Межзонные электронные переходы и рассеяние избыточных свободных носителей на поверхности в нелинейной спектроскопии сверхтонких металлических пленок

Ю.В.Бобырев, В.М.Петникова, К.В.Руденко, В.В.Шувалов

На основе проведенных экспериментов по вырожденной четырехфотонной спектроскопии сверхтонких (толщиной 10-20 нм) пленок Ni, Au u Pt делается вывод о преобладающей роли межзонных электронных переходов при формировании нелинейного отклика металлов в видимом диапазоне спектра. Показано, что в пленках, толщина которых меньше длины свободного пробега, термализация возбужденной электронной подсистемы и ее «остывание» происходят за счет быстрого неупругого рассеяния избыточных свободных носителей на поверхности. Проведенные для пленок Ni оценки показывают, что за счет этого рассеяния до 10 % энергии пикосекундного (длительностью 20 пс) импульса накачки может пойти на деформацию поверхности. При пространственно-неоднородном возбуждении возможна эффективная «прямая» генерация поверхностных акустических волн.

Ключевые слова: межзонные электронные переходы, избыточные свободные носители, нелинейная спектроскопия тонких металлических пленок.

1. Введение

Интенсивные исследования физических свойств сверхтонких металлических пленок обусловлены перспективами их широкого практического применения во многих областях науки и техники, например в нано- и микроэлектронике, СВЧ технике, оптике и т. д. На сегодняшний день уже накоплен огромный экспериментальный материал, полученный самыми разными (как неоптическими [1–3], так и оптическими [4–6]) методами. Особое внимание уделяется в последние годы изучению сверхбыстрой релаксации «ударного» возбуждения электронной подсистемы, возникающего при воздействии сверхкоротких лазерных импульсов [3, 7, 8–11].

Однако, несмотря на интенсивные исследования в этой области, процессы, протекающие в сверхтонких металлических пленках, изучены явно недостаточно. Это, в частности, связано с тем, что большинство из используемых для описания неравновесных процессов параметров (температура электронной (T_e) и фононной (T_{ph}) подсистем, положение уровня Ферми, характерное время релаксации и др.) недоступны для прямых измерений. Их значения оцениваются лишь косвенно, по результатам измерений «непрямыми» методами. В связи с этим авторы работ, посвященных изучению кинетических явлений в металлах, протекающих после ударного «разогрева» последних сверхкороткими лазерными импульсами, достаточно часто делают противоречащие друг другу выводы [10, 11].

В настоящей работе исследуется роль межзонных электронных переходов при формировании нелинейнооптического отклика видимого диапазона в сверхтонких металлических пленках.

Поступила в редакцию 3 августа 2001 г.

2. Роль межзонных электронных переходов в нелинейной спектроскопии металлических пленок

Применение методов когерентной нелинейной спектроскопии [12] для исследования физических свойств сверхтонких металлических пленок позволяет решить многие из перечисленных выше проблем. Так, один из известных методов нелинейной спектроскопии - так называемый метод вырожденной четырехфотонной спектроскопии (ВЧФС) [13] - основан на записи в исследуемом образце решетки диэлектрической проницаемости є. Записываемая решетка имеет динамический характер и формируется за счет интерференционной картины (пространственно-неоднородного распределения интенсивности I), созданной двумя распространяющимися под углом друг к другу импульсами накачки с одинаковой несущей частотой. Одновременно с записью осуществляется и «чтение» решетки, в ходе которого измеряется зависимость эффективности самодифракции $\eta(\lambda)$ одного из тех же импульсов накачки. Метод ВЧФС позволяет получить информацию о резонансных механизмах нелинейности, т. е. идентифицировать как спектральное положение и ширину соответствующих резонансов в нелинейном отклике, так и соотношения их амплитуд.

В результате всех проведенных нами экспериментов по ВЧФС сверхтонких (толщиной l = 10 - 20 нм) металлических пленок Ni, Au и Pt были получены немонотонные спектральные зависимости $\eta(\lambda)$ (рис.1). Для интерпретации этих данных в [13] была построена модель электронной части нелинейного отклика металлических пленок, учитывающая реальную зонную структуру исследуемого образца, все типы возможных одно- и двухфотонных межзонных электронных переходов в зоне Бриллюэна и эффекты насыщения. Соответствие данных эксперимента (рис.1, точки и штриховые линии) результатам численного моделирования (рис.1, сплошные линии) для пленок Ni (рис.1,*a*) и Au (рис.1,*б*) показало, что

Международный учебно-научный лазерный центр МГУ им. М.В.Ломоносова, Россия, 119899 Москва, Воробьевы горы

Рис.1. Зависимости эффективности самодифракции η от длины волны накачек λ для сверхтонких пленок Ni (*a*), Au (δ) и Pt (ϵ), полученные методом ВЧФС в эксперименте (точки), при полиномиальной аппроксимации (штриховая линия) и в расчете в рамках модели [13] (сплошная линия).

именно такие немонотонные спектральные зависимости $\eta(\lambda)$ и должны формироваться за счет интерференции нескольких когерентных вкладов в электронный нелинейный отклик изучаемых металлических пленок. Возникновение таких интерферирующих компонент обусловлено наличием нескольких типов одновременно протекающих межзонных электронных переходов.

На весьма важную роль межзонных переходов в процессе формирования нестационарного отклика металлических пленок (Ni, Au и Cu) на сверхкороткий оптический импульс недавно обратили внимание авторы работ [14, 15] при интерпретации данных экспериментов, проведенных с помощью метода пробного пучка. Поскольку межзонные переходы (в отличие от поглощения света свободными носителями) неизбежно приводят к появлению «избыточных» свободных носителей, учет последних может кардинально изменить традиционно используемые в подобных задачах представления о физических механизмах энергообмена между оптически возбужденной электронной и фононной подсистемами.

3. Особенности релаксационных процессов в сверхтонких металлических пленках

Для описания неравновесных процессов в металлах обычно используется так называемая двухтемпературная модель [16]. Считается, что поглощение сверхкороткого светового импульса электронной подсистемой выводит ее из теплового равновесия с решеткой. При этом T_e «отрывается» от T_{ph} за счет конечной скорости энергообмена. Возможность миграции возбуждения по пространству (например, по координате x) учитывается членами диффузионного типа в соответствующих кинетических уравнениях (уравнениях баланса тепла), которые в простейшем одномерном случае часто записываются в виде

$$c_{\rm e}(T_{\rm e})\frac{\partial T_{\rm e}}{\partial t} = -G_{\rm eph}(T_{\rm e} - T_{\rm ph}) + \varkappa_{\rm e}\frac{\partial^2 T_{\rm e}}{\partial x^2} + F(x, t),$$

$$c_{\rm ph}(T_{\rm ph})\frac{\partial T_{\rm ph}}{\partial t} = -G_{\rm eph}(T_{\rm ph} - T_{\rm e}).$$
(1)

Здесь $c_{e,ph}$ – удельные теплоемкости электронной и фононной подсистем; \varkappa_e – коэффициент температуропроводности; F(x, t) – источник «тепла» (интенсивность поглощенной накачки); $G_{eph} = c_e/\tau_e = c_{ph}/\tau_{ph}$ – константа электронно-фононного взаимодействия; $\tau_{e,ph}$ – характерные времена изменения температур электронной и фононной подсистем. Поскольку для металлов $c_{ph}/c_e = \tau_{ph}/\tau_e \sim 10^3$ [16], полная удельная теплоемкость $c = c_e + c_{ph} \simeq c_{ph}$; например, для Ni имеем $c \simeq 4 \cdot 10^2$ Дж/(кг-K) [17].

Система уравнений (1) часто модифицируется для учета специфики конкретных задач (их размерности, наличия других степеней свободы, особенностей явлений переноса и т.п.). При использовании пространственнонеоднородной накачки происходит пространственно-неоднородное изменение T_e и, как следствие, T_{ph} . Последнее приводит к деформациям решетки и генерации акустических волн. Однако этот непрямой (тепловой) механизм генерации звука [18] оказывается слишком медленным (характерные времена порядка нескольких пикосекунд) и малоэффективным.

При оптическом возбуждении избыточных свободных носителей в сверхтонких металлических пленках оказывается эффективным «прямой» деформационный механизм передачи энергии электронного возбуждения поверхности [19, 20]. При кинетической энергии свободных носителей, заведомо меньшей работы выхода (~8 эВ для Ni [17]), и $l < l_e$ (где $l_e - длина$ свободного пробега свободных носителей) эти избыточные носители рассеиваются на поверхности образца, создавая на ней избыточное давление. Хотя в стационарных условиях рассеяние носителей на поверхности «когерентно» (т.е. является упругим) [21], часть энергии электронного возбуждения все же неизбежно расходуется за счет возникновения избыточного давления, т.к. существует импульс отдачи. Косвенно существенную роль этого прямого механизма энергообмена между электронной и фононной подсистемами подтверждают данные спектроскопических исследований сверхтонких металлических пленок и пленок, обладающих высокотемпературной сверхпроводимостью, проведенные самыми разными методами [3, 4, 6-11, 13]. Практически всегда полученные авторами этих работ оценки характерного времени термализации и «остывания» электронной подсистемы (200-800 фc) хорошо коррелируют со временем баллистического (со скоростью, равной фермиевской скорости $v_{\rm F}$) пролета свободным носителем расстояния, равного *l*.

Грубую оценку доли энергии, которая может быть передана избыточными носителями поверхности пленки за время τ_p , можно провести на основе газокинетической теории. Ниже, придерживаясь условий реального эксперимента [13], мы рассмотрим возбуждение сверхтонкой пленки Ni толщиной l = 20 нм импульсом накачки длительностью $\tau_p = 20$ пс с плотностью энергии $W_p = 5 \cdot 10^{-4}$ Дж/см² при энергии кванта $W_{\omega} = 2$ эВ.

При коэффициенте поглощения $\alpha_p = 2 \cdot 10^5$ см⁻¹ концентрацию избыточных носителей δn_e можно оценить как

$$\delta n_{\rm e} = \frac{\alpha_{\rm p} W_{\rm p}}{W_{\omega}} = 3.1 \cdot 10^{20} \,\,{\rm cm}^{-3},\tag{2}$$

что составляет $\sim 3 \%$ от исходной концентрации свободных носителей в Ni [17].

Предположим теперь, что при столкновениях избыточных носителей, имеющих массу m_e и движущихся со средней (фермиевской) скоростью v_F , с массивной «стенкой» (поверхностью) нормальная проекция $p_z = m_e v_z$ их импульса меняет знак, сама поверхность получает импульс отдачи и равномерно (т. е. в условиях баланса сил) перемещается на расстояние Δl за время τ_p (рис.2,*a*). Тогда с учетом усреднения по пространственным степеням свободы импульс, передаваемый поверхности в каждом акте столкновения, равен

$$2\langle p_z \rangle = \frac{2}{\sqrt{3}} m_{\rm e} v_{\rm F},\tag{3}$$

а полный импульс ΔP_z , полученный поверхностью с площадью S за время τ_p , и созданное избыточными носителями давление P_e на границу пленки могут быть оценены как

Рис.2. Схема прямой передачи энергии электронного возбуждения от избыточных свободных носителей к поверхности пленки при их неупругом рассеянии на массивной «стенке» (a) и в случае взаимодействия одного электрона с одним атомом (δ).

$$\Delta P_z = \frac{4}{3} \delta n_e E_F \tau_p S, \quad P_e = \frac{\Delta P_z}{\tau_p S} = \frac{4}{3} \delta n_e E_F, \tag{4}$$

где $E_{\rm F} = m_{\rm e} v_{\rm F}^2/2$ – энергия Ферми. Полное перемещение Δl границы пленки за время $\tau_{\rm p}$ и скорость ее движения $v_{\rm s}$ определяются по формулам

$$\Delta l = \chi P_{\rm e} l, \quad v_{\rm s} = \frac{\Delta l}{\tau_{\rm p}} = \frac{4}{3} \chi \frac{\delta n_{\rm e} E_{\rm F} l}{\tau_{\rm p}}, \tag{5}$$

где $\chi = 6 \cdot 10^{-7}$ атм⁻¹ [17] – коэффициент сжимаемости Ni. Отсюда получаем выражения для энергии ΔW_e , передаваемой поверхности в каждом электронном столкновении, и плотности энергии W_s , запасенной единицей поверхности за время τ_p :

$$\Delta W_{\rm e} = 2m_{\rm e}v_z v_{\rm s} = \frac{8}{3\sqrt{3}} \chi \frac{m_{\rm e}v_{\rm F}\delta n_{\rm e}E_{\rm F}l}{\tau_{\rm p}},$$

$$W_{\rm s} = \frac{8}{9} \chi \delta n_{\rm e}^2 E_{\rm F}^2 l \simeq 1.7 \cdot 10^{-6} \ \mathrm{J}\mathrm{K}/\mathrm{c}\mathrm{M}^2.$$
(6)

Значение $W_{\rm s}$ из (6) составляет менее одного процента от энергии импульса накачки.

Потери W_s квадратично растут с ростом $\delta n_e \propto W_p$, что качественно согласуется с наблюдавшимися нами особенностями оптического «пробоя» исследуемых пленок при повышении W_p . Этот пробой всегда начинался при точном совмещении частот двух импульсов накачки и приводил к формированию хорошо видной одномерной интерференционной решетки.

Наиболее слабым местом приведенной выше оценки является использованное нами условие баланса сил давления: избыточного электронного и возникающего в пленке при деформации поверхности. Отказавшись от этого условия, рассмотрим рассеяние избыточного электрона на одном из атомов поверхности (рис.2, δ). При малом изменении модуля электронного импульса $|p_z|$ средняя энергия W_a , передаваемая атому Ni с массой $M_a \gg m_e$ при каждом таком соударении, может быть оценена как

$$W_{\rm a} = 2 \frac{\langle p_z^2 \rangle}{M_{\rm a}} = \frac{4}{\sqrt{3}} \frac{m_{\rm e}}{M_{\rm a}} E_{\rm F},\tag{7}$$

а плотность энергии

$$W_{\rm s} = \frac{4\sqrt{2}}{3} \frac{m_{\rm e}^{1/2}}{M_{\rm a}} \delta n_{\rm e} E_{\rm F}^{3/2} \tau_{\rm p} \simeq 1.7 \cdot 10^{-5} \,\,\text{Дж/cm}^2. \tag{8}$$

В выражение (8) явно не входит *l*. Поскольку полное число задействованных в процессе свободных носителей пропорционально *l*, то доля энергии, теряемая каждым из них, также должна быть пропорциональна *l*. Отметим, что на существование зависимости скорости внутризонной электронной релаксации от *l* для сверхтонких пленок серебра в экспериментах по двухфотонной фотоэмиссионной спектроскопии уже обращали внимание авторы работы [22]. Оценка W_s по формуле (8) дает на порядок большее значение, чем оценка по формуле (6). Таким образом, за время $\tau_p = 20$ пс от 1 до 10 % энергии электронного возбуждения может быть преобразовано в энергию деформации поверхности.

4. Заключение

Итак, анализ проведенных нами экспериментов по ВЧФС сверхтонких пленок Ni, Au и Pt позволяет утверждать, что определяющую роль в формировании их нелинейного отклика, по крайней мере в видимом диапазоне, играют вклады от межзонных переходов. Интерференция нескольких таких вкладов и объясняет, на наш взгляд, чрезвычайно высокую чувствительность метода ВЧФС к изменению времен внутризонной релаксации, которая отмечалась в [13]. Появление избыточных свободных носителей в зоне проводимости снимает запрет на их неупругое рассеяние на поверхности [21] и открывает для сверхтонких пленок металлов быстрый и эффективный канал релаксации энергии электронного возбуждения, рассматривавшийся ранее, например, в [19, 21]. В пленках с толщиной *l*, меньшей длины свободного пробега *l*_e свободных носителей, термализация ударно возбужденной электронной подсистемы и ее остывание происходят преимущественно за счет быстрого неупругого рассеяния избыточных свободных носителей на поверхности.

Проведенные нами оценки показывают, что в пленке толщиной l = 20 нм за время $\tau_p = 20$ пс от 1 до 10% энергии электронного возбуждения может быть «перекачано» в энергию деформации поверхности. При использовании пространственно-модулированных световых пучков возможно быстрое прямое возбуждение по-перечных поверхностных акустических волн. Полученные для этого канала релаксации закономерности согласуются с наблюдавшимися нами закономерностями оптического «пробоя» сверхтонких пленок металлов в интерференционном поле двух совмещенных по частоте

пучков накачки и указывают на возможную причину обнаруженной в [22] зависимости скорости электронной релаксации от *l*.

Авторы признательны РФФИ (грант № 00-15-96726) и ГНТП «Фундаментальная метрология» и «Физика квантовых и волновых явлений» за финансовую поддержку настоящей работы.

- 1. Povey M.J.W. et al. J. Phys. F, 10, 2041; 2555 (1980).
- 2. Огрин Ю.Ф. и др. *Письма в ЖЭТФ*, **3**, 114 (1966).
- 3. Fann W.S. et al. *Phys.Rev.B*, **46**, 13592 (1992).
- 4. Головлев В.В. и др. *Письма в ЖЭТФ*, **55**, 441 (1992).
- 5. Beaurepaire E. et al. *Phys. Rev. Letts*, **76**, 4250 (1996).
- 6. Петникова В.М. и др. Квантовая электроника, 28, 69 (1999).
- 7. Hohlfeld J. et al. Chem. Phys., 251, 237 (2000).
- 8. Wright O.B. Phys. Rev. B, 49, 9985 (1994).
- 9. Vaterlaus A. et al. Phys. Rev. Letts, 67, 3314 (1991).
- 10. Hohlfeld J. et al. Phys. Rev. Letts, 78, 4861 (1997).
- 11. Hohlfeld J. et al. Appl. Phys. B, 68, 505 (1999).
- Ахманов С.А., Коротеев Н.И. Методы нелинейной оптики в спектроскопии рассеяния света: активная спектроскопия рассеяния света (М., Наука, 1981).
- 13. Кузнецова Л.П. и др. Квантовая электроника, 30, 175 (2000).
- 14. Lozovik Yu.E. et al. *Phys.Letts A*, **223**, 303 (1996).
- 15. Pawlik S. et al. Surface Science, 377-379, 206 (1997).
- 16. Gusev V.E., Wright O.B. Phys. Rev. B, 57, 2878 (1998).
- Таблицы физических величин. Справочник. Под ред. И.К.Кикоина (М., Атомиздат, 1976).
- Гусев В.Е., Карабутов А.А. Лазерная оптоакустика (М., Наука, 1991).
- 19. Alig R.C. Phys. Rev., 178, 1050 (1069).
- Устинов В.В., Окулов В.И. Физика металлов и металловедение, 37, 39; 263 (1974).
- Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках (М., Наука, 1984).
- 22. Aeschlimann M. et al. Appl. Phys. A, 71, 485 (2000).