ФИЗИЧЕСКИЕ ОСНОВЫ КВАНТОВОЙ ЭЛЕКТРОНИКИ

PACS 03.75.Fi,05.30.Jp

Статистика идеального однородного бозе-газа с фиксированным числом частиц

В.А.Алексеев

Найдена функция распределения $w_0(n_0)$ числа частиц n_0 в конденсате идеального газа свободных бозонов с фиксированным полным числом частиц N. Показано, что при температуре выше критической $(T > T_c)$ она имеет обычную форму: $w_0(n_0) = (1 - e^{\mu})e^{\mu n_0}$, где μ – химпотенциал в единицах температуры. В узкой окрестности критической температуры $|T/T_c - 1| \leq N^{-1/3}$ это распределение перестраивается и при $T < T_c$ принимает вид резонанса с зависящей от формы занимаемого газом объема шириной и экспоненциальными (но не гауссовыми) крыльями. С понижением температуры максимум резонанса перемещается в сторону увеличивающихся n_0 , а его ширина стремится к нулю, что соответствует подавлению флуктуаций. При $N \to \infty$ эта перестройка носит характер скачка. Функции распределения числа частиц в возбужденных состояниях у систем с фиксированным и переменным числом частиц (когда фиксировано только среднее число частиц) оказываются одинаковыми и имеют обычный вид.

Ключевые слова: статистика Бозе – Эйнштейна, конденсат, функция распределения, канонический ансамбль.

(3)

В работах [1] было показано, что функция распределения $w_0(n_0)$ числа частиц n_0 , находящихся в основном состоянии захваченного в ловушку идеального бозе-газа только при температуре выше критической ($T > T_c$), когда среднее число частиц в основном состоянии мало (т. е. конденсат практически отсутствует), описывается найденной Эйнштейном функцией распределения [2]

$$w_0(n_0) = (1 - e^{\mu - \varepsilon_0}) e^{(\mu - \varepsilon_0)n_0}, \tag{1}$$

где μ -химпотенциал в единицах температуры; $\varepsilon_0 = E_0/T$; E_0 – энергия основного состояния частиц газа; T – температура в энергетических единицах. Далее мы отсчитываем энергию от энергии основного состояния, т. е. полагаем $\varepsilon_0 = 0$.

При температуре ниже критической, когда в основном состоянии оказывается макроскопическое число частиц, т. е. образуется конденсат, выражение (1) перестает быть применимым и функция распределения $w_0(n_0)$ принимает гауссову форму. При большом числе N захваченных в ловушку частиц такая перестройка происходит в очень узкой окрестности критической температуры (в случае параболической ловушки $|T/T_c - 1| \le 1/\sqrt{N}$), т. е. практически скачком. Эти особенности конденсации описываются распределением [1]

$$w_0(n_0) = S^{-1} \exp\left[\mu n_0 - \frac{(n_0 - \tilde{n}_0)^2}{4D}\right], \ \mu = -\ln\left(1 + \frac{1}{\tilde{n}_0}\right), \ (2)$$

где
$$S = \sum_{n_0=0} w_0(n_0)$$
 – нормирующий множитель;
 $ilde{n}_0 = \left(e^{-\mu} - 1\right)^{-1}$

Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53; e-mail: valeks@sci.lebedev.ru

Поступила в редакцию 26 февраля 2001 г.

 - среднее число частиц в основном состоянии, определяемое распределением (1);

$$D = \frac{1}{2} \sum_{k \neq 0} \left(\tilde{n}_k + \tilde{n}_k^2 \right);$$

 $\tilde{n}_k = (e^{\varepsilon_k - \mu} - 1)^{-1}$ - среднее число частиц в возбужденных состояниях $k \neq 0$, также определяемое распределением Бозе – Эйнштейна [2, 3]

$$w_k(n_k) = \left(1 - \mathrm{e}^{\mu - \varepsilon_k}\right) \mathrm{e}^{(\mu - \varepsilon_k)n_k},\tag{4}$$

в котором $\varepsilon_k = E_k/T$, а химпотенциал (или \tilde{n}_0) находится из условия [2, 3]

$$\sum_{k} \tilde{n}_{k} = N. \tag{5}$$

При $T < T_c$ среднее число частиц в конденсате велико ($\tilde{n}_0 \gg 1$) и распределение (2) имеет гауссову форму. С уменьшением \tilde{n}_0 (с ростом температуры) при $T > T_c$, когда конденсат практически исчезает, распределение (2) переходит в (1). Перестройка формы распределения $w_0(n_0)$ при $T < T_c$ связана с точным соблюдением при нахождении этого распределения [1] условия

$$n_0 + n_1 + n_2 + \dots = N, (6)$$

фиксирующего число частиц в ансамбле, и демонстрирует важное отличие статистических свойств канонического ансамбля от свойств большого канонического ансамбля, в котором выполняется только условие (5) для средних значений и, в результате, функция $w_0(n_0)$ при всех температурах имеет вид (1).

Конденсация захваченного в ловушку идеального бозе-газа с практической точки зрения представляет наибольший интерес, поскольку именно этот случай реализован [4] и в настоящее время широко исследуется экспериментально. Однако с принципиальной точки зрения важное значение имеет и случай свободного бозе-газа (удерживаемого только стенками сосуда), конденсация которого была предсказана Эйнштейном в 1925 г. [2] и с тех пор неоднократно обсуждалась теоретически (см., напр., [3, 5, 6] и цитированную в [5, 6] литературу).

В настоящей работе показано, что качественное изменение при $T < T_c$ функции распределения числа частиц в конденсате канонического ансамбля частиц свободного газа в целом вполне аналогично тому, которое имеет место для газа в ловушке, однако в первом случае изменяется область скачка $|T/T_c - 1| \leq N^{-1/3}$, распределение $w_0(n_0)$ при $T < T_c$ не является гауссовым и зависит от формы занимаемого газом объема. Функции распределения числа частиц в возбужденных состояниях при всех температурах имеют вид (4).

В случае свободного газа, как и в случае газа, захваченного в ловушку, функция распределения $w_0(n_0)$ определяется суммированием распределения Гиббса:

$$w_0(n_0) = S^{-1} \sum_{n_1+n_2+\ldots=N-n_0} e^{-\varepsilon_0 n_0 - \varepsilon_1 n_1 - \ldots},$$
(7)

где суммирование выполняется по всем положительным n_k , кроме n_0 , удовлетворяющим условию (6).

В [1] было показано, что условие (6) можно выполнить автоматически, если записать сумму в виде (напомним, что $\varepsilon_0 = 0$)

$$w_0(n_0) = S^{-1} \sum_{n_1, n_2 \dots} e^{-\varepsilon_1 n_1 - \varepsilon_2 n_2 - \dots} \frac{1}{2\pi i} \oint z^{-N + n_0 - 1 + n_1 + n_2 + \dots} dz.$$
(8)

Контур интегрирования в (8) имеет вид окружности с центром в точке z = 0 и радиусом |z| < 1, что удобно записать в виде $z = e^{\mu}$, потребовав выполнения условия $\mu < 0$. Подчеркнем, что введенный таким образом параметр μ , вообще говоря, не связан с химпотенциалом μ , фигурирующим в распределении (1), (4), однако, как будет видно ниже, при $T > T_c$ параметр μ в (8) удобно выбрать, как и в (1), (4), потребовав выполнения условия (5).

Суммирование в (8) выполняется по всем $n_{k\neq 0} \ge 0$, причем условие $\mu < 0$ обеспечивает сходимость всех сумм. В результате получаем

$$w_{0}(n_{0}) = S^{-1} \frac{1}{2\pi i} \oint z^{-N+n_{0}-1} e^{G(z)} dz,$$

$$e^{G(z)} = \prod_{k \neq 0} \left(1 - z e^{-\varepsilon_{k}}\right)^{-1},$$

$$G(z) = -\sum_{k \neq 0} \ln\left(1 - z e^{-\varepsilon_{k}}\right) = \sum_{k \neq 0} \sum_{p=1}^{\infty} \frac{1}{p} z^{p} e^{-p\varepsilon_{k}}.$$
(9)

Уровни энергии частиц газа (в единицах температуры) в объеме $V = L_x L_y L_z$, который для простоты мы будем считать кубом с объемом $V = L^3$ (соответствующее обобщение будет дано ниже), определяются требованием периодичности волновой функции

$$\varepsilon_{k} = \alpha (k_{x}^{2} + k_{y}^{2} + k_{z}^{2}), \quad \alpha = \frac{(2\pi\hbar)^{2}}{2mTL^{2}},$$

 $k_{i} = 0, \pm 1, ..., \quad i = x, y, z,$
(10)

где *т* – масса частиц.

При выполнении условия $\varepsilon_1 \gg 1$, которое, вводя обычную для этого случая критическую температуру T_c [2, 3], удобно переписать в виде

$$t \ll N^{-2/3}, \quad t = \frac{T}{T_c}, \quad T_c = 2\pi \zeta^{-2/3} \left(\frac{3}{2}\right) \frac{\hbar^2}{m} \left(\frac{N}{V}\right)^{2/3},$$
 (11)

где $\zeta(x)$ – дзета-функция Римана, из (9), как и в случае захваченного в ловушку газа [1], следует, что существенны только два значения функции распределения:

$$w_0(n_0 = N) = 1 - 3e^{-\alpha}, \quad w_0(n_0 = N - 1) = 3e^{-\alpha},$$

 $\alpha = \pi \zeta^{2/3} \left(\frac{3}{2}\right) t^{-1} N^{-2/3}.$

При $T \to 0$ функция распределения принимает вид $w_0(n_0) = \delta_{n_0,N}$, качественно отличающийся от (1).

При температуре еще гораздо ниже критической начинает выполняться условие $t \gg N^{-2/3}$, что эквивалентно $\alpha \ll 1$. В этом случае $\varepsilon_k = \alpha k^2 \ll 1$ вплоть до очень больших k и для исследования функции распределения $w_0(n_0)$ удобно в (8) выполнить замену $z = e^{\mu + ix}$. Тогда находим

$$w_0(n_0) = S^{-1} e^{\mu n_0} \int_{-\pi}^{\pi} e^{-i(N-n_0)x + F(x,\mu)} dx,$$

$$F(x,\mu) = \sum_{p=1}^{\infty} \frac{1}{p} e^{(\mu + ix)p} \sum_{k \neq 0} e^{-\alpha p k^2}.$$
(12)

Входящая в определение функции $F(x, \mu)$ сумма по $k \neq 0$ экспоненциально убывает при $p \to \infty$, что обеспечивает сходимость суммы по p при $\mu = 0$, т. е. функция $F(x, \mu)$ непрерывна при $\mu = 0$. До настоящего времени параметр μ был ограничен условием $\mu < 0$, а в остальном он был произвольным. Непрерывность функции $F(x, \mu)$ при $\mu = 0$ позволяет вычислять интеграл, определяющий $w_0(n_0)$ в (12), при $\mu = 0$. Таким образом, полагаем в (12) $\mu = 0$ и обозначаем $F(x) = F(x, \mu = 0)$. После этого, дифференцируя F(x) дважды по x, находим

$$\frac{d^2 F}{dx^2} = -\sum_{p=1}^{\infty} p e^{ipx} f(\alpha p), \ f(z) = \sum_{k \neq 0} e^{-zk^2}.$$
 (13)

Для вычисления $w_0(n_0)$ при температурах ниже критической ($N^{-2/3} \ll t \leq 1$) и в узкой окрестности выше критической температуры ($0 \leq t - 1 \ll 1$) необходимо исследовать поведение функции F(x) при малых $|x| \ll 1$. Важно заметить, что функция f(z) при больших и малых zстремится к двум предельным значениям:

$$f(z) = \begin{cases} \left(\frac{\pi}{z}\right)^{3/2}, & z \ll 1, \\ 6e^{-z}, & z \gg 1. \end{cases}$$
(14)

Поэтому при $|x| \ll 1$ в (13) от суммирования по *р* можно перейти к интегрированию в пределах от 0 до $+\infty$, поскольку получающийся интеграл, как видно из (14), сходится:

$$\frac{\mathrm{d}^2 F}{\mathrm{d}x^2} = -\int_0^\infty p \mathrm{e}^{\mathrm{i}px} f(\alpha p) \mathrm{d}p = -\frac{1}{\alpha^2} \int_0^\infty z f(z) \mathrm{e}^{\mathrm{i}(x/\alpha)z} \mathrm{d}z$$
$$= -\frac{1}{\alpha^2} \sum_{k \neq 0} \left(\mathbf{k}^2 - \mathrm{i}\frac{x}{\alpha} \right)^{-2}.$$
(15)

Далее интегрируем это выражение два раза по x и, замечая, что при $\alpha \ll 1$

$$F(0) = \sum_{p=1}^{\infty} p^{-1} f(\alpha p) \approx \left(\frac{\pi}{\alpha}\right)^{3/2} \zeta\left(\frac{5}{2}\right),$$
$$\left(\frac{\mathrm{d}F}{\mathrm{d}x}\right)_{x=0} = \mathrm{i} \sum_{p=1}^{\infty} f(\alpha p) \approx \mathrm{i}\left(\frac{\pi}{\alpha}\right)^{3/2} \zeta\left(\frac{3}{2}\right) = \mathrm{i}Nt^{3/2},$$

получаем

$$F(x) = F(0) + iNt^{3/2}x + g(x/\alpha),$$

$$g(u) = -\sum_{k \neq 0} \left[\ln\left(1 - \frac{iu}{k^2}\right) + \frac{iu}{k^2} \right].$$
(16)

Величина *F*(0) при подстановке в интеграл в (12) «поглощается» нормировкой и далее ее можно отбросить.

При малых u функцию g(u) можно представить рядом

$$g(u) = \sum_{n=2}^{\infty} c_n (\mathrm{i}u)^n, \quad c_n = \frac{1}{n} \sum_{k \neq 0} \frac{1}{(k^2)^n}, \quad |u| < 1, \qquad (17)$$

радиус сходимости которого ограничен условием |u| < 1. В другом предельном случае $u \gg 1$ в (16) от суммирования по k можно перейти к интегрированию, что дает

$$g(u) = -\frac{4}{3}\pi^2 e^{i\pi/4} u^{3/2}, \quad u \gg 1.$$
 (18)

Использование (16) при вычислении интеграла в (12) после замены $x/\alpha = u$ приводит к следующему результату:

$$w_0(n_0) = S^{-1}\varphi\left(\frac{n_0 - \bar{n}_0}{\beta N^{2/3}t}\right), \quad \varphi(y) = \operatorname{Re} \int_0^\infty e^{iyu + g(u)} du,$$
(19)

$$\bar{n}_0 = N(1 - t^{3/2}), \quad \beta = \pi^{-1} \zeta^{-2/3}(3/2) \approx 0.168.$$

При написании интеграла в (19) мы учли, что условие $\pi/\alpha \gg 1$ допускает вычисление этого интеграла в бесконечных пределах и использовали важное свойство функции g(u): $g(u) = g^*(-u)$, позволяющее записать результат в виде реальной части интеграла по положительным u.

Необходимо отметить, что при выбранном нами значении $\mu = 0$, т. е. при радиусе окружности в интеграле (8) $|z| = e^{\mu} = 1$ величина \bar{n}_0 совпадает с получающимся из (4), (5) средним числом частиц в конденсате \bar{n}_0 только при $t = T/T_c < 1$. При t > 1 величина \bar{n}_0 становится отрицательной, что в нашем случае допустимо. Во избежание недоразумений подчеркнем, что все получающиеся из (19) средние значения обозначаются далее угловыми скобками.

Функция $\varphi(y)$, которая поддается только численному исследованию, представлена на рис.1. При $y \leq 10$ довольно точное значение $\varphi(y)$ можно получить при сохранении в разложении (17) только первых двух членов:

$$g(u) \approx -8.25u^2 - i2.8u^3,$$
 (20)

а при y < 7 и точное значение $\varphi(y)$, и приближенное, рассчитанное с помощью (20), менее чем на 10 % отличаются от функции $\varphi(y)$, вычисленной с сохранением лишь первого члена разложения в (17), т.е. от гауссовой функции

Рис.1. Функция $\varphi(y)$, вычисленная по формуле (19) с точным g(u), рассчитанным по (16) (сплошная кривая), и с g(u), рассчитанным по (20) (штриховая кривая), а также функция $\varphi(y)$, вычисленная по (21) (пунктирная кривая).

$$\varphi(y) = \frac{1}{2} \left(\frac{\pi}{c_2}\right)^{1/2} e^{-y^2/4c_2}.$$
(21)

Существуют и аналитически вычисляются все моменты

$$\langle y^m \rangle = \int_{-\infty}^{+\infty} y^m \varphi(y) dy = \pi \left(\frac{d^m}{du^m} e^{g(iu)} \right)_{u=0},$$

$$g(iu) = \sum_{n=2}^{\infty} (-1)^n c_n u^n,$$

(22)

что указывает на экспоненциальное спадание $\varphi(y)$ при $|y| \gg 1$. При больших положительных *y*, используя (18) и вычисляя интеграл в (19) методом перевала, находим значение

$$\varphi(y) = \frac{\sqrt{y}}{2\pi\sqrt{\pi}} e^{-y^3/12\pi^4}, \quad y \gg 1,$$
(23)

которое, однако, достигается только при очень больших y > 100.

Распределение $w_0(n_0)$ качественно меняет свой вид при больших положительных, малых и больших отрицательных \bar{n}_0 . В широком диапазоне температур ниже критической

$$t \gg \beta^2 N^{-2/3}, \ 1 - t \gg \frac{2}{3}\beta N^{-1/3}$$
 (24)

функция распределения экспоненциально мала в двух своих крайних точках $n_0 = 0$ и $n_0 = N$, причем второе условие в (24), обеспечивающее малость $w_0(n_0)$ на нижней границе, позволяет подойти очень близко к критической температуре. При вычислении нормирующего множителя

$$S = \sum_{n_0=0}^N w_0(n_0)$$

и всех средних значений суммирование можно заменить интегрированием в бесконечных пределах, и мы находим

$$S = \pi \beta N^{2/3} t, \quad \langle n_0 \rangle = \bar{n}_0,$$

$$\langle (n_0 - \bar{n}_0)^m \rangle = \frac{1}{\pi} \left(\beta N^{2/3} t \right)^m \langle y^m \rangle.$$
 (25)

Отсюда, в частности, следует, что среднее число частиц в конденсате совпадает с получающимся из (1), а среднеквадратичная флуктуация

$$\left\langle \Delta n_0^2 \right\rangle = \left\langle \left(n_0 - \bar{n}_0 \right)^2 \right\rangle = \left\langle n_0^2 \right\rangle - \left\langle n_0 \right\rangle^2 = 2c_2 \left(\beta N^{2/3} t \right)^2 \quad (26)$$

убывает с уменьшением температуры пропорционально T^2 . Форма распределения близка к гауссовой, однако оно слегка асимметрично и максимум его достигается при $n_0^{\max} \approx \langle n_0 \rangle + 0.5\beta N^{2/3} t$, несколько превышающем среднее значение.

В узкой окрестности температур выше критической

$$\frac{2}{3}\beta N^{-1/3} \ll t - 1 \ll 1 \tag{27}$$

величина \bar{n}_0 становится отрицательной, а ее модуль $|\bar{n}_0| \approx (3/2)N(t-1) \gg N^{2/3}\beta$ – очень большим. В этом случае вклад в интеграл (19) дают большие $u \approx (\bar{n}_0 \alpha)^2$. Однако соответствующие $x = \alpha u \approx \bar{n}_0^2 \alpha^3 \ll 1$ все еще малы, т. е. все еще оправдан переход от суммы по *p* в (13) к интегралу в (15), и потому выражение (19) по-прежнему применимо. Для $\varphi(y)$ можно использовать асимптотическое значение (23), и мы находим

$$\begin{split} w_0(n_0) &= S^{-1} \sqrt{|\bar{n}_0| + n_0} \exp\left[-\frac{\gamma}{N^2 t^3} (|\bar{n}_0| + n_0)^3\right],\\ \gamma &= \frac{\zeta^2(3/2)}{12\pi}. \end{split}$$

Легко проверить, что в диапазоне температур (27) в показателе экспоненты в этом выражении можно сохранить только линейный по n_0 член и отбросить n_0 под знаком радикала. В результате получаем

$$w_0(n_0) = \frac{27}{4}\gamma(t-1)^2 \exp\left[-\frac{27}{4}\gamma(t-1)^2 n_0\right].$$

Это распределение совпадает с (1), если в (1) положить параметр $\mu = -(27/4)\gamma(t-1)^2$. Нетрудно проверить, что такое же μ получается в этом случае из условия (5).

С дальнейшим повышением температуры при выполнении условия t-1 > 1 вклад в интеграл в (19) дают очень большие u, соответствующие $x \gg 1$. В этом случае переход в (13) от суммирования по p к интегрированию становится незаконным, поэтому аналогично процедуре в [1] введем отличный от нуля параметр $\mu < 0$ и потребуем выполнения совпадающего с (5) условия для средних

$$\frac{\mathrm{d}F}{\mathrm{d}x} = \mathrm{i}\sum_{k\neq 0}\tilde{n}_k = \mathrm{i}\sum_{p=1}^{\infty}\mathrm{e}^{\mu p}\sum_{k\neq 0}\mathrm{e}^{-\alpha pk^2} = \mathrm{i}(N-\tilde{n}_0)\approx\mathrm{i}N.$$

Сохраняя в этом соотношении только член с p = 1 и переходя от суммирования по k к интегрированию, получаем $e^{\mu} = t^{-3/2}$ и, соответственно,

$$F(x) = F(0) + iNx - \frac{1}{2}Nx^{2}.$$
(28)

Подставляя (28) в (12), снова получаем распределение (1), причем в этом случае $e^{\mu} \ll 1$ и распределение фактически является больцмановским.

Из сказанного следует, что в узкой окрестности T_c между областями (24) и (27), т.е. при выполнении усло-

Рис.2. Распределения $w_0(n_0)$ при разных температурах в окрестности критической температуры для $N = 10^9$.

вия $|t-1| \leq \beta N^{-1/3}$, функция распределения числа частиц в конденсате резко (практически скачком) перестраивается, изменяя свою форму от близкой к гауссовой до обычной (1) (см. рис.2).

Аналогично (12) можно написать совместное распределение [1]

$$w_{0,i\neq 0}(n_0, n_i) = S^{-1} e^{\mu(n_0+n_i)} e^{-\varepsilon_i n_i} \int_{-\pi}^{\pi} e^{-i(N-n_0)x+F(x)} (1-e^{\mu+ix-\varepsilon_i}) dx.$$

В областях температур (24) и (27) отсюда следует

$$w_{0,i\neq0}(n_0,n_i) = S^{-1} e^{-\varepsilon_i n_i} \left[\varphi \left(\frac{n_0 + n_i - \bar{n}_0}{\beta N^{2/3} t} \right) - e^{-\varepsilon_i} \varphi \left(\frac{n_0 + n_i + 1 - \bar{n}_0}{\beta N^{2/3} t} \right) \right].$$

Суммируя (интегрируя) это распределение по *n*₀, находим, что функция распределения числа частиц в возбужденных состояниях

$$w_{i \neq 0} = \sum_{n_0=0}^N w_{0,i \neq 0}(n_0, n_i)$$

совпадает с (4). При более высоких температурах t-1 > 1 используем (28) и вновь получаем (4).

Отметим теперь, что от кубической формы объема квантовая легко перейти к объему, имеющему форму прямоугольного параллелепипеда. Для этого в полученных выше формулах надо произвести замену

$$\alpha \to (\alpha_x \alpha_y \alpha_z)^{1/3}, \ \ \alpha_s = \frac{(2\pi\hbar)^2}{2mTL_s^2}, \ \ \Omega_s = \frac{\alpha_s}{(\alpha_x \alpha_y \alpha_z)^{1/3}},$$

s = x, y, z,тогда

$$\begin{split} g(u) &= -\sum_{k \neq 0} \left[\ln \left(1 - \mathrm{i} \frac{u}{\Omega_x k_x^2 + \Omega_y k_y^2 + \Omega_z k_z^2} \right) \right. \\ &+ \mathrm{i} \frac{u}{\Omega_x k_x^2 + \Omega_y k_y^2 + \Omega_z k_z^2} \right]. \end{split}$$

При этом очевидным образом изменяется определение коэффициентов c_n . Например, в случае $L_x = L_y = l$, $L_z = L$ и $L/l \gg 1$ эти коэффициенты принимают вид $c_n = (2/n)\zeta(2n)(L/l)^{4n/3}$, поэтому в соответствии с (26) при температурах ниже критической (в области (24))

ширина распределения $\langle \Delta n_0^2 \rangle^{1/2}$ при постоянном объеме растет пропорционально параметру $(L/l)^{4/3}$, а форма этого распределения все больше отличается от гауссовой, т.е. в этой области вид функции распределения зависит от формы объема. При более высокой температуре (уже в области (27)) эта зависимость исчезает, поскольку асимптотическое значение (23) от формы объема не зависит, и только в этом случае распределение перестает быть связанным с дискретностью энергетического спектра, определяемого формой объема квантования.

Таким образом, суммирование распределения Гиббса показало, что в случае канонического ансамбля, т. е. когда выполнено условие (6), а не (5) для средних, при температуре ниже критической ($T < T_c$) функция распределения числа частиц в основном состоянии (в конденсате) радикально перестраивается, тогда как вид функции распределения числа частиц в возбужденных состояниях при всех температурах определяется найденным Эйнштейном [2] выражением (4) независимо от того, выполняется ли при суммировании распределения Гиббса условие (5) для средних (большой канонический ансамбль) или условие (6) (канонический ансамбль).

В частности, это означает, что правильное распределение $w_0(n_0)$ можно получить, воспользовавшись очевидным для канонического ансамбля равенством $w_0(n_0) = w^*(N^* = N - n_0)$, где $w^*(N^*)$ – функция распределения полного числа частиц в возбужденных состояниях $N^* = n_1 + n_2 + ...$, если предположить (чему, естественно, нет никаких априорных оснований), что функция распределения числа частиц в возбужденных состояниях имеет вид (4). Именно таким образом в работах [5, 6] (см. также цитированную в них литературу) были вычислены сред-

неквадратичные флуктуации, которые совпадают с (26). Качественно другим способом величина $\langle \Delta n_0^2 \rangle$ была вычислена в работе [7], результат которой в 16 раз превышает величину (26).

В работе [8] распределение $w_0(n_0)$ было получено как стационарное решение написанного авторами из модельных соображений кинетического уравнения для числа частиц в конденсате с предположением о применимости (4). Исследование этого распределения показывает, что при больших N в случае параболической ловушки оно совпадает с (2), а в случае свободного газа бозонов отличается от (19), хотя и приводит к совпадающей с (26) среднеквадратичной флуктуации.

Автор признателен А.П.Канавину, Д.Д.Крыловой и И.И.Собельману за полезные обсуждения. Работа частично поддержана Государственной научно-технической программой «Метрология».

- Алексеев В.А. Квантовая электроника, **31**, 16 (2001); ЖЭТФ, **119**, 700 (2001).
- 2. Einstein A. Berl.Ber., 22, 261 (1924); 23, 3 (1925).
- Ландау Л.Д., Лифшиц Е.М. Статистическая физика (М., Наука, 1995, § 37, 54, 113).
- Anderson M.H., Ensher J.R., Matthews M.R. et al. Science, 269, 198 (1995); Bradley C.C., Sackett C.A., Tolett J.J. et al. *Phys.Rev.Letts*, 75, 1687 (1995); Davis K.B., Mewes M.O., Andrews M.R. et al. *Phys.Rev.Letts*, 75, 3969 (1995).
- 5. Ziff R.M., Uhlenbec G.E., Kac M. Phys. Rep., 32, 169 (1977).
- Kocharovsky V.V., Kocharovsky Vl.V., Scully M.O. Phys. Rev. Letts, 84, 2306 (2000).
- Giorgini S., Pitaevskii L.P., Stringari S. Phys. Rev. Letts, 80, 5040 (1998).
- Kocharovsky V.V., Scully M.O., Zhu S.Y., Zubairy M.S. *Phys. Rev.* A, 61, 023609 (2000).