
Abstract. Maximum-likelihood equations are presented for
estimates of the Doppler frequency (speed) and other
unknown parameters of signals of laser Doppler anemom-
eters and lidars operating in the one-particle-scattering
mode. Shot noise was assumed to be the main interfering
factor of the problem. The error correlation matrix was
calculated and the Rao ^Cramer bounds were determined.
The results are confirmed by the computer simulation of the
Doppler signal and the numerical solution of the maximum-
likelihood equations for the Doppler frequency. The
obtained estimate is unbiased, and its dispersion coincides
with the Rao ^Cramer bound.

1. Introduction

Laser Doppler anemometers [1 ^ 4] and lidars [1, 5] are now
firmly established in the industry and research. At the same
time, their development continues: both the construction
principles and the signals processing techniques are con-
stantly improved. In this work, we derive optimal estimates
of the frequency and other unknown parameters of the Dop-
pler signals using the criterion of maximum likelihood. We
consider the case when the laser Doppler measuring system
(LDMS) operates in the one-particle-scattering mode and
shot noise is the main interfering factor. As is known
[1, 2], the one-particle-scattering mode is realised in studies
of gas flows that have a natural or low dust content. In this
case, the probability that there will be two or more scattering
particles in the measured volume is extremely small, and the
optical Doppler signal becomes a sequence of non-overlap-
ping pulses of light. For an ideal differential LDMS scheme,
shown in Fig. 1, the intensity of these pulses is given by

I�t� � I0 exp
�ÿ x 2o2

D�tÿ t0�2
��1� cosoD�tÿ t0��, (1)

Here, I0, oD, and t0 are the unknown values of the ampli-
tude, the Doppler frequency, which is proportional to the
speed of the scattering particle, and the time instant when

it enters the centre of the measured volume, respectively; x is
a known parameter of the optical scheme equal to the inverse
number of the interference fringes contained in the measured
volume at the eÿ1 level of the maximum light intensity in the
objective focal plane. In the case of a differential LDMS
scheme, we have

x � d

2
���
2
p

a
, (2)

oD �
2V sin�y=2�

llas
cos a, (3)

where 2a is the distance between the parallel beams in the
input plane of the LDMS optical scheme, d is the diameter of
these beams at the eÿ1 level of their intensity in the same
plane; y is the angle between probe beams; llas is the wave-
length of the laser radiation; V is the magnitude of the
measured velocity vector; and a is the angle between the
velocity vector and the direction of the maximum sensitivity
of the LDMS.

If the main parameters of the optical and electronic parts
of the LDMS are chosen properly, shot noise becomes the pri-
mary source of errors in estimates of the Doppler signal
parameters [1, 4]. A special feature of shot noise is that it
is a nonstationary random process: its statistical parameters
are not constant but vary in accordance with the instantane-
ous intensity of the optical signal. We assume that either a
photomultiplier or an avalanche photodiode operating in
the photoelectron counting mode is used as a photodetector.
This detector produces a discrete flux of counts ni � n (ti,Dt)
of photoelectrons emitted during each quantisation interval
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Figure 1. Schematic of the LDMS.



Dt. In this work, we analyse this flux of counts in order to find
optimal estimates of the unknown parameters of the Doppler
signal and determine the quality of these estimates.

In most cases, there is no a priori information about the
statistical properties of the estimated parameters. Therefore,
maximisation of the likelihood function for each of the esti-
mated parameters is the best criterion for finding optimal
estimates. It is known [6] that, if the dispersion of the estimate
of the measured parameter (measurement error) is much
lower than the dispersion of its a priori distribution, the max-
imum-likelihood estimate coinsides with the estimates of the
maximum of the posterior probability and the optimal Bayes
solutions of the problem in the case of a quadratic loss func-
tion. Under these conditions, the Kolmogorov ^Wigner and
Kalman ^Bussy methods of linear filtration also yield the
same estimates. It is also known that in the absence of a
priori information about the distribution of the measured
parameter, the maximum-likelihood estimate is the rigorous
solution to the inverse problem of mathematical statistics.
Note that a similar approach has been demonstrated in
Refs [7 ^10], and this work develops these studies. The para-
meters of the single-particle Doppler signal have been also
estimated in the Ref. [11]; however, it was assumed that
the statistical parameters of the noise are independent of
the signal, and the noise itself is a white stationary Gaussian
process.

2. Likelihood equations

It is known from the theory of the photoelectric effect [12],
that, in the case of varying light intensity, the photodetector
output signal is a nonstationary flux of electrons, whose
emission rate is proportional to the intensity of the optical
signal (in the classical description of light). If we quantise the
electron flux uniformly in time and count photoelectrons
produced by coherent light sources or even by thermal sour-
ces, (the quantisation period being much longer than co-
herence time), then the probability to receive ni photoelec-
tron counts during the quantisation interval Dt obeys the
Poisson law:

P�ni;Dt� �
�l�ti�Dt�ni

ni!
exp�ÿl�ti�Dt�, (4)

Here,

li � l�ti� �
I�ti�k
hv

is the emission rate of photoelectrons at time ti; I(ti) is the
light intensity (1) integrated over the detector surface; k is a
quantum efficiency of the photodetector; hv is the photon
energy. The quantisation period Dt is chosen to be much
smaller than the period corresponding to the maximum fre-
quency in the spectrum of I (t), so that I (t) can be treated as
a constant on this interval.

In our case, li is determined by the expression

li � A0 exp
�ÿ x 2o2

D�ti ÿ t0�2
��1� cosoD�ti ÿ t0��,

A0 �
I0k
hv

.
(5)

in accordance with Eqn (1).

The function li is proportional to the photocurrent, but is
measured in inverse centimetres rather than amperes. Note
that ni is a random integer dimensionless quantity, equal to
the number of photoelectrons counted during the quantisa-
tion interval Dt. Given that the optical signal I (t) is pro-
portional to the photoemission rate li, we will for simplicity
regard the estimate of A0 as the estimate of the signal ampli-
tude.

Since the Poisson random variables are independent, the
joint probability density of the detected photoelectron flux
(the likelihood function) is the product of P(ni):

P�n1; . . . ; nN� �
YN
i�1

P�ni;Dt�, (6)

where N is the number of counts received during the detec-
tion interval T � DtN. As is known, one can find maximum-
likelihood estimates by maximising the logarithm of function
(6). Taking into account Eqns (4) and (6), we obtain

lnP�n1; . . . ; nN�

�
XN
i�1
�ni�ln li � lnDt� ÿ ln�ni!� ÿ liDt�. (7)

Differentiating equation (7) with respect to an unknown
parameter x, we derive the likelihood equation in its general
form:

d lnP�n1; . . . ; nN�
dx

�
X
i

�
nili

0

li
ÿ li

0Dt
�
� 0,

li
0 � dli�t; x�

dx
.

(8)

If the entire signal fits within the detection interval T , the
sum

P
i li
0Dt can be replaced by the integral with the infinite

limits. The likelihood equation then assumes the form

X
i

nili
0

li
�
�1
ÿ1

l 0dt. (9)

Applying it to each of the unknown parameters A0, oD, and
t0, we derive the system of likelihood equations, whose sol-
ution yields the following optimal estimates for each of the
parameters:

A0 �
xoD���

p
p

XN
i�1

ni, (10)

2x 2oD

XN
i�1

ni�ti ÿ t0�2 �
XN
i�1

ni�ti ÿ t0�

� tan
oD�ti ÿ t0�

2
�
X
i�1

ni
oD

, (11)

2x 2oD

X
i�1

Nni�ti ÿ t0� �
XN
i�1

ni tan
oD�ti ÿ t0�

2
� 0. (12)

The system of nonlinear equations (10) ^ (12) cannot be
solved analytically; however, there are many methods for
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solving it approximately or numerically [13]. Without elabo-
rating on this point, we simply show the logarithmic
derivative of the likelihood function as a function of oD

for the case of a single-particle Doppler signal when the
amplitude A0 and the time t0 of particle arrival are specified.
The computer simulation was performed for signals with
amplitudes of 250, 500, and 1000 sÿ1 for oD � 1 rad sÿ1,
x � 0:1, and t0 � 0 (Fig. 2).

One can see from Fig. 2 that, in the case of sufficiently
high amplitudes (A0 5 500), all the curves cross the abscissa
axis at a single point, showing that the solution is unique. A
more detailed analysis shows that the slopes of these curves
near the pointoD � 1 rad sÿ1, which determine the accuracy
of the Doppler frequency (speed) estimate, is proportional to
the signal amplitude.

3. Rao-Cramer bounds

To determine the efficiency of the estimates obtained, we will
calculate the Rao ^Cramer bounds [6]. The errors of these
estimates can be cross-correlated and are described by the
correlation matrix R composed of the elements

Jxy �Mf�ŵx ÿ wx��ŵy ÿ wy�g, (13)

Here, M denotes mathematical expectation; wx; y and ŵx; y are
the actual value and the estimate of the unknown parameter
respectively; x, y � 1, . . . ,m; and m is the number of
unknown parameters. In our case, there are three such
parameters: A0, oD, and t0. To determine the error matrix,
we will calculate the elements of the Fisher information
matrix [6], defined as

Jxy �M
�
q lnP�w�

qwx

q lnP�w�
qwy

�
� ÿM

�
q 2 lnP�w�
qwxqwy

�
. (14)

By substituting expression (7) into (14), we obtain the follow-
ing generalised formula for an arbitrary matrix element:

Jxy � ÿM
�X

i

�
ni�l00xylÿ l0xl

0
y�

l2
ÿ l00xyDt

��
. (15)

By substituting expression (5) into (15), we find all the ele-
ments of the Fisher matrix. Under the condition x5 1, which
holds for most LDMSs, the resulting Fisher matrix has the
form

J �

���
p
p

A0xoD
ÿ

���
p
p

xo2
D

0

ÿ
���
p
p

xo2
D

A0
���
p
p

2x 3o3
D

0

0 0
A0oD

���
p
p

x

0BBBBBBB@

1CCCCCCCA. (16)

The columns from left to right and the rows from top to
bottom correspond to A0, oD, and t0, respectively. The Rao ^
Cramer inequality for the lower bound of the correlation
matrix of estimation errors has the form

R5 Jÿ1, (17)

where J ÿ1 is the error matrix, which is inverse to the Fisher
information matrix. Calculating the inverse of matrix (16)
and taking into account that x5 1, we derive the correlation
matrix of errors

R �

A0xoD���
p
p 2x 3o2

D���
p
p 0

2x 3o2
D���

p
p 2x 3o3

D

A0
���
p
p 0

0 0
x

A0oD
���
p
p

0BBBBBBBB@

1CCCCCCCCA
. (18)

The diagonal elements of matrix (18) are respectively
the dispersions of the estimates of the amplitude, the Doppler
frequency, and the particle's time of arrival to the centre
of the measured volume. The nondiagonal elements define
the covariances of these estimates (with an accuracy to
the sign). Thus, the frequency and amplitude estimates are
mutually interrelated, but do not correlate with the particle's
time of arrival to the centre of the measured volume, as indi-
cated by the zero values of the corresponding matrix ele-
ments.

The lower bounds for the dispersions of estimates of the
amplitude, Doppler frequency, and time instant t0 are given
by

s 2
A0
� A0xoD���

p
p ; s 2

oD
� 2x 3o3

D

A0
���
p
p ; s 2

t0 �
x

A0oD
���
p
p . (19)

The corresponding minimum relative root-mean-square
deviations have the form

sA0

A0
�
�

xoD

A0
���
p
p
�1=2

;
soD

oD
�
�
2x 3oD

A0
���
p
p

�1=2
;

st0
t0
�
�

x
t 20A0oD

���
p
p
�1=2

.
(20)

4. Numerical solution of the likelihood equation
for the Doppler frequency

As we already mentioned, the derived likelihood equations
cannot be solved analytically; however, we can solve them
numerically. To demonstrate this and to evaluate the quality
of the estimates obtained, we performed a number of model
numerical simulations. First, we had to model the Doppler
signal produced at the photodetector output. Using a sub-

d lnP�n1; . . . ; nN�
doD

�104�
A0 � 1000 sÿ1

500
2500.5

1.5 2.0 2.5 oD
�
rad sÿ1

ÿ3

ÿ6
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0

3

6

Figure 2. Logarithmic derivative of the likelihood function with respect to
the Doppler frequency oD.
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routine that generated random numbers uniformly distrib-
uted over the interval 0 ^1, we formed a nonstationary
Poisson process whose parameter was the photoemission
rate (5) for oD � 1 rad sÿ1 and t0 � 0. Fig. 3a shows the
simulation results for the three amplitudes A0 � 250, 500,
and 1000 sÿ1. The abscissa axis corresponds to time, and the
ordinate axis corresponds to the random number of photo-
electrons detected during consecutive intervals Dt. Then, we
inserted the resulting flux of counts ni into the likelihood
equation for the Doppler frequency (12) and solved this
equation using a combination of the Newton and secant
methods [13].

The results of this procedure, repeated 100 times for each
amplitude, are displayed in Fig. 3b. This figure shows the rel-

ative deviation D=oD of the Doppler frequency estimate from
its actual value as well as its relative root-mean-square devia-
tion and the root-mean-square Rao ^Cramer bound.
Analysing these results, we can draw the following conclu-
sions: Relative deviations of the mean estimates from the
actual frequency (hôDi ÿ oD)=oD have the order of 10ÿ5.
This is significantly less than the relative root-mean-square
deviation of the estimates soD

=oD; therefore,we can consider
the obtained solutions to be unbiased estimates of the Dop-
pler frequency. The root-mean-square deviations of the
frequency estimates and the root-mean-square Rao ^Cramer
bounds sRK (elementR22 of matrix (18)) are very close to each
other, allowing us to conclude that the obtained estimates are
efficient.

A0 � 1000 sÿ1,
hôDi ÿ oD

oD
� 0:005%,

soD

oD
� 0:110%,

sRK

oD
� 0:106%

A0 � 500 sÿ1,
hôDi ÿ oD

oD
� 0:004%,

soD

oD
� 0:156%,

sRK

oD
� 0:150%

A0 � 250 sÿ1,
hôDi ÿ oD

oD
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soD

oD
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oD
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Figure 3. Simulation of the single-particle Doppler electric signal (a) and the relative deviation of the maximum-likelihood estimates of the Doppler fre-
quency from its actual value (b).
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5. Conclusions

With the help of the derived likelihood equations, one can
obtain the most accurate compatible estimates of the Dop-
pler frequency, the signals amplitude, and the time of arrival
of the scattering particle to the centre of the measured vo-
lume. We have solved this problem in the case of laser Dop-
pler anemometers and lidars operating in the single-particle-
scattering mode with a photon counter serving as a photo-
detector. We have also found the Rao ^Cramer bounds,
which approximate the minimum possible dispersions of
the estimates. The computer simulation of the Doppler sig-
nals and the numerical solution of the likelihood equation
have shown that the obtained estimates are unbiased and
efficient. The results of this work offer new possibilities for
high-accuracy studies of gas flows with the help of LDMSs.

Based on the results obtained, we can draw an important
conclusion about the optimal reception of optical signals in
the regime of analogue photodetection. This regime is real-
ised when the intensity of the optical signal is sufficiently
large so that single-electron pulses overlap due to the photo-
detector's inertia and form a continuous analogue signal at
the output. If the inertia of the photodetector is described
by a time constant t, the periodically measured analogue sig-
nal will be proportional to the number of photoelectrons
emitted by the cathode during the measurement period t.
This is explained by the integrating action of the equivalent
RC circuit. Given the above likelihood equation, the optimal
estimation procedures and the Rao ^Cramer bounds will be
similar to those obtained in this work. Obviously, the time
constant characterising the photodetector inertia should be
much smaller than the period corresponding to the maximum
modulation frequency of the optical signal.

Appendix

1. Derivation of the likelihood equations for A0

By substituting Eqn (5) and the expression for ql(ti, A0)=qA0
into (8), we obtain

d lnP�ni; . . . ; nN�
dA0

�
X
i

�
ni
A0
ÿ exp

�ÿ x 2o2
D�ti ÿ t0�2

�

��1� cosoD�ti ÿ t0��Dt
�
. (A1)

Replacing the second part of the sum in Eqn (A1) by the
integral with infinite limits, we arrive at

d lnP�n1; . . . ; nN�
dA0

�
X
i

�
ni
A0

�

ÿ
�1
ÿ1

exp
�ÿ x 2o2

D�tÿ t0�2
��1� cosoD�tÿ t0��dt

�
X
i

�
ni
A0

�
ÿ

���
p
p
xoD

�
1� exp

�
ÿ 1
4x 2

��
. (A2)

We can neglect the exponential term in (A2), because when
x5 1, which is realised in practice, this term is much less
than unity. Therefore, the likelihood equation for the ampli-
tude A0 would takes the final form:

X
i

�
ni
A0

�
�

���
p
p
xoD

ËÎË A0 �
xoD���

p
p

X
i

ni. (A3)

2. Derivation of the likelihood equation for xD

Inserting Eqn (5) and the expression for ql(ti, oD)=qoD into
equation (8) and acting as above, we obtain

d lnP�ni; . . . ; nN�
doD

� 2x 2oD

X
i

�ÿ ni�ti ÿ t0�2
�

ÿ
X
i

�
ni�ti ÿ t0� sinoD�ti ÿ t0�

1� cosoD�ti ÿ t0�
�

�
�1
ÿ1

A0 exp
�ÿ x 2o2

D�tÿ t0�2
��
2x 2oD�tÿ t0�2

��1� coso�D�tÿ t0�� � �tÿ t0� sinoD�tÿ t0�
	
dt. (A4)

Evaluating the integral and neglecting the exponential
term as before, we obtain the likelihood equation

2x 2oD

X
i

ni�ti ÿ t0�2

�
X
i

ni�ti ÿ t0� tan
oD�ti ÿ t0�

2
�

���
p
p

A0

xo2
D

. (A5)

3. Derivation of the likelihood equation for t0

Inserting Eqn (5) and ql(ti, A0)=qt0 into Eqn (8), we obtain

d lnP�ni; . . . ; nN�
dt0

� 2x 2o2
D

X
i

ni�ti ÿ t0�

�
X
i

nioD tan
oD�ti ÿ t0�

2
. (A6)

Thus, the likelihood equation for the time instant t0 takes the
form

2x 2oD

X
i

ni�ti ÿ t0� �
X
i

ni tan
oD�ti ÿ t0�

2
� 0. (A7)
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