PACS 42.55.Vc

Возможность демонстрационного гамма-лазерного эксперимента на ядрах

Л.А.Ривлин

Представлены оценки параметров возможного демонстрационного эксперимента по наблюдению генерирования гамма-излучения в однопроходном лазере со скрытой инверсией усиливающей среды из свободных ядер.

Ключевые слова: ядерный гамма-лазер; демонстрационный эксперимент, скрытая инверсия.

1. Введение

Концепция стимулированного гамма-излучения в ядерной среде со скрытой инверсией населенности [1] основана на положительном влиянии отдачи свободных ядер в радиационных процессах. Это явление приводит к спектральному смещению гамма-линий излучения и поглощения на удвоенную энергии отдачи. Если такое взаимное смещение линий превышает их ширину, то резонансное поглощение испускаемых фотонов невозбужденными ядрами отсутствует, что и создает предпосылки к возникновению скрытой инверсии, т.е. способности ядерной среды к квантовому усилению потока гаммафотонов без необходимости в превышении полной населенностью верхнего уровня лазерного перехода населенности нижнего.

С другой стороны, поскольку отдача проявляется наиболее сильно именно в свободных ядрах, их линии испускания оказываются заметно подверженными доплеровскому уширению. Это катастрофически сказывается на коэффициенте усиления потока гамма-фотонов, и для подавления доплеровского уширения необходимо глубокое охлаждение ядерной среды вплоть до температур, при которых доплеровское уширение оказывается сравнимым с естественной шириной линии. Подобное охлаждение до необходимых субмикрокельвиновых температур является сегодня вполне доступным при манипулировании нейтральными атомами с помощью излучения оптических лазеров [2].

Кроме того, то же смещение линий ядерного поглощения и испускания позволяет производить оптическую накачку двухуровневой ядерной структуры некогерентным рентгеновским излучением по схеме, аналогичной стандартной трехуровневой схеме оптических лазеров, но без привлечения дополнительного третьего уровня. В этом случае энергия лазерного излучения полностью поставляется источником накачки. Наряду с такой «двухуровневой» схемой существует принципиальная возмож-

Поступила в редакцию 28 декабря 2000 г.

Рис.1.

ность построения гамма-лазера по так называемой антистоксовой схеме, в которой энергия лазерного излучения черпается из энергии, запасенной в метастабильных состояниях изомерных ядер.

Таким образом, общее представление о возможном демонстрационном эксперименте по наблюдению квантового усиления потока гамма-фотонов в ядерной среде со скрытой инверсией (или по построению беззеркального гамма-лазера с однопроходным усилением) дает эскизная схема (рис.1). Ее основным элементом является глубоко охлажденный протяженный нитевидный пучок 1 нейтральных атомов, содержащих активные ядра. Для его образования, охлаждения, формирования и удержания служат источник атомов 2, оптические лазеры 3, устройство загрузки атомов 4 в ловушку 5 (в частности, магнитооптическую), а также поглотитель отработанных атомов 6. Накачка производится направленным пучком рентгеновских фотонов 7 из источника накачки 8 через систему фильтрации и транспортировки излучения 9. Испускание усиленного ядрами выходного потока гаммаквантов 10 происходит навстречу излучению накачки.

Московский государственный институт радиотехники, электроники и автоматики (технический университет), Россия,117454 Москва, просп, Вернадского, 78; e-mail: rivlin140322@mccinet.ru;

2. Выбор нуклидов для демонстрационного эксперимента

Оптимизация выбора нуклидов для демонстрационного эксперимента представляется задачей, трудно поддающейся формализации из-за сложной игры множества факторов, относящихся как к ядерным, так и к атомным свойствам кандидатов. В связи с этим следует наметить хотя бы грубую канву подобного выбора.

2.1. «Двухуровневая» схема

1. Выбор структуры уровней для этой схемы предельно прост, поскольку действующих уровней всего два: основной и первый возбужденный. Желательно, чтобы само ядро было стабильным или достаточно долгоживущим. Сложнее обстоит дело с выбором энергии возбужденного состояния E_0 . С одной стороны, она не должна быть слишком высокой, т. к. сечение стимулированного испускания

$$\sigma_0 = \frac{\lambda^2}{2\pi} \frac{\Gamma_{\gamma}}{\Gamma_{\gamma\alpha}} \beta \tag{1}$$

и сечение поглощения излучения накачки пропорциональны квадрату длины волны λ , а частота фотонов рентгеновской накачки, источники которой практически всегда имеют ограничения по энергии, по существу совпадает с частотой лазерного перехода. Здесь Γ_{γ} – естественная радиационная ширина; $\Gamma_{\gamma\alpha} = \Gamma_{\gamma}(1 + \alpha)$ – полная естественная ширина перехода; α – коэффициент внутренней электронной конверсии;

$$\beta = \frac{\Gamma_{\gamma\alpha}}{\hbar\Delta\omega_{\rm D}} \tag{2}$$

– отношение полной естественной ширины перехода $\Gamma_{\gamma\alpha}$ к доплеровской ширине $\hbar\Delta\omega_{\rm D}$.

С другой стороны, чрезмерно низкая энергия перехода предопределяет неприемлемо высокие коэффициенты внутренней электронной конверсии α и скорости других нерадиационных каналов разрядки возбужденного состояния, а также сечения нерезонансных потерь гаммафотонов χ в результате фотоэффекта на атомных электронах и др. По-видимому, разумные энергии лазерного перехода E_0 лежат в диапазоне от нескольких десятков до сотен килоэлектронвольт. Кроме того, очевидно, что необходима не слишком большая разность угловых моментов верхнего и нижнего уровней, т. е. по возможности невысокая мультипольность перехода.

2. Приемлемое время жизни возбужденного состояния $\tau_{1/2}$ задается, главным образом, доступным охлаждением атомов, содержащих активные ядра, поскольку одним из основных требований принятой концепции гамма-лазера на свободных ядрах является как можно более радикальное подавление доплеровского уширения гамма-линии, выражаемое отношением ширин линий β . Разумеется, желательным является максимальное $\beta \rightarrow 1$. Отсюда следует требование к «продольной температуре» атомного пучка

$$T_{\text{long}} \le \frac{0.41A}{\left(E_0\beta\tau_{1/2}\right)^2},$$
(3)

где T_{long} выражено в микрокельвинах, E_0 – в килоэлектронвольтах, время полураспада возбужденного состояния $\tau_{1/2}$ – в наносекундах; A – число нуклонов в ядре. (Формулу (3) следует использовать взамен неправильной формулы (26) из [1], откуда также должен быть исключен следующий за (26) перечень температурных интервалов, свойственных различным методам охлаждения.)

Если не прибегать к особо изощренным методам современного лазерного охлаждения атомов, то следует ограничить «продольную температуру» так называемым пределом по отдаче [2]: $T_{\text{long}} > T_{\text{rec}}$, где

$$T_{\rm rec} = \frac{(\hbar\omega_{\rm opt})^2}{k_{\rm B}Mc^2} \approx 12.5 \frac{(\hbar\omega_{\rm opt})^2}{A},\tag{4}$$

который обычно составляет около одного микрокельвина (здесь $T_{\rm rec}$ – в микрокельвинах; $\hbar\omega_{\rm opt}$ – энергия фотонов охлаждающего оптического лазера в электронвольтах; M – масса атома; c – скорость света и $k_{\rm B}$ – постоянная Больцмана). Сопоставление (3) и (4) с учетом $\beta \rightarrow 1$ и других разумных значений параметров указывает на субнаносекундный диапазон желательных времен жизни $\tau_{1/2}$ лазерного уровня.

3. Энергия отдачи ядра

$$E_{\rm rec} \approx \frac{E_0^2}{2Mc^2} \approx 0.53 \frac{E_0^2}{A} \tag{5}$$

при принятой выше температуре T_{long} практически всегда намного превышает энергию, необходимую для возникновения скрытой инверсии населенности (см. формулы (10) из [1]; в (5) E_{rec} берется в миллиэлектронвольтах, если E_0 – в килоэлектронвольтах).

4. Атомный оптический переход, используемый для лазерного охлаждения, должен иметь достаточно большую вероятность *w*_{opt} и лежать в спектральном интервале, доступном для существующих (или потенциально создаваемых) лазеров.

5. Охлаждаемый атомный пучок испускается источником, в качестве которого обычно используется нагретая полость («печь»). В связи с этим избранные атомы должны обладать достаточным давлением $p_{\rm vap}$ насыщенных паров с концентрацией $n_{\rm vap}$ при умеренной температуре $T_{\rm vap}$.

6. Сечение χ потерь гамма-фотонов, вызываемых фотоэффектом на атомных электронах, комптоновским рассеянием и другими процессами, обычно существенно уступает сечению стимулированного испускания σ_0 .

В табл.1 приведены данные, полученные с помощью [3-7] (иногда с применением интерполяции данных) по рассмотренной выше схеме для четырех изотопов, характеристики которых, по-видимому, достаточно близки к желаемому компромиссу, хотя и без претензий на абсолютную оптимальность. Концентрация атомов в пучке *n* и спектральная плотность накачки j_p оценивались по формулам (53), (54) из [1] по принятым относительной концентрации n_2/n , длине атомного пучка *L* и усилению на одном проходе *G*. Некоторый скепсис могут вызвать нестабильность нуклида ${}^{54}_{25}$ Mn, необходимая коротковолновость (УФ область) оптического лазера для охлаждения ${}^{173}_{07}$ Yb, а также слишком высокая температура насыщенных паров атомов ${}^{173}_{55}$ Tb.

2.2. Антистоксова схема

Может показаться, что антистоксова схема ядерного гамма-лазера выглядит более привлекательно, чем «двухуровневая», поскольку принято считать, что пер-

Табл.1. Примеры «двухуровневых» нуклидов (отношение ширин линий $\beta = 1$, длина атомного пучка 10 м, усиление на одном проходе 6).

Нуклиды	⁵⁴ ₂₅ Mn	¹⁵⁹ ₆₅ Tb	¹⁶⁵ ₆₇ Ho	¹⁷³ ₇₀ Yb
Энергия лазерного перехода E ₀ (кэВ)	54.4	58	94.7	78.65
Длина волны λ (нм)	0.0228	0.0215	0.013	0.0158
Время жизни верхнего лазерного уровня $\tau_{1/2}$ (нс)	0.049	0.0536	0.022	0.046
Естественная ширина верхнего лазерного уровня $\Gamma_{\gamma\alpha}$ (мкэВ)	9.3	8.5	21	10
Коэффициент внутренней электронной конверсии α	0.212	11	3.13	7
Энергия отдачи ядра E _{rec} (мэВ)	29	11.2	28.3	19
Угловой момент и четность верхнего уровня J_2	2^{+}	$5/2^{+}$	9/2-	7/2-
Угловой момент и четность нижнего уровня J_1	3+	$3/2^+$	7/2-	5/2-
Мультипольность лазерного перехода	M1 + E2	M1 + E2	M1 + E2	M1 + E2
Время жизни нуклида (дни)	312.3	∞	∞	∞
Длина волны оптического лазера λ_{opt} (мкм)	0.403	0.433	0.41	0.399
Энергия фотона оптического лазера $\hbar\omega_{\rm opt}$ (эВ)	3.08	2.86	3.02	3.1
Вероятность оптического перехода атома, умноженная	1.4	25	7.2	1.6
на статвес, w_{opt} (10 ⁸ с ⁻¹)				
Температура насыщенных паров T _{vap} (K)	1491	2181	1720	994
Давление насыщенных паров <i>p</i> _{vap} (Па)	100	100	100	500
Концентрация насыщенных паров $n_{\rm vap}$ (10 ¹⁶ см ⁻³)	14.5	21.3	16.8	48.5
Сечение стимулированного испускания σ_0 (10 ⁻¹⁹ см ²)	7	0.6	0.7	0.52
«Продольная температура» атомного пучка T (мкК)	3	6.9	15.7	5.5
Температурный предел по отдаче T _{rec} (мкК)	2.2	0.64	0.7	0.7
Сечение фотонных потерь χ (10 ⁻¹⁹ см ²)	0.002	0.08	0.01	0.02
Концентрация атомов в пучке $n (10^{16} \mathrm{cm}^{-3})$	2.56	15.5	15	18
Относительная концентрация возбужденных ядер n ₂ /n	0.1	0.2	0.2	0.2
Нормировка спектральной плотности накачки $j_{\rm h}~(10^{17}~{\rm cm}^{-2})$	3.2	17	19	24
Спектральная плотность накачки j_p (10 ¹⁷ см ⁻²)	0.32	3.5	3.8	4.8

вая использует для генерирования внутриядерную энергию метастабильных состояний, в то время как вторая полностью черпает ее из источника накачки. Это, однако, является отчасти иллюзией, т.к. большинство изомерных нуклидов, которые можно рассматривать в качестве кандидатов для построения гамма-лазера, имеют искусственное происхождение и энергия, запасенная в их метастабильных состояниях, была затрачена (и притом с невысокой эффективностью) при их производстве. Последний процесс можно рассматривать как своего рода предварительную накачку с отложенной реализацией.

Антистоксовой схеме гамма-лазера присуще серьезное внутреннее противоречие. Достаточная продолжительность жизни метастабильного состояния изомерного ядра обуславливается большой разностью угловых моментов этого состояния и нижележащих уровней. В то же время переход из метастабильного состояния вверх на триггерный уровень и лазерный переход с последнего вниз должны быть достаточно быстрыми (и, следовательно, должны обладать малыми разностями угловых моментов), чтобы обеспечить эффективность действия схемы в целом.

Эти противоречивые требования оказываются трудносовместимыми в простейшей трехуровневой структуре уровней. Примером может служить изомерное ядро $^{242}_{95}$ Am с временем жизни метастабильного состояния 141 год и его угловым моментом 5⁻. Основное состояние имеет угловой момент 1⁻, так что сильнозапрещенный переход вниз обладает высокой мультипольностью E4. Как триггерный переход вверх на уровень с угловым моментом 3⁻, так и предполагаемый лазерный переход на основной уровень имеют неприемлемо высокие мультипольности E2, что делает это ядро (привлекательное в других отношениях – большое время жизни, доступное производство, малая энергия триггерного фотона 4.27 кэВ и т.п.) сомнительным кандидатом.

Не исключено, что положительное разрешение рассматриваемого противоречия возможно в многоуровневых структурах, где снятие возбуждения триггерного уровня осуществляется в виде каскада переходов, так что большая исходная разность угловых моментов суммируется из малых разностей угловых моментов нескольких быстрых переходов в нисходящем каскаде. Важно подчеркнуть, что для использования в качестве лазерного перехода пригоден только первый член каскада, поскольку все последующие переходы происходят в пучке ядер, утратившем исходную монокинетичность из-за отдачи при спонтанном испускании фотонов каскада и, соответственно, приобретшем значительное неоднородное уширение линии испускания. К сожалению, привести убедительные примеры подобных изомеров пока не удается.

3. Требования к однородности атомного пучка

Требования к однородности параметров атомного пучка вытекают из условий поддержания резонанса между усиливаемым гамма-излучением и ядерными переходами с малой шириной линии по всему объему усиливающей среды. Допустимый разброс поперечных скоростей Δv_{tr} атомов в ловушке ограничивается неравенством

$$\frac{1}{2} \left(\frac{\Delta v_{\rm tr}}{c}\right)^2 E_0 \ll \Gamma_{\gamma \alpha},\tag{6}$$

препятствующим потере резонанса из-за эффекта Доплера второго порядка. Это ограничение оказывается до-

статочно мягким: так, $\Delta v_{\rm tr} < 300$ см/с, если $E_0 = 100$ кэВ и $\Gamma_{\gamma\alpha} = 10^{-10}$ эВ, т. е. «поперечная температура» атомов в пучке не должна заметно превышать 0.1 К, что заведомо больше типичной температуры в атомных ловушках.

Разброс продольных скоростей Δv_{long} атомов по длине пучка ограничивается эффектом Доплера первого порядка:

$$\frac{\Delta v_{\rm long}}{c} E_0 \ll \Gamma_{\gamma \alpha},\tag{7}$$

Это дает, например, $\Delta v_{\text{long}} \ll 0.3$ см/с и $\Delta T_{\text{long}}/T_{\text{long}} < 0.01$, если $E_0 = 100$ кэВ , $\Gamma_{\gamma \alpha} = 10^{-10}$ эВ и $T_{\text{long}} = 1$ мкК.

Дополнительная продольная неоднородность скоростей атомов может возникнуть из-за падения атомов в поле силы тяжести при отклонении оси ловушки от идеально горизонтального положения на некоторый угол ψ . Падение атомов приводит к доплеровскому смещению резонанса первого порядка вдоль длины пучка L и создает на этой длине разность скоростей

$$\Delta v_L = g \frac{L}{v_{\text{long}}} \sin \psi = \frac{gh}{v_{\text{long}}},\tag{8}$$

где g – ускорение силы тяжести; v_{long} – продольная переносная скорость атомов в пучке; $h = L \sin \psi$ – разность высот концов ловушки. С учетом ограничений по эффекту Доплера первого порядка (7) это приводит к неравенству

$$h \ll \frac{c v_{\rm long} \Gamma_{\gamma \alpha}}{g E_0}.$$
(9)

что для предыдущего примера дает $h \ll 30$ мкм, если $v_{\text{long}} = 10^5 \text{ см/c.}$

4. Рентгеновская накачка

Необходимая спектральная плотность j_p рентгеновского излучения накачки, выраженная в единицах см⁻² × c⁻¹·Гц⁻¹ = см⁻² и представленная в последней строке табл.1, исключительно велика: j_p достигает ~10¹⁷ см⁻². Кроме того, для осуществления накачки, не возмущающей охлажденного пучка ядросодержащих атомов, это излучение должно быть сосредоточено в телесном угле (формула (48) из [1])

$$(\Delta \varphi)^2 \ll 4 \frac{Mc^2 \Gamma_{\gamma \alpha}}{\beta E_0^2} \approx 4 \frac{A \Gamma_{\gamma \alpha}}{\beta E_0^2}, \tag{10}$$

где $\Delta \varphi$ выражено в мрад; E_0 – в кэВ; $\Gamma_{\gamma \alpha}$ – в нэВ. Так, $(\Delta \varphi)^2 \ll 0.004$ мрад² при $E_0 = 100$ кэВ, A = 100, $\Gamma_{\gamma \alpha} = 10^{-10}$ зВ н $\beta \rightarrow 1$.

Для сопоставления этих требований с возможностями известных источников излучения рентгеновского диапазона их удобнее сформулировать в обычно используемых единицах фот./(MM^2 ·с·мрад²) в полосе, равной 0.1 % от частоты (~10¹⁹ Гц), где под площадью подразумевается сечение светящегося тела источника в квадратных миллиметрах. В этих единицах требуемая спектральная плотность источника рентгеновской накачки оценивается как чрезвычайно большая – порядка 10³³ (фот./ MM^2 × с·мрад²) в полосе 0.1% от частоты. Это на несколько порядков превышает спектральные плотности, полученные сегодня на лучших синхротронных источниках; требуемую спектральную плотность планируется достигнуть в ближайшее десятилетие (см., напр., [8]). Однако эта устрашающая спектральная плотность излучения накачки в используемых выше единицах на самом деле обусловлена произвольно широкой полосой, принятой в стандартном определении. Такая широкополосность (~ 0.1 % от частоты, т.е. примерно 10^{16} Гц) является абсолютно избыточной для осуществления накачки. Интегральный фотонный поток накачки может быть снижен на много порядков за счет радикального уменьшения полосы при сохранении той же спектральной илотности. В этой связи представляют определенный интерес источники рентгеновского излучения, использующие томсоновское и комптоновское рассеяние низкочастотных фотонов (например, лазерных) на релятивистских электронах [9, 10].

Нужно отметить, что субнаносекундные времена жизни лазерного уровня ядер могут потребовать организации накачки в виде рентгеновского импульса, бегущего вдоль протяженного атомного пучка, подобно тому, как это делается в рентгеновских лазерах на ионных переходах.

Таким образом, создание рентгеновской накачки является одной из наиболее трудноразрешимых задач в рассматриваемой проблеме создания ядерного гаммалазера.

5. Ожидаемые выходные параметры демонстрационного эксперимента

Полный поток гамма-фотонов, испускаемый принятой беззеркальной моделью в результате однопроходного усиления спонтанного шумового фона, можно оценить как

$$F = \frac{\pi D^2}{4} \frac{G-1}{\ln G} S_{\rm sp} L,\tag{11}$$

где

$$G = \exp[(\sigma_0 n_2 - \chi n)L]$$
(12)

– усиление на одном проходе ядерной среды длиной L с полной концентрацией атомов n и относительной концентрацией возбужденных ядер n_2/n ; D – диаметр атомного пучка;

$$S_{\rm sp} = \frac{n_2}{\tau_{1/2} \ln 2} \frac{\Gamma_{\gamma}}{\Gamma_{\gamma \alpha}} \frac{\Delta \Omega}{4\pi} \beta \tag{13}$$

 – скорость спонтанного испускания гамма-фотонов единицей объема ядерной среды в полосу ее усиления и в телесный угол

$$\Delta \Omega \approx \left(\frac{D}{L}\right)^2,\tag{14}$$

охватывающий выделенные моды. В итоге

$$F \approx \frac{\ln 2}{4\pi} \frac{n_2}{\tau_{1/2}(1+\alpha)} \frac{G-1}{\ln G} \left(\frac{D}{L}\right)^2 V\beta,$$
(15)

где *V* – объем ядерной среды.

Эти формулы, например, для ${}^{165}_{67}$ Но (см. табл.1) дают следующие оценки: поток гамма-фотонов в импульсе $F \approx 3 \cdot 10^{17} \, {\rm c}^{-1}$ с мощностью около 5 кВт и плотностью потока энергии 2.5 МВт/см² в телесном угле $\Delta \Omega \approx 0.0025$ мрад², если D = 0.5 мм. И, наконец, совсем необычный пара-

метр: при условии достижения достаточной степени когерентности напряженность электрического поля в пучке гамма-излучения может превысить 40 кВ/см. Разумеется, полная энергия ультракороткого гамма-импульса мала и не превышает единиц микроджоулей.

Работа выполнена при частичной поддержке РФФИ (грант № 99-02-16357) и INTAS (грант № 9731566).

- 1. Ривлин Л.А. Квантовая электроника, 27, 189 (1999).
- 2. Metcalf H.J, van der Straten P. *Laser cooling and trapping* (Berlin, Springer, 1999).
- R.B.Firestone (Ed.) Tables of Isotopes. Lawrence Berkeley Nat. Lab. (N.Y., John Willy & Sons, Inc. 1996).
- 4. Boeklen R., Geilig S. Z. Metallkunde, 40, 157 (1949).
- K. Siegbahn (Ed.) Beta- and Gamma-ray Spectroscopy (Amsterdam, North-Holland Publ. Co., 1955).
- 6. И.С.Григорьев, Е.З.Мейлихов (ред.) *Физические величины* (М., Энергоиздат, 1991).
- 7. Л.А.Слив (ред.) Гамма-лучи (М. Л., изд-во АН СССР, 1961).
- European Synchrotron Radiation Facility. (http://www.esrf.fr/ESRF/ about/general/brilliance.html).
- 9. Nuclear Instruments and Methods A, 455, № 1 (2000)
- 10. Ривлин Л.А. Квантовая электроника, 24, 840 (1997).