finite on the interval 0 < r <1. In accordance with
(24), the longitudinal field component has the form

Ez �
i

k
qEx0

qx
� i

k
dEx0

dr
cosj: (29)

In our opinion, the most striking experimental manifesta-
tion of the nonparaxiality of DOSs is the change in the
polarisation of radiation. To be specific, the polarisation
becomes elliptic, and the state of polarisation changes over
the cross section. The lowest nonparaxial correction is given
by the longitudinal field component Ez (29). The end of the
electric field vector rotates in time along a strongly elongated
ellipse, which lies in the plane xz. In the next order, a weaker
field component dEy appears. If this component is taken into
account, the ellipse leaves the plane xz, and the orientation of
its plane varies over the cross section.

The radial profile of the function dEy2(r), obtained by
numerical solution of linear Eqn (25), is shown in Fig. 1.
The angular dependence of dEy has the simple form (24).
The radial profile of the y component of the radiation inten-
sity Iy � jdEyj2 has a well-pronounced maximum near the
inflection point of the radial dependence of jEx0j. Because
of this, the intensity Iy in the plane xy is represented by
four symmetrically positioned peaks, whereas the intensity
of the z component is represented by two peaks [see (29)].
Note that this field structure is also typical of optical needles,
which represent strongly nonparaxial conservative solitons
[12].

The stability of weakly nonparaxial DOSs does not
require an additional analysis. Indeed, we analysed the initial
paraxial solitons only inside the region of their stability (the
latter is presented in Fig. 3 of Ref. [8]). In this case, the eigen-
values of the corresponding linearised equations for weak
perturbations either vanish (for neutral modes corresponding
to the symmetry of the problem) or have a negative real part,
which corresponds to the soliton stability. The nonparaxial
corrections retain the symmetry of the problem and, there-
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fore, the zero eigenvalues. As for the nonzero eigenvalues, the
sign of their real part cannot be changed, at least because of
the smallness of nonparaxial corrections. In reality, it is rea-
sonable to expect that the nonparaxiality additionally sta-
bilises solitons. In this respect, DOSs once again manifest
a particular stability, for instance, compared to conservative
solitons in a transparent medium with the Kerr nonlinearity.
In the latter case, nonparaxial solitons have purely imaginary
eigenvalues, so that even a slightest perturbation can qualita-
tively change the character of stability. This problem will be
analysed elsewhere.

4. Conclusions
We have developed here the version of the consistent pertur-
bation theory, which enables one to determine the lowest
nonparaxial corrections to the field structure of dissipative
optical vector solitons with a 2D transverse profile. Their
field has a simple form of polarisation and azimuthal struc-
ture. The deviation from nonparaxiality leads to the
appearance of a noticeable longitudinal field component,
and because of this it is inappropriate to analyse the non-
paraxiality of the electromagnetic field within the framework
of the scalar nonlinear Helmholtz equation. It seems that the
nonparaxiality is best evident in the experiment in the form
of a typical azimuthal structure of the field component with
linear polarisation that is orthogonal to the major one.

The nonparaxial soliton produced by a paraxial soliton
with linear polarisation is axially symmetric. The approach
developed here can also be used for the analysis of three-
dimensional conservative and dissipative solitons, i.e., the
so-called optical and laser bullets [7, 13, 14]. Moreover, it
may be of interest to study strongly nonparaxial supernarrow
spatial solitons, i.e., optical needles [12], which were not con-
sidered here. Such solitons are most naturally formed in
media having nonlinearity of the refractive index (Kerr non-
linearity) in addition to the nonlinearity of gain.

Acknowledgements. The author is grateful to N A Veretenov
for his help in calculations. This work was made within the
framework of the studies supported by the International
Science and Technology Centre (Grant No. 666) and was

partially supported by the Russian Foundation for Basic
Research (Grant No. 98-02-18202) and INTAS (Grant No.
1997-581).

References

1. Vlasov S N, Talanov V I Samofokusirovka Voln (Self-Focusing of
Waves) (Nizhni Novgorod: Institute of Applied Physics, Russian
Academy of Sciences, 1997)

2. Rozanov N N, Khodova G V Opt. Spektrosk. 65 1375 (1988)
3. Rosanov N N, Fedorov A V, Khodova G V Phys. Status Solidi B

150 545 (1988)
4. Rozanov N N, Fedorov S V Opt. Spektrosk. 72 1394 (1988)
5. Fedorov S V, Rosanov N N, Khodova G V Proc. SPIE Int. Soc.

Opt. Eng. 1840 208 (1991)
6. Rosanov N N Prog. Opt. 35 1 (1996)
7. Rozanov N N Opticheskaya Bistabil'nost' i Gisterezis v Rasprede-

lennykh Nelineinyk Sistemakh (Optical Bistability and Hysteresis
in Distributed Nonlinear Systems) (Moscow: Nauka, 1997)

8. Rozanov N N Usp. Fiz. Nauk 170 462 (2000)
9. Abakarov D I, Akopyan A A, Pekar S I Zh. Eksp. Teor. Fiz. 52

463 (1967)
10. Chi S, Guo Qi Opt. Lett. 20 1598 (1995)
11. Rozanov N N Opt. Spektrosk. 89 974 (2000)
12. Semenov V E, Rozanov N N, Vysotina N V Zh. Eksp. Teor. Fiz.

116 458 (1999)
13. Vakhitov N G, Kolokolov A A Izv. Vyssh. Uchebn. Zaved. Ser.

Radiofiz. 16 1020 (1973)
14. Kaliteevskii N A, Rozanov N N, Fedorov S V Opt. Spektrosk. 85

533 (1988)

jEx0j jdEyj

2

1

0 5 10 15 r

0.4

0.3

0.2

0.1

0

Figure 1. Radial profiles of the magnitudes of amplitudes of the initial
paraxial soliton jEx0j (solid curve) and the y component of the normalised
nonparaxial correction jdEyj (dashed curve) for the parameters of a
medium a0 � 2, g0 � 2:1; and Ig=Ia � 10.
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