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Numerical study of self-oscillations in a laser with an unstable cavity

N N Elkin, A P Napartovich

Abstract. The dynamics of oscillation in a laser with an
unstable cavity is numerically simulated. The calculations
are made in the nonstationary diffraction approximation
taking into account the gain saturation in an active medium.
The range of parameters in which stationary stable lasing is
not reached was found to be considerably wider than the
instability region obtained on the basis of the linear analysis
of stability of stationary modes. The analysis showed the
existence of a self-modulation instability that leads to the
generation of a train of short sharp power peaks. The
dependence of their repetition period on the gain relaxation
time and the excess over the laser threshold was obtained.
Doubling and quadrupling of the period of power peaks
were found and the conditions providing lasing with the
dynamic chaos were determined.

1. Introduction

Unstable cavities are used in high-power lasers with a large
aperture for efficient selection of one transverse mode [1].
Numerical studies of the spectrum of natural modes of an
unstable cavity without an active medium [1] showed that
when an outcoupling mirror with sharp edges was used,
modes with the lowest loss alternated with changing Fresnel
cavity number F = az/(iL), where «a is the radius of the
outcoupling mirror; 4 is the wavelength; and L is the cavity
length. On the basis of these studies, practical recommen-
dations for the choice of cavity parameters were formu-
lated.

In particular, it is reccommended, when increasing the fac-
tor M of a confocal cavity that operates on the positive branch
of the stability diagram, to chose the parameters so that the
equivalent Fresnel number F,q, = F(M — 1)/2 would be close
to a half-integer [1]. If F¢ is close to an integer, two transverse
modes have nearly the same loss, and a laser can simultane-
ous operate on both of them. Note that this is not disastrous
for the laser radiation divergence because these modes insig-
nificantly differ in divergence.

However, it is reasonable to expect that the nonlinear
competition between the modes can give rise to dynamic las-
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ing regimes upon stationary pumping. As shown in Ref. [2], in
a cavity whose Fresnel number F, is close to the point of
mode degeneracy in loss, the conditions exist when both com-
peting modes are unstable. Stationary single-mode lasing,
even at optimum equivalent Fresnel numbers, can also be
destabilised by a transverse flow of an active medium in an
unstable cavity [3].

It is common to study the stability of lasing, both in sin-
gle-mode and in spike regimes, within the framework of the
model of quantum oscillators with lumped parameters or
using the expansion in a small number of modes of an empty
cavity. The results obtained in this field of study are discussed
in detail in monograph [4], which contains an extensive list of
references. In this approach, the modes used for the expan-
sion and their frequencies are assumed to be unchanged,
whereas the structure of the total field varies in time in
accordance with the dynamics of expansion coefficients.

The situation studied here relates to the case when the
nonlinear mode dynamics may be strong. Because of this it
is reasonable to expect the appearance of new effects that
are inherent in a laser as a distributed nonlinear system.
To study the lasing dynamics correctly in such cases, one
should solve nonstationary equations of diffraction optics.

In this paper, we analyse, on the basis of our numerical
model, the dynamics of single-mode regimes in a laser
with an unstable cavity. The effects of spatial and time beat-
ings of the fields of different modes are taken into account
within the framework of the simplified model with the satu-
rable gain. The main attention is devoted to the analysis of
cavities whose Fresnel number F, is close to the point of
mode degeneracy in loss.

The laser intermode beats are associated with spatial and
time inhomogeneities of the electromagnetic field in a cavity
containing an inertial medium. The modes excited in a real
laser with an unstable cavity may be substantially different
from the modes of an empty cavity because of their nonlinear
interaction and the distortions caused by inhomogeneities of
an active medium. All these effects are taken into account in
our model.

Note that a similar numerical study of a laser as a distri-
buted system has been earlier carried out only for semicon-
ductor lasers [5].

2. Mathematical formulation of the model and
the solution method

We restrict our analysis to two-dimensional unstable
cavities formed by two cylindrical mirrors with radii of
curvature R; and R,, which are positioned at the points
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z=0and z = L on the z-axis. It is assumed that an active
medium fills the layer 0 < z < L and occupies the whole
radiation aperture in the transverse direction.

For typical conditions, the radiation inside the cavity is
described by the scalar wave equation

E(x,z,t) = [F(x,z,1)exp(ikyz)

+ B(x, z, 1) exp(—ikyz)] exp(—iwy?), D

where ®, is the carrier frequency and ko= wy/c. The
carrier frequency is assumed to coincide with centre of the
spectral line of the laser transition. For definiteness, the
double cavity length is assumed to be a multiple of the
wavelength corresponding to the carrier frequency: 2koL =
2mq, where ¢ is an integer. For the majority of laser media,
the transition width is much greater than the spectral
interval between the neighbouring axial modes. Because of
this, we ignore a change in the resonance refractive index.
Moreover, we assume that the nonlinearity of refraction
may be ignored at all.

The smooth envelopes F(x,z, ) and B(x,z, f) satisfy the
parabolic wave equations
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where g is the gain of the active medium filling the cavity.

Assuming that the mirror surfaces have high reflectivities,
we can simulate the wave reflection from the mirrors by the
approximate boundary conditions

)

B, L) = ~F(x. LG, Cox) = exp b pa(v) (4
2

F(x,0.0) = ~B(0.0C(x), C1(x) = exp™ o py (x): (5)

The real factors (the reflection functions) p;,(x) are
determined by the reflectivities r, of mirror surfaces and
their size (outside the mirrors, the reflection functions
vanish). For instance, if the second mirror has the
transverse size 2a and is symmetrically positioned with
respect to the z-axis, then

pal = { 6

The gain g(x, z, ¢) will be found from the equation taking
into account stimulated emission and relaxation in the
inverted medium:

x| < a,
|x| > a.

©)

0g g —gl+1) R

or 1 ’
where g, is a constant determined by the pump conditions;
I= |B|2 +|F |2 is the radiation intensity averaged over the
interference beats of counterpropagating waves and nor-
malised to the saturation intensity; and 7 is the relaxation
time.

Generally, the initial conditions for the electromagnetic
field in the cavity can be set in the form of arbitrary functions

B(x,z,0) = By(x, z), F(x,z,0) = Fy(x,z). (8)

We will restrict our consideration to the functions that are
linear combinations of modes of the empty cavity. This
simplifies the physical interpretation of calculation results.
Because in many cases, the active medium before the begin-
ning of lasing may be treated as spatially uniform, we
assume that the initial distribution of the gain in (7) is equal
to zero or a certain constant.

It is important for the physical interpretation of calcula-
tion results to compare the dynamic laser field with the
stationary modes:

B(x,z,t) = By(x,z) exp(—ot) exp(—iAwt), )

F(x,z,t) = Fy(x, z) exp(—0dt) exp(—iAwt), (10)
where 0 is the damping factor and Aw = w — @, is the shift
of the oscillation frequency relative to the carrier frequency.
The parameters 6 and Aw and the stationary field distri-
butions By(x,z) and Fy(x,z) are found from the solution of
the eigenvalue problem for the operator that transforms the
transverse field distribution on a cavity round trip. Let us
briefly describe two typical formulations of the eigenvalue
problem.

The first problem appears under the assumption of a ‘fro-
zen’ medium, when the gain is not determined from Eqn (7),
but is a specified function of coordinates:

g(x,2,1) = g(x,2). (11)
In this case, we have a linear eigenvalue problem for a non-
Hermitian operator whose complex eigenvalue y is related
to the oscillation frequency and the damping factor by the
expression

y = exp(—gL — 12AkL), (12)
where g, = 20/c is the threshold gain for the lowest mode
and Ak = Aw/c. The eigenvalue y uniquely determines g
and, therefore, the eigenmode damping. The eigenmode
frequency shift relative to the carrier frequency is ambig-
uous:

—argy + 2nn
Ak = 2L ,
where n is the longitudinal mode index.

Here, we will study the interaction between different lon-
gitudinal modes and, therefore, set everywhere n = 0. The
solution of a linear spectral problem allows one rigorously
define the lasing threshold. If all the eigenmodes, for the given
distribution g(x, z) of the gain, satisfy the condition |y| < 1, a
laser operates below the threshold and no lasing can be
obtained there. If at least one mode satisfies the condition
|y| > 1, its field will be enhanced until the moment when
the nonlinear gain saturation, which is described by
Eq. (7), manifests itself.

In this regime, which is called the above-threshold regime,
various scenarios of the laser dynamics are possible. One of
them is the development of the steady-state regime when the
field intensity is independent of time. It follows from (7) that
the gain in this case satisfies the equation
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In this case, the field damping ¢ vanishes, and the expres-
sion for the field represents the solution of the eigenvalue
problem for the operator that describes the transformation
of the transverse field distribution upon a cavity round trip.
One can see from (13) that the operator in this case is non-
linear.

The eigenvalue y of the problem is related to the natural
frequency by the expression

y = exp(—i2AkL). (14)
The resulting stationary solutions of the problem may be
both stable and unstable. To determine their stability with
respect to the excitation of neighbouring modes, one should
freeze a medium in the solution found for of the nonlinear
problem and find linear eigenmodes. If one finds that a laser
is above the threshold, the solution is unstable; otherwise
the solution of the nonlinear problem is stable with respect
to the excitation of neighbouring modes. The numerical
algorithms of the stationary problems formulated here are
described in Refs [2, 6—8]. A method for the numerical
solution of the basic (nonstationary) problem is described
in Ref. [9].

3. Results of numerical simulation

The calculations were carried out for the following laser
parameters: L =150cm; A=1.06x 1073 cm; M =2;
T=2L/c= 10%s. The above-threshold lasing regime was
characterised by the factor x = gy/g;, which specifies the
excess over the threshold. Taking into account the specific
features of the spatial field distribution in unstable cavities,
it is sufficient to use for the variable z a grid consisting of a
small number N. of cells. The majority of calculations was
made for N, =4.

In contrast, the field profile along the x-axis is strongly
irregular. In the majority of calculations, we used the number
of cells N, = 512. To test the accuracy, some versions were
recalculated using the a higher-density grids {N, =8, N, =
512} and {N. =4, N, = 1024}. We will discuss the calcula-
tion accuracy below when describing the results of numeri-
cal simulation. Note that the mirror edges were not smoothed
in the calculations, 1. e., the reflection from a mirror was mod-
elled using Eq. (6).

3.1. Beats of two transverse modes

In Refs [2, 10], the stability of stationary single-mode lasing
with respect to the excitation of neighbouring transverse
modes in a laser with a telescopic cavity was studied. It was
shown that in the case of a medium with saturable gain and
a cavity whose Fresnel number Fq is close to the point of
degeneracy of modes in loss in an empty cavity, the
conditions exists when both competing modes are unstable.
This instability corresponds to the approximation of the
linear theory when the effect of a developing mode on the
gain may be ignored.

Such conditions are realised in a leaf-shaped region on the
phase plane (Fq,go). Its lower point has the coordinates
(Feq> &), Where F is the equivalent Fresnel number at which
the two lowest modes have the same loss. In Fig. 1, this region
for M = 2 in the neighbourhood of the degeneracy point with
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Figure 1. Boundaries of stationary-lasing stability (solid curve), linear
instability (dashed curve), and the region of transverse-mode beats (squa-
res), and the oscillation threshold (dot-and-dash curve). The dotted curves
separate the regions with different types of power oscillations: the region
with a periodic sequence of identical peaks ( /), the region with an alterna-
ting sequence of two peaks of different height (2), and the region with a
sequence of peaks that does not form a periodic structure (3 ). The external
region 4 represents the region of stable single-mode lasing.
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Figure 2. Transverse-mode beats at t = 2.6 ps, Foq = 2.872,and x = 1.12:
the time dependence of power (a) and the spectrum of power oscilla-
tions (b).

Foq = 2.872 is surrounded by the dashed line. The dot-and-
dash curve shows the dependence of the threshold gain on
Foy.

It is reasonable to expect that no stationary lasing will be
obtained for the points inside the region of linear instability in
the nonstationary model. This statement is supported, in par-
ticular, by the calculations at the points lying inside the closed
curve shown by the squares. The relaxation time t obtained in
our calculations was 2.6 ps.

The results of calculations for a typical version from a ser-
ies of calculations inside the region of transverse-mode beats
are presented in Fig. 2. They were obtained for the parame-
ters Foq =2.872 and x = 1.12. Fig. 2a presents the time
dependence of the power for the wave incident on the outcou-
pling mirror



1068

N N Elkin, A P Napartovich

o0
P(t) = J|F(x, L,0)fdx.
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The spectrum of power oscillations, i. e., the modulus of the
Fourier transform of the function P(¢) is shown in Fig. 2b.
One can clearly see the peaks, which give evidence of
oscillations at a frequency of 4.9 MHz. Given the phases of
eigenvalues of linear cavity modes, one can exactly
determine the frequency of transverse-mode beats by the
formula vy, = |argy, —argy,|/(2nT).

For two lowest modes of the empty cavity under study, the
beat frequency is 5.8 MHz, which noticeably differs from the
frequency of power oscillations found above. This difference
is caused by the frequency shift of the lasing mode under the
action of the nonlinear medium. We found from the calcula-
tion of nonlinear modes that the beat frequency of two modes
with the highest Q factor was 4.9 MHz. This value virtually
coincides with the frequency of laser power oscillations.

Another specific feature of the function P(¢) (Fig. 2) is
that it has deep dips at the minima of power. This feature
can be qualitatively explained in terms of linear modes whose
field phase varies in time as ~ exp( —iAwt). As shown in
Ref. [11], in an empty telescopic cavity with cylindrical mir-
rors at the point of mode degeneracy in loss, the spatial
field distributions differ from one another only insignifi-
cantly.

In the version under consideration, the nonlinear distor-
tious of modes losses are low and, if lasing is excited on
two almost identical modes, their linear combination with
the coefficients exp ( — iAw;?) and exp ( — iAw,t) gives the
time dependence of the form (1 + cos(wy?)) with the fre-
quency wp, = |Aw; — Aw,|. Note that the transverse-mode
beats are modulated by a smooth oscillating envelope with
a characteristic frequency of 0.3 MHz.

The formation of a stationary mode in the cavity is
accompanied by relaxation oscillations, whose frequency is
approximately described by the formula [4]

1 [(x—1eg,  «° 12 s
T on [ T 412} ' (15
The calculation by this formula gives v, = 0.326 MHz,
which suggests that the smooth oscillations in Fig. 2
represent relaxation oscillations. In the given version, the
initial field was set in the form of one of the modes of the
empty cavity. During the first 4 ps, lasing was observed on
this mode, and subsequently one more transverse mode was
developed due to the instability. The appearance of the
second mode is characterised by increasing oscillations in
the plot, which correspond to transverse-mode beats.

Generally speaking, the region of beats in Fig. 1 does not
coincide with the region of linear instability. The boundary of
the beat region (the curves shown by squares) merges with the
boundary of the region of linear instability (the dashed curve)
only in the lower part; whereas in the upper part, the curves
substantially differ.

3.2. Self-oscillatory lasing regimes

Outside the region of linear instability, which is bounded in
Fig. 1 by the dashed curve, stationary nonlinear modes
exist that are stable in the linear approximation to the
excitation of other transverse modes. Our numerical
calculations showed that, despite expectations, the develop-
ment of lasing only sometimes leads to the formation of a

stationary nonlinear mode. The solid closed curve in Fig. 1
specifies the region where stable stationary lasing is not
realised for one or another reason. Inside this region, which
was obtained from the nonlinear calculations for T = 2.6 ps,
both the region of linear instability and the region of
transverse-mode beatings are found, which are considerably
smaller in size than the instability region. The region where
stationary lasing is not realised has a rather complex
structure. In addition to the aforementioned region of
transverse-mode beats, several types of self-oscillatory
regimes exist there, and we now turn to their description.

Consider in greater detail the dynamics of lasing for the
version with parameters Fyq =2.872 and x =1.97 that
belongs to subregion 1 consisting of two isolated parts. Figure
3a presents the time dependence of the power of the wave
incident on the outcoupling mirror. After first 5 ps of the
transient process, a periodic train of identical short pulses
with a high peak intensity is formed.

Ap

0.12 -
0.08 -
0.04 -

0 4 8 12 16 1/ps

Figure 3. The regime of a periodic sequence of power peaks at T = 2.6 ps,
Foq = 2.872, and k = 1.97: the power of the wave incident on the outcou-
pling mirror (a), the portion of power contained in the output wave (the
loss factor) (b); and the change in field phase (c).

It is natural that the results presented above bring up the
question of the accuracy of numerical simulation. The calcu-
lation of each version of nonstationary lasing requires several
tens of thousands of time steps. In this situation, it is unreal to
require that the fields in the cavity be determined with a high
accuracy at all moments of time. The aim of numerical sim-
ulation is to obtain a reliable qualitative picture within the
framework of the given model. It is advantageous to control
the calculation accuracy by one parameters or another that
are of physical importance.

One of such parameters is the repetition period of the
peaks shown in Fig. 3a. In our calculations, the period was
171 ps for the grid {N. =4, N, =512}, 1.67 ps for the
grid {N, =8, N, =512}, and 1.79 ps for the grid {N. =4,
N, =1024}. Thus, the period obtained in the calculations
on grids with an increased number of elements differs from
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the period obtained on the basic calculation grid by no more
than 5%, which seems to be quite satisfactory.

The spatial distribution of the field intensity depends on
time weakly and, because the modes of the empty cavity
have close spatial distributions, it is difficult to determine
from the transverse intensity distribution which of the modes
is (are) involved in lasing. One can make more definite con-
clusions by determining the laser radiation frequency and
comparing it with the frequencies of modes of the empty cav-
1ty.

For this purpose we shall analyse the field phase at a cer-
tain point, for instance, at the centre of the outcoupling
mirror. Let us introduce the notation

o(t) = —argF(0,L,1).

In the case of stationary oscillations, ¢(f) = Awt, where Aw
is the shift of the mode frequency relative to the carrier
frequency w,. Let us determine the instantaneous frequency
(more precisely, its shift relative to wg) by the formula
Aw = de/dt. For convenience, we shall multiply the freq-
uencies by 7 and write them in the dimensional form. For
this purpose, we introduce the notation

do

Ap(t)=T Q-

The quantity A¢(#) represents the phase shift produced in
the time 7 by the current instantaneous frequency. In the
linear case, Ap(f) = —argy.

Fig. 3c presents the dependence Ag(¢) for the version
under consideration. The frequencies of two modes with
the highest Q factors of the empty cavity, measured in dimen-
sionless units, are equal to 0.172 and —0.192, respectively. The
initial field was taken in the form of the first of these modes,
which is demonstrated by the fact that A@(0) = 0.172.

In the steady-state regime, the function Ag(f) oscillates
about the value Ap = 0.05. In this version, the stable station-
ary nonlinear mode has a frequency of 0.036. The other
(unstable) nonlinear mode has a frequency of —0.022. Both
these modes are produced by the aforementioned modes of
the empty cavity. The time dependence of the frequency pre-
sented here suggests that the laser field is close to the
stationary mode. However, it does not tend to it, but executes
undamped self-oscillations about this mode.

Thus, self-oscillations are not related to the nonlinear
interaction of different modes, but are caused by the fre-
quency change due to the deformation of the transverse
structure.

It is also interesting to find the time dependence of the loss
factor P, (7)/P(f), where P,,(f) is the output radiation
power. Fig. 3b presents the time dependence of the loss fac-
tor. It has a periodic form, and the modulation period is the
same as the period in Fig. 3a. The loss factor for the station-
ary nonlinear mode is 0.559. The modulation of the loss factor
in the nonstationary regime is caused by the nonlinear gain
saturation in a nonuniform field.

In addition to the version presented in Fig. 3, we calcu-
lated the case in which the initial field and gain distribu-
tions were taken from the corresponding stable solution of
the stationary problem. At the initial stage (several microsec-
onds long), the field in the cavity was unchanged, but later on
there developed an instability because of the errors of com-
puter simulation and the errors of the solution of the sta-
tionary problem, and this instability led to the same self-oscil-

lations as in Fig. 3. The ‘soft’ excitation of self-oscillations
obtained in this way demonstrates that lasing on a stationary
mode is unstable, but the instability mechanism in this case
differs from the mechanism of the beats of two transverse
modes considered in the previous section.

Therefore, it is reasonable to say that we have discovered a
new self-oscillation instability in the numerical experiment.
Its mechanism includes a frequency change depending on
the field distribution and the modulation of loss because of
the gain saturation. One can easily see from the comparison
of Figs. 3a and 3b that a laser spike is developed at the
moment of a decrease in the loss factor. In turn, the change
in the loss factor may be initiated by a change in the mode
frequency.

Consider the version with parameters x =2.5 and
Foq = 2.872. It corresponds to region 4, which lies outside
the instability region for which we presented the dependences
P(t) and Ag(¢?) in Fig. 4. One can see that lasing develops
according to the scenario of formation of the stationary
mode. The power P(t) executes damped oscillations with a
period of 1 ps. The period of relaxation oscillations found
by formula (15) is 0.87 us, which is close to the value observed
in the numerical experiment.

20 +

0.16
0.12
0.08
0.04 H

1 1
0 10 20 30 t/us

Figure 4. Formation of stationary lasing [power (a) and phase (b)] at
T=2.6ps, Foq =2.872,and k = 2.5.

The dependence Ag(7) tends to a constant value of 0.034.
In this version, the stationary mode has a frequency of 0.0339,
which is virtually coincident with the limiting value of Ag(?).
Thus, we can reliably state that lasing outside the instability
region is developed according to the scenario of formation of
the stable stationary mode, its power executes relaxation
oscillations during the mode formation, and one can estimate
their period by formula (15).

Turning back to the region of self-oscillatory regimes, we
shall try to find the factors determining the period of laser
power oscillations. For this purpose, we made a series of cal-
culations for Fyy = 2.872, by varying parameters x and 7. The
dependence of the oscillation period on the parameters x and
7 is presented in Fig. 5, where we compare it with the corre-
sponding dependences for the frequency of relaxation
oscillations that was calculated by formula (15).
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Figure 5. Dependences of the period of power oscillations (solid curves)

and the period of relaxation oscillations (1/v,) calculated by formula (15)
(dashed curves) on 7 (a) and k (b) at Fy = 2.872.

Note that the form of oscillations was similar to that
shown in Fig. 3. A N Oraevskii has drawn our attention to
the expression for the period of nonlinear self-oscillations

2 (20,..7\"?
Ine=— .
Kk—1 cgy

which was obtained in [12] (see also [4]).

To compare this dependence with the numerical results
presented in Fig. 5, one should determine /,,,. In our case,
the intensity was noticeably nonuniform, both over the cross
section and along the cavity. One can estimate the depend-
ence Ty (1) by replacing the intensity by the peak intensity
incident on the outcoupling mirror. The calculation by for-
mula (16) shows that the period is almost proportional to
7, which agrees with the data of Fig. 5. This means that
the real peak laser power does not change with ¢ (remind
that the power is normalised to the saturation power, which
is proportional to 7).

(16)
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Figure 6. Formation of an alternating two-peak sequence of P (a) and A¢p
(b)att = 2.6 s, Foq = 2.8575, T > 20 ps, and x = 2.03.

Another characteristic type of self-oscillations consists in
the fact that the peaks of two different heights form an alter-
nating sequence. This phenomenon is observed in region 2
(Fig. 1) and corresponds to the period doubling, which is
well known in the vibration theory. Fig. 6 presents the
dependences P(f) and A¢(¢) illustrating (for 7" > 20 us) this
regime, which was obtained for Fy = 2.8575, x = 2.03, and
7= 2.6 us. Here, the oscillation picture is more complex
than in the case illustrated in Figs 3 and 4, and the depend-
ences obtained do not allow one to make a conclusion that
oscillations occur on a certain definite mode. We also found
the versions in which four peaks of different height formed an
alternating sequence (period quadrupling). One of the ver-
sions is shown by the circle in Fig. 1.

Finally, in the region 3 in Fig. 1, we observed even more
complex sequences of peaks that did not form periodic struc-
tures within the limits of the calculated time interval. One of
these versions, with parameters Foq = 2.8475, x = 2.07, and
T = 2.6 ps, is presented in Fig. 7. The plot of power has the
form of a sequence of short sharp peaks with an aperiodic
change in height. In this case, the spectrum represents a
band and contains no pronounced isolated frequencies, which
gives evidence of an irregular character of oscillations that
may be classified as dynamic chaos.

60 |-

40 -

W .

0 10 20 30 r/us
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0.2

0
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Figure 7. Irregular sequence of power peaks P (a) and its spectrum (b) at
T=2.6ps, F,q = 2.8475,and k = 2.07.

The boundaries between the regions with definite oscilla-
tion types are shown in Fig. 1 by the dotted lines. In reality,
they represent narrow layers with a very complex structure
that is not shown in Fig. 1. To indicate this fact, the boundary
between regions / and 2 is drawn by two lines. In a certain
layer, whose thickness is of the order of the distance between
these two lines, either an irregular sequence of peaks or a
sequence with the period greater than 2 is realised.

4. Conclusions

Our comprehensive analysis of the dynamics of oscilla-
tion in a laser with an unstable cavity within the frame-
work of the simplest model of gain saturation showed the pos-
sibility of realisation of different nonstationary lasing re-
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gimes. We found a region of parameters on the plane (effec-
tive Fresnel number, excess over the lasing threshold) where
undamped regular beats of the fields of two modes, regular
self-oscillations changing to chaotic oscillations, and a stable
stationary regime can be observed upon small deviations of
these parameters.

Note that these phenomena take place in the absence of
self-phase modulation, i.e., the nonlinear change in the refrac-
tive index of the medium. The oscillations are induced by a
new instability mechanism, which is caused by the depend-
ence of characteristics of a nonlinear optical mode,
namely, its natural frequency and the loss factor, on the light
intensity.

A N Oraevskii has drawn our attention to the paper of
A F Suchkov [13], where the author numerically found
self-oscillations in a simplified model of a laser with a
plane-parallel cavity and an amplifying medium concentrated
in a narrow near-axis region. Except for the difference in
cavity types, the conditions in which these oscillations were
obtained are close to the conditions analysed in our paper.
However, the analysis made by A F Suchkov was restricted
only to the case of total mode degeneracy in loss, and the
oscillations observed there are close in nature to the mode
beat that take place in the region of transverse-mode beats
in Fig. 1. A detailed comparison of oscillation mechanisms
is complicated by the fact that paper [13] contains only a
brief description of results.

Our results show that the so-called ‘lumped’ models of
lasing dynamics [4] have a limited applicability.
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