
Abstract. The study of the propagation of an electromag-
netic ultrashort pulse in a Kerr medium with impurity
atoms under quasi-resonance conditions is reported, which
demonstrates the efficiency of the unitary transformation
method in nonlinear optics. An equation is derived, which
differs from the known equations describing the evolution
of a pulse envelope and takes into account the dispersion
of the nonlinear response and the dispersion of group velo-
cities.

1. Introduction

One of the objects studied in nonlinear fibre optics is an
optical fibre containing resonance impurity atoms [1 ^18].
If the population of resonance levels is inverted by an addi-
tional pumping, a fibre doped with Er3� ions serves as an
active medium of a fibre amplifier [1, 2]. A fibre directional
coupler, whose channels are doped with resonance atoms,
may be used as an all-optical switch [3, 4]. Under certain
conditions, the self-induced transparency is possible in a
doped optical fibre [5 ^10]. The experimental observation
of this phenomenon [12] in an optical fibre doped with
Er3� ions stimulated a further study of the coherent prop-
agation of optical USP in such media. In Refs [12 ^18], the
amplification of USP was considered, and in Refs [19 ^ 21],
new regimes of their propagation were studied. Models of
resonance and nonresonance subsystems were further gener-
alised in [22 ^ 24]. In Ref. [11], the nonlinear absorption
caused by the two-photon resonance was studied.

When the self-induced transparency is not realised,
impurities can introduce additional losses. As noted in
Ref. [12], the energy of an optical soliton travelling in a
nonlinear fibre without resonantly absorbing impurities is
several hundred times lower than the energy required for
the total inverse population of resonance levels. Thus, the
effect of resonance impurities on optical solitons in a fibre
is reduced only to absorption (provided special means, as
in Ref. [12], are not used). The effect of losses can be strongly
weakened by increasing detuning D from the resonance. In
this case, the role of impurity atoms is reduced mainly to

the modification of the refractive index of a fibre. It is evident
that the frequency detuning D should not be too large. Other-
wise, it is meaningless to speak about resonance impurities.
This situation, which will be called quasi-resonance, is char-
acterised by the inequalities jDj5o and jDj5 joÿ oabj,
where o is the carrier-wave frequency and oab are the fre-
quencies of atomic transitions in an impurity (except the
resonance transition).

The theory describing the propagation of optical
USP under quasi-resonance conditions has been developed
rather long ago [25 ^ 27] and is based on the adiabatic fol-
lowing approximation (AFA). The time of changes in
the envelope of an optical pulse was assumed to be much
greater than D. This enables one to replace the initial system
of equations with a single nonlinear wave equation for the
slowly varying complex pulse envelope. However, the ap-
proximation of slowly varying envelope and phase of an
optical pulse (SVEPA) was already used in the initial system
of Maxwell-Bloch equations. Some effects, for instance, the
level shift due to the quadratic Stark effect, are not taken into
account in this approximation. The resonance (or quasi-
resonance) conditions separate a pair of levels from the
total spectrum of an impurity atom, thereby introducing
the concept of a two-level atom as a model of a resonance
medium. It would be more correct to develop the AFA on the
basis of equations for the density matrix that are obtained
for a two-level atom without any other assumptions.

In this paper, the adiabatic following approximation will
be obtained starting from the model of two-level atoms with-
out the use of Bloch equations in the rotating wave
approximation, which makes possible a more exact represen-
tation of the expression for the polarisation of the resonance
subsystem. In this case, one can take into account the reso-
nant contributions through the phenomenological intro-
duction of nonlinear susceptibilities. As a result, corrections
to the basic equations [25 ^ 27] will be obtained.

An efficient means for solving nonlinear optical problems
is the unitary transformation method [28 ^ 30]. It enables one
to obtain a more exact, in comparison with Ref. [25], solution
of Bloch equations, which describe the evolution of the state
of a two-level atom, and find an expression for the polarisa-
tion in the form of a series in powers of the ratio of the
instantaneous Rabi frequency to the frequency detuning
from the exact resonance. The resulting equations differ
from the known equations [25 ^ 27] by the correction terms,
which take into account the dispersion of the nonlinear
response of the resonance system.To illustrate the application
of the general equations, we consider the initial stage of for-
mation of a shock wave in an optical fibre.
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2. Formulation of the problem

Let electromagnetic radiation with the electric field strength

E � ~eeÿiF �~e �e iF; F � kzÿ otÿ j0 (1)

and the carrier frequency o � kvph (vph is the phase velocity)
be travelling in the z-direction in a medium containing res-
onance impurity atoms. The resonance impurities are
represented by two-level atoms, whose Hamiltonian H0 is
assumed to be the same for all the atoms and independent
of the impurity position in the medium. Thus, we neglect the
inhomogeneous broadening of the spectral line of impurity
atoms and other effects associated with the position of an
impurity atom in the medium.

The basic equations describing the propagation of wave
(1) are the wave equation

q 2

qz 2
E ÿ 1

c 2
q 2

qt 2
E � 4p

c 2
q 2P
qt 2

(2)

and the equations determining the polarisation P of the
medium. Because the polarisation of the medium is the
dipole moment of its unit volume, we represent it in the
form P � Pm � Pim, where the term Pm describes the
medium without impurity atoms and the second term Pim
is caused by the interaction of the electromagnetic wave with
impurities. The term Pm is related to the electric field
through optical susceptibilities, which will be taken into
account up to third-order terms in the field inclusive, and
Pim is determined by the density matrix of impurity atoms
rim:

Pim � Sp�rimd im�, (3)

where d im is the dipole moment operator of an impurity
atom. The density matrix rim is assumed to be normalised
to the density of impurity atoms : Sp ( rim ) � Nim.

The density matrix of impurity atoms is found from the
equation

i�h
q
qt
� Ĝ

� �
rim � H0 ÿ Ed im� �rim ÿ rim H0 ÿ Ed im� �, (4)

where Ĝ is the relaxation operator and the Hamiltonian H0
has eigenvectors jai and jbi: H0jai � Eajai, H0jbi � Ebjbi,
Eb ÿ Ea � �hoba.

We neglect polarisation effects by assuming that all the
quantities determining them (~e � eex, Pim � Pimex, d im �
dex) are parallel to the x-axis. For the slowly varying ampli-
tude e � e( z, t ) of field (1), we have the wave equation�

ÿ 2ik
q
qz
� 1
vg

q
qt

� �
� 1ÿ kvg

0

v 2
g

q 2

qt 2

�
e�z; t�

(5)

� 12pk 2

e�o� w �3��ÿo;o;ÿo;o�je�z; t�j2e�z; t� � 4p
k 2

e�o�pim ,

where vg is the group velocity; vg
0 � dvg=do; and e (o)

and w �3�(ÿ o; o, ÿo, o) are the dielectric permittivity and
the third-order susceptibility of the medium without impuri-
ty atoms. pim is the slowly varying polarisation amplitude:

Pim � pime
ÿiF �p �ime

iF. (6)

The harmonic generation is ignored in (5).
Equations (3) ^ (5) describe the propagation of the elec-

tromagnetic field in a nonlinear medium with impurity
atoms.

3. Unitary transformation method
for the adiabatic following

Consider the case when the frequency detuning from the
resonance D � oÿ oba is much greater than the Rabi fre-
quency L � 2edba=�h and the spectral line width 1=g, but is
much smaller than the carrier frequency:

jDj4 jLj; jDj4 1=g; jDj5o. (7)

Under conditions (7), the polarisation of impurity atoms
adiabatically follows field (1). It is common to analyse this
case by expanding the solution of the equation for the density
matrix in power series. However, here, we will demonstrate a
more elegant unitary transformation, which showed its effi-
ciency in various problems of nonlinear optics where
resonance conditions are present in one form or another.

Instead of solving equation (4) we transform the density
matrix and the Hamiltonian of impurity atoms in field (1)
so that the Hamiltonian be diagonal. Because of condition
(7), one may neglect the relaxation operator and obtain

~r � eÿiSrime
iS ; i�h

q
qt

~r � ~H; ~r�;�
(8)

~H � eÿiSH0e
iS ÿ eÿiSEde iS ÿ i�h eÿiS

q
qt

e iS.

Hereafter, the square brackets denote the commutator of
operators. It is evident that the operator eÿiS should be
unitary and the operator S should be Hermitian. Because
this transform cannot be obtained exactly, we expand the
operator S and the effective Hamiltonian ~H in a power series
in the electric field:

S � S �1� � S �2� � . . . ; ~H � ~H �0� � ~H �1� � ~H �2� � . . . , (9a)

~H �0� � H0; ~H �1� � ÿEd ÿ i
�
S �1�;H0

�� �h
q
qt

S �1�, (9b)

~H �2� � i
2
�
S �1�;Ed

�ÿ i
2
�
S �1�; ~H �1��

ÿi�S �2�;H0
�� �h

q
qt

S �2�, (9c)

~H �3� � i
2
�
S �2�;Ed

�ÿ i
2
�
S �1�; ~H �2��ÿ i

2
�
S �2�; ~H �1��

� 1
12
�
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�
S �1�;Ed

��� 1
12
�
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�
S �1�; ~H �1���

ÿ i
�
S �3�;H0

�� �h
q
qt

S �3�. (9d)
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We require the fulfilment of the conditions

~H �1� � 0; ~H �2�
ab � E �2�a dab; ~H �3�

ab � E �3�a dab, (10)

where E �2�a and E �3�a contain no oscillating exponentials
e imF, m � �1, � 2, . . . (a and b label the energy levels of
the two-level system). As a result, the transformed density
matrix has the diagonal form: ~rab � ~r �0�a dab.

Polarisation (3) of a two-level atom with frequency detun-
ing D from the resonance is determined by the formula

Pim�D� � Sp ~reÿiSde iS
� �

� Sp
�

~r
�
d ÿ i�S; d �

ÿ 1
2
�S; �S; d �� � i

6
�S; �S; �S; d ��� � . . .

��
. (11)

Let us find Pim(D), accurate to within third-order terms in
the field inclusive. For this purpose, one should derive
expressions for S �1�, S �2�, and S �3�.

Using integration by parts, we obtain from Eq.(9b) and
condition (10)

S �1�ab �
dab
�h

�
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�
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�
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1
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�

(12)
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�h

�
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qt 2
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1
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qt 2
e iF

1
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�

ÿ dab
�h

�
q 3e

qt 3
eÿiF

1

�oab ÿ o�4 �
q 3e �

qt 3
e iF

1

�oab � o�4
�
� . . .

for the adiabatic field switching. In addition to condition (7)
we require that the field change in the characteristic time tp
be sufficiently rapid:

D�Dtp�
o

5 1. (13)

In this case, one may retain in (12) only the terms

S �1�ba �
dba
�h

�
ÿ iDÿ1eeÿiF � Dÿ2

qe
qt

eÿiF � iDÿ3
q 2e

qt 2
eÿiF

ÿDÿ4
q 3e

qt 3
eÿiF

�
� S �1��ab ; S �1�bb � S �1�aa � 0.

From Eq. (9c) follows

E �2�a � jdbaj
2
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�
Dÿ1jej2 � i

2
Dÿ2

�
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qt
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qe
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2
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�
e �
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qt 2
� e
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qt 2

��
� ÿE �2�b ; S �2�ab � 0.

Finally, we obtain from (9d) the expression

q
qt

S �3�ba � iobaS
�1�
ba �

i
�h
S �1�ba E �2�a

ÿ 1
6�h

����S �1�ba

���2Edba ÿ S �1�2ba Edab
�
. (14)

Retaining in this expression only the terms proportional
to e�iF, we have, in view of (13),

S �3�ba � ÿi
4
3
jdbaj2dba

�h 3
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Dÿ3ejej2
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1
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Dÿ4
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�
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qt

��
eÿiF. (15)

The results obtained enable one to calculate polarisation
(11) of two-level impurity atoms within an accuracy of third-
order terms inclusive. However, we additionally assume that
~r�0�a � Nim. Then, retaining the above accuracy, we obtain

Pim�D� � Nim

�
ÿ i
�
S �1�ab dba ÿ dabS

�1�
ba

�

�
�
1ÿ 2

3

���S �1�ba

���2�ÿ i
�
S �3�ab dba ÿ dabS

�3�
ba

��
,

from which follows the expression

pim�D� � Nim
jdabj2

�h

�
ÿ 1
D
e� i

D2

qe
qt
� 1
D3

q 2e

qt 2
ÿ i

D4

q 3e

qt 3

� jdabj
2

�h 2D3

�
2ejej2 ÿ 6i

jej2
D

qe
qt
� 4i
3D

q�ejej2�
qt

��
. (16)

which is accurate to within terms of the order of jDjÿ4.
Note that this expression takes into account dispersion up

to the third order (the termwith the third time derivative) and
the dispersion of the nonlinear response of quasi-resonance
atoms (the last two terms). It is these terms that differ the
results obtained here from the results found in the adiabatic
following approximation [25 ^ 27].

4. Nonlinear equation
for the optical-pulse envelope

Let us represent equation (5) in the form

i
�

q
qz
� 1
vg

q
qt

�
eÿ 1

2
D

q 2e

qt 2

� 6pow �3�

cn�o� je�z; t�j
2e�z; t� � ÿ 2po

cn�o�pim, (17)

where n (o) is the refractive index of the fibre core at the
carrier frequency and

D � �1ÿ kvg
0�kÿ1vÿ2g �

1
2
d2k 2

do2

is the dispersion parameter, which characterises the second-
order group velocity dispersion that is caused only by the
fibre itself.

We have two characteristic lengths, namely, the resonance
absorption length Labs for the initial pulse with duration tp
and the dispersion length LD:

Labs � cn�o��hÿ2poNimjdbaj2tp
�ÿ1

; LD � t 2p=2jDj.
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Here, we chose the pulse duration tp as a characteristic time
of the problem. We introduce the new normalised variables
t � (tÿ z=vg)t

ÿ1
p , z � z=Labs, and q � Aÿ10 e. Taking into

account (16) and rewriting Eq. (17) in terms of these varia-
bles, we obtain

i
qq
qz
ÿ s

2
eD

q 2q
qt 2
� mjqj2q � J1qÿ iJ2

qq
qt
ÿ J3

q 2q
qt 2
� iJ4

q 3q
qt 3

ÿ e 2R
2
J3jqj2q� i

e2R
2
J4

�
3jqj2 qq

qt
ÿ 2
3
q
ÿjqj2q�
qt

�
, (18)

where J1 � (Dtp)
ÿ1; J2 � (Dtp)

ÿ2; J3 � 2(Dtp)
ÿ3; J4 � 2(Dtp)

ÿ4;
s � signD; m � 6pow �3�A2

0Labs=cn(o); and A0 is the peak
amplitude of the initial pulse. We also use the parameters
eD � Labs=LD and eR � (2jdbajA0=�h)tp � ORtp. Using the
nonlinear refractive index n2, which is related to the cubic
susceptibility w �3� by the expression n2 � 3pw �3�=n(o), one
can rewrite the parameter m in the form m � 2(o=c)n2A

2
0L.

Because of the high-frequency Kerr effect, the wave acquires
the phase shift Dj � (o=c)n2A

2
0L after passing the path L.

Thus, the parameter m is interpreted as the phase shift pro-
duced at a distance equal to two absorption lengths Labs.

Making a change to the new variables Z � tÿ (Dtp)
ÿ2z

and ~q(z, Z) � q exp�iz=Dtp�, one can write Eq. (18) in the form

i
q~q
qz
� ~eD

q 2~q
qZ2
� ~mj~qj2~q � iJ4

q 3~q
qZ3
� i

e 2R
2

� J4

�
3j~qj2 q~q

qZ
ÿ 2
3
q�j~qj2~q�

qZ

�
, (19)

where ~eD � ÿseD=2� (Dtp)
ÿ3 and ~m � m�1=2e

2
R(Dtp)

ÿ3. It
has the form of the generalised nonlinear Schr�odinger equa-
tion. Here, the third-order group velocity dispersion and the
dispersion of nonlinear responses manifest themselves due to
the influence of impurity atoms.

5. An example of the inêuence
of quasi-resonance impurities

In the range of picosecond durations of optical pulses, the
dispersion length is of the order of 100 m, which may be
many-fold greater than the resonance absorption length.
Assuming that Labs 5LD and omitting the terms propor-
tional to (Dtp)

ÿ3 and (Dtp)
ÿ4, Eq. (19) can be written in the

form

i
q~q
qz
� ~mj~qj2~q � ib

�
3j~qj2 q~q

qZ
ÿ 2
3
q�j~qj2~q�

qZ

�
, (20)

where

b � e 2RJ4
2
�
�
OR

D

�2
(Dtp)

ÿ2.

Making a change to real variables (defining them by the
relation ~q � a exp if), we represent Eq. (20) by the system
of real equations

qa
qz
ÿ ba 2 qa

qZ
� 0;

qf
qz
ÿ 7
3
ba 2 qf

qZ
� ~ma 2.

The first equation of this system describes the wave that

travels with velocity depending on its amplitude. The solution
of this equation can be written in the implicit form as

a�Z; z� � f �Z� ba 2�Z; z�z�,

where the function f (Z) � a (Z, z � 0) is determined by the
initial profile of an optical pulse. If b > 0 (b < 0), the peak of
a pulse travels with velocity greater (smaller) than the group
velocity. This is accompanied by the self-steepening of the
leading (trailing) edge of a pulse, and finally a shock wave is
formed. One can estimate the maximum values of b from the
requirement that the quasi-resonance conditions OR=D4
10ÿ1 and 1=tpD4 10ÿ1 be necessarily fulfilled. This gives
b4 10ÿ4. Note that the terms omitted in Eq. (19) become
substantial in this limiting case and their influence not only
hinders the formation of a discontinuity at the leading (trail-
ing) edge, but, on the contrary, provides the suppression of
oscillations of the pulse envelope and subsequent disintegra-
tion of the initial pulse into a set of weak pulses.

In many cases [22, 24], the factors at the terms in Eq. (19)
are chosen in an arbitrary way, and sometimes they are
chosen so that the resulting equations be integrable by the
inverse scattering method. In our case, the correct approach
leads to clearly defined relations between the coefficients of
the evolution equation and gives no way of using completely
integrable versions of this equation as a zero approximation.
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