
Abstract. A brief review of recent advances in the studies of
two coupled three-wave nonlinear optical processes with
multiple frequencies, which possess a number of special
properties compared to conventional three-wave processes,
is presented. The consecutive interactions of co-propagating
and counter-propagating light waves in a LiNbO3 crystal
with a regular domain structure are considered. The energy
exchange upon consecutive interactions of the waves with
frequencies x, 2x and 3x is analysed. The prospects of
using consecutive nonlinear optical processes in quantum
electronics and nonlinear optics are discussed.

1. Introduction

It seems that the term 'consecutive interactions' was intro-
duced for the first time by S A Akhmanov and R V
Khokhlov in their book `Problems of Nonlinear Optics' [1],
where they noted on page 198 that `the number of parametric
effects in a quadratic medium can be substantially extended
if its dispersion properties admit consecutive three-frequency
interactions'. They also pointed out in this book that the

consideration of two consecutive three-frequency interac-
tions should involve the interaction of the waves with
frequencies o1, o2, o3, and o4, which satisfy the relations

o1 � o2 � op,

o1 � op � o3, (1)

o2 � op � o4,

where op is the pump-wave frequency. The first of these
relations corresponds to the parametric amplification upon
high-frequency pump and the two others to the parametric
frequency conversion. Note that these processes are conven-
tional and well studied individually.

These interactions have been studied in the radio-fre-
quency range in the late 1950s ^ early 1960s (see, for
example, [2 ^ 6]). In particular, the conditions of parametric
amplification upon low-frequency pump have been found
(see also [1]). However, such a parametric process cannot
be realised upon the three-wave mixing only, i.e., in the
absence of consecutive interactions.

In Ref [7] excitation of the third optical harmonic in a ho-
mogeneous quadratically nonlinear crystal using consecutive
processes of the second harmonic generation o� o � 2o
and optical frequency mixing 2o� o � 3o was considered.
However, the conditions of collinear phase matching cannot
be simultaneously satisfied in a homogeneous nonlinear crys-
tal for the above processes and processes involving waves
with multiple frequencies (see below), because this requires
the identity of the phase velocities of the three waves with
multiple frequencies (see p.194 in [1]).

At the same time, the realisation of consecutive interac-
tions in nonlinear optics appears attractive because in this
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case the number of generated frequencies is increased without
the use of additional cascades of nonlinear optical conver-
sion.

It appears that consecutive interactions have been realised
for the first time in nonlinear homogeneous crystals in
Ref. [8]. The authors [8] observed simultaneously the non-
degenerate parametric generation, the signal-wave frequen-
cy doubling, and the difference frequency generation in a
LiNbO3 crystal with the phase-matching angle of 46.78 at
1208C pumped at 1.065 mm. In this case, the second-harmonic
wavelength could be tuned from 0.925 to 0.95 mmby changing
the crystal temperature and rotating the crystal.

In Ref. [9], similar consecutive collinear interactions were
observed in a LiNbO3 crystal at room temperature, the sig-
nal-wave wavelength being 1.889 mm and that of the dif-
ference-frequency emission being 2.436 mm. However, these
experiments performed with homogeneous nonlinear crystals
can be considered as exotic.

In the early 1990s, the authors [10] showed theoretically
that the energy of the intense pump wave with frequency 3o
can be completely converted to that of the wave with freq-
uency 2o in consecutive three-wave processes with mul-
tiple frequencies o, 2o, and 3o. In this case, processes of
the type 3o �2o� o and o� o � 2o simultaneously occur.

As mentioned above, the conditions of collinear phase
matching are not satisfied simultaneously for these processes
in homogeneous crystals. On the other hand, as has been first
shown in Ref. [11], the conditions of quasi-phase matching
can be simultaneously satisfied for processes

2o � o� o; o� 2o � 3o: (2)

in a periodically polarised LiNbO3 crystal [a crystal with the
180-degree regular domain structure (RDS)]. This possibility
for LiNbO3 and KTP crystals has been also noted in
Ref. [12].

Therefore, by varying the modulation period of the non-
linear susceptibility and (or) choosing the phase matching
order in RDS crystals, one can compensate simultaneously
for the phase mismatch in two coupled three-wave processes
of the type (2). In particular, the possibility of a highly effi-
cient parametric amplification in RDS crystals upon low-
frequency pump in processes of the type (2) was demonstra-
ted in Ref. [13].

The dynamics of energy exchange upon consecutive
quasi-phase-matched third harmonic and third subharmonic
generation, as well as the conversion of the energy of the wave
with frequency 3o to that of the wave with frequency 2owere
later studied in Refs [14, 15]. Note also that similar studies in
homogeneous nonlinear media were performed in Refs
[16, 17].

By now, consecutive quasi-phase-matched interactions of
light waves in RDS crystals were observed in Refs [12, 18 ^
20], where the third harmonic generation was studied upon
the interaction between co-propagating waves. The consecu-
tive quasi-phase-matched third harmonic generation upon
the interaction between counter-propagating waves was ob-
served in Refs [19, 20]. The consecutive interaction between
counter-propagating waves upon parametric amplification
in the low-frequency pump field was theoretically studied
in Ref. [21].

The aim of this review is to consider the physical proper-
ties of the energy exchange between the waves with multiple
frequencies in two consecutive three-wave interactions.

2. Conventional quasi-phase-matched
interactions of light waves

The idea of using periodic modulation of the quadratic sus-
ceptibility to compensate for the mismatch of the wave
vectors of interacting waves belongs to Bloembergen
[22, 23]. Later, such processes were called quasi-phase-
matched processes. The principle of quasi-phase matching
can be conveniently explained by analysing the second har-
monic generation. In the presence of the phase mismatch
Dk2 � k2 ÿ 2k1 ( kj � k ( jo) is the wave number of the jth
harmonic), the second-harmonic amplitude changes, in the
given field approximation, as (see, for example, [1])

dA2

dz
� ÿib 0A2

10 exp�iDk2z�, (3)

where b 0 is the coefficient of nonlinear coupling of the waves
and A10 is the complex amplitude of the fundamental wave of
frequency o. From (3), we obtain

A2�z� � ÿib 0A2
10

sin�Dk2z=2�
Dk2=2

exp�ÿiDk2z=2�. (4)

The second-harmonic intensity I2 � jA2j2 achieves the
maximum value at the length z � lc (where lc � p=jDk2j is
the so-called coherence length). In this case, the phase incur-
sion caused by the mismatch is equal to p. If we locate behind
the first crystal the second nonlinear crystal of length lc,
which has the same mismatch Dk2 in the direction of prop-
agation of the interacting waves, then the second-harmonic
amplitude at the output of the second crystal will be

A2�z� � ÿ
ÿ
b 0 ÿ b 00

�
A2

10
sin�Dk2z=2�

Dk2=2
. (5)

Here, b 00 is the coefficient of nonlinear coupling of the waves
for the second crystal. It is obvious that the maximum ampli-
tude of the second harmonic is achieved for b 0 � ÿb 00.
Therefore, a change in the sign of nonlinearity of the second
crystal compensates for the destructive phase incursion.

In this case, the amplitude and intensity of the second har-
monic can be represented in the form

A2 � ÿ
2
p
b 0�2lc�A2

10, (6)

I2 �
2
p
b 0�2lc�

� �2
I 2
10; I10 � jA10j2. (7)

According to (7), the second-harmonic intensity changes
upon quasi-phase-matched interaction of the waves as in a
homogeneous medium with the effective nonlinear coeffi-
cient beff � 2b 0=p. Comparison of (4) and (6) shows that
the second-harmonic phase changes from layer to layer in
contrast to a homogeneous medium where, in the absence of
the second harmonic at the input, the phase takes the con-
stant value at once.

Expression (5) corresponds to the first order of quasi-
phase matching. In a more general case, when the thickness
of an individual layer of the crystal is l � mlc (Fig. 1), the
quasi-phase matching condition has the form

Dk2 � mp=lc ; m � �1;�3; . . . . (8)

In this case, beff � 2b 0=pjmj, i.e., the effective nonlinear coef-
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ficient decreases with increasing order of the quasi-phase mat-
ching.

The condition (8) admits another clear interpretation. Let
us represent the coefficient of nonlinear coupling in the form
b � b2g(z), where b2 is the coefficient modulus and g(z) is an
alternating periodic function (Fig. 1) equal to�1 orÿ1 at the
layer thickness l. The period of a grating appearing in this
case is L � 2l.

Let us expand the function g(z) in a series

g�z� �
X1

m�ÿ1
gm exp�ÿimKz�,

where gm � 2=(pjmj), and K � 2p=L is the modulus of the
vector of a reciprocal lattice. The substitution of (9) into (3)
yields

dA2

dz
� ÿib2A2

10

X1
m�ÿ1

gm exp�i�Dk2 ÿmK�z�. (9)

The term, for which Dk2 � mK, makes the maximum con-
tribution to the right-hand side of expression (9). It is in this
case that the phase mismatch is compensated by the vector of
a reciprocal lattice in the mth order.

The above approach is applicable when the so-called non-
linear length is Lnl � (b2jA10j)ÿ1 4 lc. If Lnl ' lc, we can use
the undepleted intensity approximation, which is valid for the
second-harmonic conversion efficiency up to 0.5 [24]. Note
also that approximate analytic methods cannot correctly
describe the behaviour of the phase relations between inter-
acting waves in RDS crystals [25, 26]. The phase relations
undergo oscillations in such crystals, whereas the phases of
the interacting waves in homogeneous nonlinear media
change monotonically.

The use of quasi-phase matching nonlinear interactions in
nonlinear optics offers some advantages over the use of
phase-matched interactions realised due to birefringence in
crystals. In the case of quasi-phase-matched interactions,
the influence of birefringence on the efficiency of the nonlin-
ear optical process can be excluded, while in the case of the
degenerate three-frequency interaction, the condition of
group phase matching can be realised [26].

In aperiodically polarised nonlinear crystals, the com-
pression of ultrashort light pulses can be also fulfilled. Thus,
in Ref. [27], the duration of a frequency-doubled chirped pulse
in LiNbO3 crystals with the aperiodic structure was shor-
tened by a factor of 150. The periodic modulation of nonlin-
ear optical coefficients is accompanied by the modulation of
electrooptical coefficients, which can eliminate the influence
of the photorefractive effect on nonlinear processes [28]. Note
that in the case of RDS crystals, the conditions of optimal
focusing upon the second harmonic generation drastically
change compared to those for homogeneous crystals [29].

However, the most important from the practical point of
view is the fact that upon quasi-phase-matched interactions
one can use the maximum nonlinearity coefficient by choos-
ing polarisations of the interacting wave in an appropriate
way. For example, in a periodically polarised lithium niobate
crystal, the ee ^ e interaction is used (all the waves are extra-
ordinary). This interaction is determined by the component
d33 of the nonlinear susceptibility, which exceeds other com-
ponents in this crystal by an order of magnitude (Fig. 2).

At present, conventional phase-matched interactions of
light waves are widely used for the second harmonic gener-
ation, generation of sum and difference frequencies, and
parametric generation of light (see, for example, reviews
[30, 31]). In this way, coherent radiation in the spectral range
from the IR to UV region is produced. In these experiments,
LiNbO3, KTP, LiTaO3, and RTA crystals with RDS struc-
tures are used.

Quite recently, in Refs. [32, 33], the quasi-phase-matched
frequency doubling was obtained in actively nonlinear RDS
crystals, i.e., along with lasing, the frequency doubling of this
emission was observed.

3. Nonlinear optical media
with a regular domain structure

The main feature of RDS crystals is the periodic change in
the direction of the crystal polar axis resulting in the mod-
ulation of nonlinear properties characterised by a periodic
change in the sign of nonlinear susceptibility (Fig. 1a). The
modulation of the sign of nonlinear susceptibility and, cor-
respondingly, nonlinear coupling coefficients of the interac-

lc 3lc z

b

Ps

Ps �w�2� ÿw�2�

a
L

g�z�

ÿ1

0

1

Figure 1. Nonlinear material with the RDS (a) and the modulation func-
tion of the nonlinear susceptibility (b); Ps is the polarisation vector and
w�2� is the nonlinear susceptibility.
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Figure 2. Dependences of the relative intensity ~I2 of the second harmonic
in a LiNbO3 crystal on the reduced interaction length z=lc for the first-
order quasi-phase-matched ee-e interaction (1 ), and phase-matched oo ^
e (2 ) and oe ë e (3 ) interactions.
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ting waves from layer to layer produces a `nonlinear' grating.
In the quasi-phase-matched process, the phase mismatch of
the interacting waves is compensated due to the vector of a
reciprocal lattice.

At present, several methods are used for the formation of
RDSs in nonlinear media: the diffusion method, the after-
growth method (the action of an alternate electric field on
a crystal that is pulled through a furnace with the tempera-
ture gradient), the `high-voltage' method, the electron
beam method, and the growth method.

The method of chemical diffusion consists in the follow-
ing. A crystal with a periodic mask applied by the lithography
technique is placed in a medium whose reagents diffuse into
the crystal producing the concentration gradient in a near-
surface layer and the inversion of domains. As a result, a
high-quality periodic structure with a period of 3 ^ 8 mm
and 1 ^ 2 mm in depth appears [34, 35].

Another method for producing RDSs consists in the
aftergrowth electrothermal processing when a crystal is
placed in an alternate electric field during its pulling through
a furnace with the temperature gradient. This method can be
applied for producing bulk structures with a minimum period
of a few tens of micrometers.

The crystal polarisation switching at room temperature
caused by an electric field produced by periodic electrodes
deposited on the crystal surface is a comparatively new
method [36]. This method allows one to manufacture struc-
tures with a minimum period of 1.7 mm. However, it can
be applied only for polarisation switching in thin samples
of thickness from 200 to 500 mm. A substantial drawback
of the methods discussed above is a small thickness of the
structures obtained, which precludes the possibility of nonco-
planar nonlinear optical interactions.

There also exists the method of electron beam polarisa-
tion switching in which the local inversion of domains is
produced under the action of an electron beam on the crystal
surface [37, 38]. This method allows one to produce domains
of thickness 500 mm.

The method for producing bulk RDSs directly during the
crystal growth is promising. The growth layered domain
structure is inherent in a number of ferroelectrics grown by
the Czochralski method [39 ^ 41]. This structure repeats the
so-called growth banded structure ^ a growth defect, which
appears because of oscillations in the growth rate and repre-
sents local variations in the crystal chemical composition.

The growth rate can be modulated, for example, by peri-
odically changing temperature at the crystal growth front.
The obvious advantage of the bulk RDS produced is its large
size, whereas its disadvantage is the period instability, which
restricts the effective length of nonlinear optical interactions
by several millimetres. The growth method permits the for-
mation of RDSs with flat and thin boundaries with peri-
ods varying in a broad range.The volume of a crystal contain-
ing RDSs can reach a few cubic centimetres.

The features of formation of a periodical structure by mod-
ulating crystal chemical composition during the crystal growth
by the Czochralski method have been considered in Refs
[42, 43]. When the symmetry axis of the thermal field does
not coincide with the rotation axis of the crystal, the tempera-
ture at the crystal growth front changes periodically, resulting
in the modulation of the crystal chemical composition. Such an
inhomogeneous crystal composition results in the formation of
the so-called rotational growth bands. During cooling, which
is accompanied by the transition through the Curie point, fer-

roelectric domains attach to the growth bands. Their shape
corresponds to that of the crystallisation isotherm.

The domain boundaries in crystals grown in the directions
of axes X , Y , Z are curved because the growth front is not
planar in this case, which is a drawback of the method. To
grow a structure with plane boundaries, crystals are some-
times grown along the normal to a closely packed crystal
face (the so-called face crystal) (Fig. 3b). Along with smooth
and plane domain walls, the `face' structure possesses a high
degree of periodicity and has no such defects as microdo-
mains and monodomains.

However, in this case, the direction of spontaneous polar-
isation makes an angle of 338 with domain walls, which leads
to the presence of a coupled charge on them, resulting in a
jump in the linear refraction coefficient. Such jumps can

cause phase interruption of the waves involved in nonlinear
optical interaction and decrease its efficiency. This feature
is absent in crystals grown along the X -axis (Fig. 3a) because
the direction of spontaneous polarisation in them is parallel
to domain walls, while the role of the linear refractive index
grating is insignificant.

Organic polymers are promising materials for parametric
conversion of light and generation of harmonics. The main
advantage of these materials is the large second-order nonli-
nearity, which is a few times larger than that in conventional
crystals.The polarisation switching and quasi-phase-matched
second harmonic generation have been observed in Ref. [44].

The producing of ideal semiconductor structures with the
crystal-axis orientation that periodically changes along the
propagation of radiation attracts great interest in the last
years [45, 46]. Such semiconductors are transparent in the
range between 1 and 12 mm, they have the large nonlinear
coefficient d14 � 90 pm Vÿ1 (whereas the maximum nonlin-
ear coefficient of LiNbO3 is d33 � 34 pm Vÿ1), and have a
high threshold of the optical breakdown. This allows one
to use such semiconductor structures for quasi-phase-
matched conversion of radiation in the near- and middle-
IR ranges [47, 48].

4. Simultaneous realisation of two quasi-phase-
matched processes. Interactions of
co-propagating and counter-propagating waves

Let us analyse first the interaction of co-propagating waves.
Consider two collinear processes (2), which proceed with the
phase mismatches

X Growthdirection

Z

Y

Z

LPs
Ps

a b

578

Figure 3. Schematic views of a crystal grown along the X axis (a) and a
`face' crystal (b) [43].
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Dk3 � k3 ÿ k2 ÿ k1; Dk2 � k2 ÿ 2k1. (10)

Under the conditions of simultaneous quasi-phase matching,
it is necessary that

Dk3 � 2pm2=L; Dk2 � 2pm1=L, (11)

where m1 and m2 are quasi-phase matching orders. Expres-
sions (11) can be reduced to the form

L � m1l
3n�3o� ÿ 2n�2o� ÿ n�o� �

m2l
2�n�2o� ÿ n�o�� , (12)

where l � 2pc=o and n ( jo) is the refractive index for the
wave with the frequency jo. Form1 � m2, it follows from (12)
that

4n�2o� � 3n�3o� � n�o�. (13)

The corresponding expressions can be readily obtained for
m1 6� m2.

The fulfilment of expressions (11) was demonstrated for
the first time for the waves propagating at an angle of 908
to the optic axis of a LiNbO3 crystal [11]. The condition (13)
is valid, for example, for l � 0:355 mm, the modulation
period L � 8:2 mm, and the crystal temperature equal to
24.58C.

Another way to obtain relations (11) is a variation of the
angle between the crystal optic axis and the normal to the
modulation grating of the nonlinear susceptibility. This angle
can be called the quasi-phase matching angle [15]. The tuning
quasi-phase matching curves for the interaction of co-prop-
agating waves are presented in Fig. 4. The curves are
constructed for the case when the wave with frequency o
has ordinary polarisation, whereas the waves with frequen-
cies 2o and 3o have extraordinary polarisation. Note that
the waves in the short-wavelength region require higher
orders of quasi-phase matching. Note also that the tuning
range proves to be substantially narrower for the waves
with the same polarisation.

The conditions of quasi-phase matching for processes (2)
in a LiNbO3 crystal can be realised not only for the consec-
utive interaction of co-propagating waves but also for the
interaction of counter-propagating waves. This requires the
fulfilment of the following conditions [21]

�k3 � k2 � k1 � 2pm2=L; �k2 � 2k1 � 2pm1=L. (14)

The upper and lower signs in (14) refer to the waves propa-
gating in the positive and negative directions along the z axis,
respectively. At least one of the interacting counter-propa-
gating waves should be backward. For the backward wave
with frequency o, the relations (14) can be simultaneously
satisfied when m1 � 2m2 and n (2o) � n (3o). In the case of
the backward wave with frequency 2o, the conditions (14)
are fulfilled for m1 � ÿm2 and n (o) � n (3o).

When the frequency of the backward wave is equal to 3o,
the conditions (14) are satisfied if the degenerate three-freq-
uency process proceeds synchronously [n (o) � n (2o)], while
the mixing process occurs quasi-synchronously. In this case,
the quasi-phase matching order is m2 � ÿ3� n (o)� n (3o)�
�L=l (jm2j4 1, because usually L4 l).

5. Consecutive three-frequency interactions of
the waves with multiple frequencies
The three-frequency processes under study (2) are described
in the general case by the following truncated equations [21]

� dA1

dz
� ÿib3g�z�A3A

�
2 exp�ÿiDk3z�

ÿ ib2g�z�A2A
�
1 exp�ÿiDk2z�,

� dA2

dz
� ÿ2ib3g�z�A3A

�
1 exp�ÿiDk3z� (15)

ÿ ib2g�z�A2
1 exp�iDk2z�,

� dA3

dz
� ÿ3ib3g�z�A1A2 exp�iDk3z�,

where Aj is the complex amplitude of the wave with freq-
uency jo ( j � 1, 2, 3) and b2 and b3 are the moduli of
nonlinear coupling coefficients of the waves. The coefficients
b3 and b2 are related to the nondegenerate and degenerate
three-frequency interaction, respectively.

The system of equations (15) can be solved in the general
form only numerically. The relation between the wave inten-
sities Ij � jAj j2

� I �3 �z� � I �2 �z� � I �1 �z� � const (16)

is useful for the understanding of the features of processes
considered below. The upper index �(ÿ ) is related to the
wave propagating in the positive (negative) direction along
the z-axis.

The relation (16) represents the law of conservation of the
difference of the intensities of co- and counter-propagating
waves. In the case of the conventional nondegenerate
three-frequency process (b2 � 0), along with relation (16),
the another relation

a

b

1 2 3 4

2 3

1
4

1 2 3 l
�
mm

5

65

125

L
�
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0

45

90
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�
8

Figure 4. Dependences of the quasi-phase matching angle yq (a) and the
modulation period L (b) on the wavelength l � 2pc=o for the interaction
of co-propagating waves with frequencies o, 2o, and 3o in a Mg :
Y : LiNbO3 crystal for quasi-phase matching orders m1 � 1, m2 � 3 (1 ),
m1 � 3, m2 � 7 (2 ),m1 � 3, m2 � 5 (3 ), andm1 � m2 � 1 (4 ).
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� 2I �1 �z� � I �2 �z� � const (17)

can be readily obtained. Expressions (16) and (17) are in fact
the Manly ^Row relations for the process under study. It
follows from these expressions that pump, for example, at
the frequency 3o is transformed to a co-propagating wave
with the frequency o and the intensity conversion coefficient
equal to 1=3. Such restrictions in the case of consecutive
interactions are absent because the relation (17) is not sat-
isfied in this case. In this respect, consecutive interactions
fundamentally differ from conventional three-frequency in-
teractions.

Comparison of the energy properties of processes des-
cribed by equations (15) with conventional three-frequency
processes suggests that the term `consecutive interactions'
[1] adequately reflects the essence of these interactions. Note
that at present the term `consecutive interactions' is used, for
example, in the analysis of the spectral enrichment of a shock
wave in weakly dispersing media [49].

The nature of energy exchange between interacting waves
is determined, of course, by initial conditions at the input and
output of a nonlinear crystal:

Aj�z � 0� � Aj0; Aj�z � L� � AjL.

One can distinguish three types of consecutive interac-
tions between co-propagating waves:

(1) The generation of higher harmonics:

A10 6� 0, A20 � A30 � 0;

(2) the frequency down-conversion:

A30 6� 0, jA30j4 jA10j,jA20j; and

(3) the parametric amplification at low-frequency pump:

A20 6� 0, jA20j4 jA10j,jA30j.

Below, we consider the dynamics of energy exchange
between interacting waves for these processes. Note that
the phase relations between the interacting waves have a com-
plicated and irregular nature [15]: the phase jumps are
observed in the region of a strong energy exchange, and
when the phase relations at the input of a periodically inho-
mogeneous medium are not optimal, they do not tend to a
stable value inside the medium.

5.1. Third harmonic generation

Consider first the consecutive quasi-phase-matched third
harmonic generation. When an intense wave of frequency
o is incident on a quadratically nonlinear crystal, first a
wave with frequency 2o is generated in the crystal. At the
next stage, provided the corresponding quasi-phase matching
conditions are satisfied, the waves with frequencies o and 2o
excite a wave with frequency 3o. As a result, the energy of
the wave with frequency o is converted to that of the third
harmonic [14, 15]. The latter is absent at all upon conven-
tional direct frequency multiplication in homogeneous quad-
ratically nonlinear crystals.

Fig. 5 shows the intensity of the third harmonic upon its
consecutive quasi-phase-matched excitation for different

ratios r � m1b3=m2b2 of the effective nonlinear coupling
coefficients of the waves. Note first of all that the pump
wave phase, as in homogeneous media, does not affect the
coefficient of conversion into the third harmonic. At the
same time, the maximum efficiency of conversion to the third
harmonic strongly depends on the ratio of the nonlinear cou-
pling coefficients of the waves and quasi-phase matching
orders used.

The dynamics of energy exchange between the waves for
the optimal ratio of nonlinear coefficients (r � 0:67) is shown
in Fig. 6. Here, the pump-wave energy is almost completely
transformed to that of the third harmonic. Note that in
this case, unlike direct excitation of the third harmonic in
a medium with cubic nonlinearity, the self-action and cross
interaction are absent. It is for this reason, that the 100-%
conversion efficiency of the third harmonic can be achieved
upon its consecutive generation.

The nonlinear length Lnl in experiments with lithium nio-
bate crystals can be a few centimetres.

5.2. Third subharmonic generation

This process is one of the processes of frequency down-con-
version upon pumping at frequency 3o. The dynamics of
conversion of an intense wave of frequency 3o to the wave
with frequency o is unstable [14, 15]. If the phase relations at
the input to a nonlinear medium are not optimal for this
interaction, the intensity of the waves oscillates. Upon con-
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Figure 5. Dependences of the relative intensity ~I3 of the third harmonic on
the reduced length z=Lnl for the ratio of effective nonlinearity coefficients
r � 0:66 (1 ), 0.5 (2 ), 0.3 (3 ), and 1.0 (4 ).
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Figure 6. Dependences of the relative intensities ~I1 (1 ), ~I2 (2 ), and ~I3 (3 )
of the waves with frequencies o, 2o, and 3o, respectively, on z=Lnl upon
the third harmonic generation for the optimal ratio of effective nonlineari-
ties r � 0:67.
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secutive generation of the third subharmonic, there exist the
optimal initial phase relation between the pump and subhar-
monic and the optimal relation between the effective non-
linear coefficients r for the complete pump energy transfer to
the subharmonic wave energy. The optimal value of r is the
same as that for the third harmonic generation (r � 0:67).

The energy transfer from the wave with frequency 3o to
the wave with frequency o occurs most efficiently when the
initial phases of the interacting waves are j20 � j30 � 0 and
the initial phase of the pump wave is j10 � p=2. This optimal
phase relation differs from that for homogeneous media: in a
homogeneous medium with the cubic nonlinearity there are
several optimal phases j10 that differ by 2p=3 in the case
of the third subharmonic generation [51]. Fig. 7 shows the
behaviour of the intensities of interaction waves for optimal
conditions of the third subharmonic generation in a RDS
crystal (the number of medium layers on the nonlinear length
isN � 10).Weak oscillations in the curves are caused by high
orders of quasi-phase matching: m1 � 3, m2 � 5. Let us em-
phasise once more that, unlike a medium with cubic nonli-
nearity, where energy transfer to the third subharmonic is
also possible, the process under study involves the quadratic
nonlinearity.

5.3. Parametric frequency conversion

Consider now energy conversion from the wave of frequency
3o to the wave of frequency 2o. This process has been stu-
died in detail in homogeneous media in Refs [10, 16, 17]. In
Ref. [10], it was shown for the first time that the energy of an
intense wave with frequency 3o can be completely converted
to that of the wave with frequency 2o. It was found in Ref.
[14] that in spite of the quasi-phase-matched type of inter-
actions in RDS crystals, the behaviour of plane waves (for a
given interaction length) with increasing number of layers
tends to that for a homogeneous medium.

Fig. 8 shows the dependences of the wave intensities on a
spatial coordinate in the consecutive quasi-phase-matched
process under study for the optimal initial phase relation
of the waves, b2=b3 � 1, m1 � m2 � 1 and the number of
layers N � 30 on the nonlinear length Lnl, where Lnl �
1=b3jA30j.

The energy transfer to the wave with frequency 2o in a
RDS crystal, unlike the case of a homogeneous medium, is
not aperiodic and can be highly efficient when the number
of layers is limited. In principle, the 100-% conversion effi-
ciency can be achieved when the number of layers is very great.

5.4. Parametric ampliécation at low-frequency pump

Consider now the quasi-phase-matched parametric amplifi-
cation of a wave with frequency 3o in the pump-wave field

with frequency 2o. Its dynamics depends on many parame-
ters such as the ratio of intensities of the pump wave at
frequency 2o and the signal wave, the phase relations
between the interacting waves, the ratio of the effective non-
linear coefficients, etc. [13 ^15]. The parametric amplifi-
cation at low-frequency pump in a homogeneous medium
has been studied in Refs [2, 5, 6]. The efficient conversion
of the pump-wave energy with frequency 2o to the energy
of the wave with frequency 3o in a periodically inhomoge-
neous nonlinear medium has been first demonstrated in
Ref. [13].

Figs 9 ^11 show the dynamics of energy transfer upon
parametric amplification. The energy exchange between the
waves has the oscillatory nature: once the pump energy at fre-
quency 2o has been almost completely converted to the
energy of the wave with frequency 3o, the reverse energy
transfer to the pump wave begins. Fig. 9 shows the behaviour
of the waves upon frequency up-conversion (A10 6� 0, A30
� 0) in the case of the efficient interaction for the optimal
initial phase relation b2=b3 � 1, m1 � m2 � 1 and the num-
ber of layers on the nonlinear length N � 10 (here, Lnl =
1=b2jA20j).

In the case of parametric amplification at low-frequency
pump, i.e., forA30 6� 0 andA10 � 0, the maximum conversion
efficiency at frequency 3o is achieved at larger interaction
lengths than at frequency up-conversion [14]. This is ex-
plained by the fact that in a nonlinear medium the wave at
the difference frequency o is first excited and then the dege-
nerate parametric amplification (2o � o� o)) and up-con-
version (o� 2o � 3o) occur.
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Figure 7. Dependences of the relative intensities ~I1 (1 ), ~I2 (2 ), and ~I3 (3 )
of the waves with frequencies o, 2o, and 3o, respectively, on z=Lnl upon
the third subharmonic generation for A30 � 1;A10 � i0:1, and A20 � 0:1.
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Figure 8. Dependences of the relative intensities ~I1 (1 ), ~I2 (2 ), and ~I3 (3 )
of the waves with frequencies o, 2o, and 3o, respectively, on z=Lnl upon
conversion of the energy of the wave with frequency 3o to that of the
wave with frequency 2o for A30 � ÿ1;A10 � 0:01, and A20 � 0.
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Figure 9. Dependences of the relative intensities ~I1 (1 ), ~I2 (2 ), and ~I3 (3 )
of the waves with frequencies o, 2o, and 3o, respectively, on z=Lnl at the
parametric amplification in the low-frequency pump field with frequency
2o for A20 � 1, A10 � 4:27� 10ÿ5, and A30 � 0.
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The dynamics of the waves at the initial stage of the inter-
action depends on the ratio of moduli b2 and b3, which are
responsible for the conventional high-frequency parametric
amplification and frequency mixing, and on the initial phase
relation. In the undepleted pump-wave field approximation
and assuming that a nonlinear medium is homogeneous, a
change in the amplitude of the wave with frequency 3o is
described by the expression (cf. section 6)

A3�z� �
X2
j�1

Bj sinhGjz� Cj coshGjz, (18)

where Bj and Cj are specified by the initial conditions for
z � 0 [13] and

G1;2 �
1
2

h
b2 �

ÿ
b 2
2 ÿ 12b 2

3
�1=2ijA20j (19)

is the increment of the amplitude increase. One can see that
for b2 � b3, the real part of G1;2 is determined by the coef-
ficient b2, which is responsible for the degenerate parametric
amplification at high-frequency pump. Note that the struc-
ture of expression (18) is typical for parametric ampiécation
at high-frequency pump.

By varying the parameters of signal waves with frequ-
encies o and 3o at the input to a periodically modulated
nonlinear medium, one can substantially change the dyna-
mics of energy exchange between the waves. Figs 10 and
11 show the dynamics of a parametrically amplified signal
as a function of the ratio of the intensities and phases of
the input signals. The curves were constructed for N � 10;
m1 � m2 � 1 and b2=b3 � 1. One can see that the dynamics
of this process can be controlled by varying the signal param-
eters at the input to a nonlinear medium. A weak change in
the initial amplitude or phase of a signal can result either in a
complete energy conversion to the energy of the wave with
frequency 3o at the given length in the medium or in the
absence of a signal at this frequency, i.e., the optical switching
from one frequency to another can be completely performed.
The dependence of the signal intensity on these parameters
exhibits also a certain periodicity (see [16]).

5.5. Interactions of counter-propagating waves

Consider now the quasi-phase-matched parametric amplifi-
cation for the case of the low-frequency backward pump
wave [21], i.e., when the pump wave with frequency 2o
comes on the crystal output ( z � L ). In this case, we obtain
from (16) the relation

I �1 �0� � I �3 �0� ÿ I ÿ2 �0� � I �1 �L� � I �3 �L� ÿ I ÿ2 �L� . (20)

for the intensities of the interacting waves. In the absence of
a signal at the medium input (I �3 (0) � 0), we obtain from
(20)

I �3 �L� � I ÿ2 �L� ÿ I �1 �L� � I �1 �0� ÿ I ÿ2 �0�. (21)

If the conditions I �1 (L) � 0 and I �1 (0� ' I ÿ2 (0) are satis-
fied, the energy of the wave with frequency 2o converts
almost completely to that of the wave with frequency 3o.
This is illustrated in Fig. 12 where the results of calculations
are given forN � 500 at the nonlinear length Lnl � 1=b3jA20j
and m2 � 1. One can see that during propagation of the wave
with frequency 2o in a nonlinear medium, the energy of the
wave converts to that of the wave with frequency 3o at rather
weak input intensities of the waves at frequencies o and 3o.
In accordance with Eqn (21), the efficient energy exchange
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Figure 10. Dependences of the relative intensity ~I3 of the wave with fre-
quency 3o on z=Lnl upon the parametric amplification in the low-fre-
quency pump field with frequency 2o for A20 � 1, A10 � 0, and different
amplitudes A30.
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Figure 11. Dependences of the relative intensity ~I3 of the wave with fre-
quency 3o on z=Lnl upon the parametric amplification in the low-fre-
quency pump field with frequency 2o for A20 � 1, A10 � 0, jA30j �
3:26 � 10ÿ2, and different phases j30.
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Figure 12. Dependences of the relative intensities ~I1 (1 ), ~I2 (2 ), and ~I3 (3 )
of the waves with frequencies o, 2o, and 3o, respectively, on z=Lnl upon
the parametric amplification of counter-propagating waves in the low-fre-
quency pump field with frequency 2o. The wave with frequency 2o propa-
gates toward the waves with frequencies o and 3o.

854 A S Chirkin, V V Volkov, G D Laptev, E Yu Morozov



between counter-propagating waves with frequencies 2o and
3o can also takes place when I ÿ2 (0) � 0 and I �1 (L) ' I �1 (0).

It follows from analysis [21] of the parametric amplifica-
tion at low-frequency pump that a complete energy conver-
sion from the wave with frequency 2o to the counter-propa-
gating wave with frequency 3o occurs at smaller lengths than
in the case of co-propagating waves, and the role of phase
relations is greater in the former case. In such processes,
unlike the interaction of co-propagating waves, it is impossi-
ble, for example, to convert completely the energy of an in-
tense wave with frequency 3o to that of the wave with freq-
uency 2o.

6. Generation of nonclassical light at
parametric ampliécation
in the low-frequency pump éeld

The conventional three-frequency processes of parametric
amplification in the high-frequency pump field represent
sources of nonclassical or squeezed light (see, for example,
[50 ^ 54]). The specific features of using quasi-phase-matched
processes for generation of squeezed light were considered in
review [55]. At present, the applications of squeezed light in
various precision optical and physical measurements and in
systems for optical data communication and processing are
extensively studied.

The parametric amplification of light upon low-frequency
pump can be used to produce nonclassical light whose prop-
erties differ from those of the light obtained upon parametric
amplification in the low-frequency pump field. Let us analyse
the quantum properties of the light generated upon paramet-
ric amplification during the interaction of co-propagating
waves in the low-frequency pump field. We will follow paper
[56], assuming that the conditions of quasi-phase matching
are satisfied, whereas a nonlinear medium is nevertheless
homogeneous.

In the approximation of a undepleted classical low-fre-
quency pump field, this parametric process is described by
the expressions

da1
dz
� ÿiK �3 a3 ÿ i2K2a

�
1 ,

(22)
da3
dz
� ÿiK3a1,

where aj(z) and a�j (z) are the operators of creation and anni-
hilation of a photon with frequency jo, which obey the
commutation relations �aj; a�k � � djk and �aj; ak� � 0; djk is
the Kronecker symbol; Kj � gjD2; g2 and g3 are effective non-
linear coupling coefficients; and D2 is the classical amplitude
of the pump wave.

A solution of equations (22) has the form that is similar to
expression (18), in which complex amplitudes should be re-
placed by operators (see [56]). Note that this solution is
also similar to the solution obtained in the case of the quan-
tum description of a nonlinear asymmetric coupler of the
waves with frequencies o and 2o upon intense pump at
the second-harmonic frequency [57].

It was shown in section 5.4 that upon parametric ampli-
fication in the low-frequency pump field with frequency 2o,
photons with frequency o are first generated, which are
added with pump photons to produce photons with frequency
3o. The first process represents the degenerate three-fre-

quency parametric amplification at low-frequency pump in
which nonclassical (quadrature-squeezed light) is generated
at frequencyo [51 ^ 54]. For this reason, the field at frequency
3o in the second process proves to be in a nonclassical state.

Consider the behaviour of fluctuations of the quadrature
components at frequencies o and 3o:

Xj�yj� � aj exp�iyj� � a�j exp�ÿiyj�,
(23)

Yj�yj� � i�aj exp�iyj� ÿ a�j exp�ÿiyj�� � j � 1; 3�,
where yj is the phase of the heterodyne wave, which is used
for measuring the jth quadrature component. The operators
Xj (yj) and Yj (yj) satisfy the commutation relations �Xj (yj),
Yj (yj)� � ÿ2i.

Analysis showed [56] that the dynamics of quadratures
depends on many parameters of the problem. In particular,
it was found that the fluctuations of quadratures X1 and
X3 decrease during the interaction of the waves under the
conditions

3y1 � y3; j2 � 2y1 � ÿp=2, (24)

where j2 � argD2. In this case, the quadrature components
are determined by the expressions

X1�z; y1� � K1�z�X1 � K�z�X3,

X3�z; y3� � ÿK�z�X1 � K3�z�X3,
(25)

where

Xj � Xj�z � 0�;

K1�z� �
�
cosh gzÿ jK2j

g
sinh gz

�
exp�ÿjK2jz�;

K3�z� �
�
cosh gz� jK2j

g
sinh gz

�
exp�ÿjK2jz�;

K�z� � jK3j
g

exp�ÿjK2jz� sinh gz;

g � jK2j2 ÿ jK3j2
� �1=2

.

The function K(z) is related to the mutual influence of
fluctuations at the generated frequencies. For the initial fields
at frequencies o and 3o in the vacuum or coherent state, the
dispersion of quadratures is

Vj � hX 2
j i ÿ hXji2 � Qj�z�, (26)

where

Q1;3�z� �
1
g2
ÿjK2j2 cosh 2gz� jK2jg sinh 2gz

ÿjK3j2
�
exp�ÿ2jK2jz). (27)

The upper sign in (27) is related to Q1(z) and the lower one,
to Q3(z). The quadrature dispersion at the input to a non-
linear medium is V0 � 1 (the vacuum or coherent field).

For jK3j � 0, i.e., upon the conventional parametric am-
plification in the low-frequency pump field, the function
Q1(z) � exp (ÿ 4jK2jz� andQ3(z) � 1. In this case, the disper-
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sion of the quadrature X1(z) in a nonlinear medium is smaller
than the amplitude of vacuum oscillations, whereas the dis-
persion of the quadrature X3(z) is equal to the amplitude
of vacuum fluctuations. In accordance with the quantum-
mechanical uncertainty relation, the dispersion of the quad-
rature Y1, which is not discussed, exceeds the amplitude of
vacuum fluctuations.

When jK3j 6� 0, the parametric amplification takes place
both upon low-frequency and high-frequency pump. In this
case, because of the phase relations chosen, the dispersions
of quadratures X1(z) and X3(z) in a nonlinear medium
decrease, according to (26) and (27), whereas the dispersions
of quadratures X1(z) and X3(z) obviously increase.

The behaviour of quadratures X1(z) and X3(z) in a non-
linear medium is demonstrated in Fig. 13 for different
ratios jK3j=jK2j of nonlinearities. One can see that the disper-
sions of quadratures X1(z) and X3(z) decrease with the
distance propagated by the waves, i.e., the suppression of
fluctuations of the quadratures is correlated. However, the
fluctuations of the quadrature X3(z) are always greater
than the fluctuations of the quadrature X1(z). The dispersion
of the quadrature X3(z) decreases with increasing the nonli-
nearity coefficient K3, whereas the dispersion of the quadra-
ture X1(z) somewhat increases.

Thus, it is possible to suppress the quantum fluctuations
of quadrature components at multiple frequencies in consec-
utive three-frequency processes coupled by common pump.
In this case, a conventional degenerate parametric amplifica-
tion is realised at one of the frequencies and a parametric
amplification upon low-frequency pump is realised at
another frequency. In the case of conventional method for
generation of higher harmonics based on frequency mixing
of coherent emission, no nonclassical light is generated at
the sum frequency.

7. Experiments on generation of higher optical
harmonics

Studies of consecutive interactions between light waves in
nonlinear optics have been started comparatively recently
and they are predominantly theoretical because of the diffi-
culties encountered upon phase matching of two three-wave
processes. However, due to the progress in the fabrication of
structures with a periodic modulation of nonlinear suscept-
ibility, experimental observations of consecutive interactions
have already been reported in a few papers. These studies are
concerned so far with the generation of higher optical har-
monics using consecutive interactions [12, 18 ^ 20].

The authors [18] studied the third harmonic generation
using the second harmonic generation (o� o � 2o) and
the subsequent wave mixing (o� 2o � 3o) in the 9th and
33th quasi-phase matching orders, respectively. In experi-
ments, a Y : LiNbO3 crystal was used, which was grown
by the Czochralski technique and had the RDS formed dur-
ing its growth. The modulation period of the nonlinear
susceptibility was 60 mm and the crystal length was 5 mm.
The crystal was pumped by a 1.064-mm quasi-cw
Nd : YAG laser. The laser had an average power of about
1 W, a pulse length of 100 ns, and a repetition rate of
1 kHz. The eee/eee interactions were realised, which allowed
the use of the maximum nonlinear coefficient d33.

The simultaneous generation of the second and third har-
monics has been also obtained in Ref. [12]. The authors [12]
used a 3.6-mm, 195-mW CO laser, whose radiation was
focused on a lithium niobate crystal which was periodically
polarised with a period of 31.5 mm. The efficiency of conver-
sion to the second and third harmonics in the eee/eee
interactions was 5:4� 10ÿ4 Wÿ1 and no more than 10ÿ6

Wÿ2, respectively.
The second and third harmonic generation upon the con-

secutive interaction of counter-propagating waves as a result
of the second harmonic generation and the consecutive wave
mixing was observed in papers [19, 20]. A KTiOPO4 crystal
waveguide of length 2.6 mm was repolarised with a period of
4 mm. The 9-ns pump pulse at 1.230 mm produced the inten-
sity of about 16.2 GW cmÿ2 inside the waveguide. The second
and third harmonic generation was achieved for m � 24 and
13, respectively. The efficiency of conversion to the third har-
monic was about 0.4%.

8. Conclusions

We considered a new class of nonlinear optical interactions -
consecutive interactions of the waves with multiple frequen-
cies. Such interactions can be realised in periodically inho-
mogeneous crystals, in particular, RDS crystals, owing to the
fulfilment of quasi-phase matching conditions for two three-
wave processes proceeding on the same 'nonlinear' grating.

Note that RDS crystals have uniform linear optical prop-
erties. They substantially differ in this respect from the so-
called photonic crystals whose linear and nonlinear proper-
ties vary periodically in space.

Our detailed treatment of quasi-phase-matched interac-
tions of the type (2) shows that the energy of the intense pump
wave with frequency op can be efficiently converted to the
energy of the wave with one of the frequencies op=3,
2op=3, 3op=2 and 3op.

In RDS crystals, consecutive interactions of the waves
with multiple frequencies of the type [12, 15]
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Figure 13. Dispersions V1(X1) (a) and V3(X3) (b) of quadrature compo-
nents at frequencies o and 3o, respectively, for the parametric amplifica-
tion of co-propagating waves in the low-frequency pump field with
frequency 2o as functions of z=Lnl and the ratio of nonlinearity coeffi-
cients �jK3j=jK2j�2.
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o� o � 2o; 2o� 2o � 4o

can also occur. In this case, along with the well-known proc-
esses proceeding in a medium with the quadratic nonline-
arity, the energy of the pump wave with frequency op can be
efficiently converted to the energy of the waves with frequen-
cies op=4 or 4op. To generate such waves in the case of direct
conversion, the fourth-order nonlinearity is required. We
emphasise that a highly efficient conversion of the pump
radiation to radiation at other frequencies in the consecutive
processes does not depend on these frequencies. In this res-
pect, these processes substantially differ from conventional
ones.

The experiments on the third harmonic generation per-
formed upon consecutive quasi-phase-matched interactions
is only the beginning of experimental studies of a new class
of interactions in nonlinear optics. In this respect, the possi-
bility of realisation of the parametric amplification upon low-
frequency pump appears the most interesting in our opinion.
At present it was shown theoretically that this process can
occur upon the interaction of both co-propagating and coun-
ter-propagating waves. The parametric amplification upon
low-frequency pump can be also of interest for generating
nonclassical light. As shown in section 6, in this process,
the quadrature-squeezed light is generated at frequencies
above and below the pump frequency. In this case, the quan-
tum fluctuations of quadratures with different frequencies
prove to be correlated, which is important for various appli-
cations.

The question of the effect of random deviations from the
periodicity is important for the efficient conversion in consec-
utive quasi-phase-matched interactions of the waves. On the
other hand, it seems that stochastic consecutive interactions
can be realised in statistically inhomogeneous media with a
random spatial variation of the nonlinear coupling coefficient
of the waves.

From the point of view of practical applications of con-
secutive interactions, the most important is undeniably the
development of highly efficient laser radiation frequency con-
verters. For example, using the consecutive parametric amp-
lification at low-frequency pump by a 1.064-mm Nd:YAG
laser, one can obtain a source of coherent radiation emitting
simultaneously at three wavelengths of 1.064, 2.128, and
0.709 mm.

Another important application of the consecutive proc-
esses is their use in optical switches. This application is
based on the phase sensitivity of these processes, when a
change in the phase of one of the interacting waves results
in substantial changes in the amplitudes of the waves involved
in the process. A detailed study of these effects in consecutive
quasi-phase-matched interactions is a subject of our further
investigations.

The consecutive interactions should be distinguished
from cascade quasi-phase-matched processes, which are real-
ised using either two crystals located one after another and
differing in the grating nonlinearity period [58] or two non-
linear gratings in one crystal [59].
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Note added in proof
Recently, a paper of Chao Zhang et al. was published

(Opt. Lett. 25 436 (2000)) in which the consecutive third har-
monic generation in a homogeneous medium was theore-
tically studied. The authors have paid the main attention to
the conditions of the efficient conversion of the fundamental
radiation to the third harmonic. The ratio of the nonlinear
coupling coefficients for the interacting waves at which the
complete conversion occurs obtained by them coincides,
with an accuracy to the notation, with the results obtained
earlier in our papers [14, 15] (see section 5.1).
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