ВОЗДЕЙСТВИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ВЕЩЕСТВО. ЛАЗЕРНАЯ ПЛАЗМА

PACS 52.50.Jm; 52.38.-r; 32.80.Pj

Метастабильная лазерная плазма

А.Н.Ткачев, С.И.Яковленко

Представлены расчеты динамики многих частиц, моделирующие важные этапы релаксации ультрахолодной лазерной плазмы ($N_e \sim 2 \cdot 10^9 \text{ см}^{-3}$, $T_e \sim 0.1 \text{ K}$, $T_i \sim 10 \text{ мкK}$). Рассмотрены начальный разогрев электронов, образование высоковозбужденных электронов, удержание электронов в плазменном сгустке малого размера. На основе развитой ранее аналитической теории рекомбинации метастабильной плазмы показано, что предельное замедление тройной рекомбинации может составить 3-4 порядка.

Ключевые слова: лазерная плазма, динамика многочастичных систем, тройная рекомбинация.

1. Введение

Настоящая работа инициирована сообщениями [1,2] о получении и исследовании ультрахолодной лазерной плазмы, время жизни которой оказалось аномально большим.

В работе [1] сообщается о создании лазерной плазмы с уникальными параметрами: плотностью зарядов N_e до $\sim 2 \cdot 10^9$ см⁻³, температурой электронов $T_{\rm e}$ до ~ 0.1 K, температурой ионов T_i до ~10 мкК, степенью ионизации ~0.1. Плазма была образована путем двухступенчатой фотоионизации атомов ксенона, находящихся в метастабильном состоянии $6s[3/2]_2$, через состояние $6p[5/2]_3$. Энергия ионизующего кванта (длина волны ~514 нм) подбиралась такой, чтобы образовавшийся при фотоионизации электрон имел малую кинетическую энергию (0.1-1000 К). В [1] метастабильные атомы ксенона получали в разряде, замедляли с использованием техники зеемановского замедления, собирали в магнитно-оптическую ловушку и перед ионизацией охлаждали лазерным излучением на переходе $6s[3/2]_2 - 6p[5/2]_3$ (длина волны ~ 882 нм) до температуры ~ 10 мкК.

Плазма с такими температурой и плотностью должна была бы заметно прорекомбинировать за времена, меньшие наносекунды. Это следует как из обычной теории тройной рекомбинации, так и из теорий, в которых учитываются неидеальные свойства плазмы. Однако в экспериментах [1, 2] наблюдаемое время жизни плазмы составляло ~ 100 мкс, что на много порядков больше времени тройной рекомбинации. Время жизни плазмы соответствовало времени разлета тяжелых частиц. При уменьшении плотности на несколько порядков электроны покидали плазменный сгусток. Авторы [1] обратили внимание на аномально большое время рекомбинации, но не предложили объяснения этого эффекта.

Трактовка длительной жизни плазменного сгустка была дана в [3]. Она опиралась на представления о мета-

стабильной переохлажденной плазме, подытоженные в работах [4–7]. Отметим, что рассматриваемая ультрахолодная плазма является сильно неравновесной по степени ионизации. Следовательно, к ней неприменима теория [8], в которой процессы ионизации и рекомбинации считаются термодинамически-равновесными, а степень ионизации определяется формулой Саха. Как показано в [3], в рассматриваемой ультрахолодной плазме несущественны и обменные эффекты (см. также ниже), а значит, к ней неприменима теория [9], в которой электронный газ рассматривается как ферми-жидкость.

Ниже выполнены более подробные расчеты начальной стадии релаксации ультрахолодной плазмы, основанные на классических представлениях. Кроме того, рассмотрены релаксация ридберговских состояний, убегание электронов из плазменного сгустка и предельно возможное замедление рекомбинации на более поздних стадиях релаксации.

2. Стадия лазерной ионизации и динамической релаксации

2.1. О моделировании динамики многих частиц

Анализ численного моделирования динамики многих частиц (ДМЧ) показал, что за времена порядка обратной ленгмюровской частоты устанавливается некоторое метастабильное состояние, далекое от термодинамического равновесия по степени ионизации, и дальнейшая релаксация замораживается [4–7]. Для моделирования условий экспериментов [1, 2] мы провели специальные расчеты ДМЧ по методике, близкой к изложенной в [4, 5]. Электроны и ионы, как и ранее, считались малыми заряженными сферами диаметром $d = 0.05N_e^{-1/3}$, плотность зарядов бралась равной 2·10⁹ см⁻³.

Были проведены расчеты двух типов. В расчетах первого типа моделировалась плазма с низкой температурой, мгновенно созданная лазерной фотоионизацией. Начальные условия (число *n* электронов и ионов (по 512)) и их координаты задавались в области моделирования (в кубе с ребром $(n/N_e)^{1/3}$ и зеркально отражающими частицы стенками) в соответствии с однородной

Институт общей физики РАН, Россия, 119991 Москва, ул. Вавилова, 38

Поступила в редакцию 7 декабря 2000 г., после доработки – 9 апреля 2001 г.

по объему куба плотностью вероятности. Скорости электронов и ионов задавались в соответствии с максвелловским распределением с температурами $T_{e0} = 0.1$ К для электронов и $T_{i0} = 10$ мкК для ионов.

В расчетах второго типа моделировалась лазерная ионизация нейтральных атомов. Это позволяло рассмотреть случаи образования электронов с отрицательной полной энергией. Начальные условия для ионов задавались такими же, как и в первом варианте расчета. На каждый ион помещалось по электрону (начальные координаты электронов и ионов совпадали). Скорости электронов распределялись однородно по направлениям, а заданная кинетическая энергия отличалась от энергии ионизации данной пары частиц («атома») на небольшую величину ε_0 . При $\varepsilon_0 < 0$ электроны имели энергию ниже порога ионизации.

В обоих случаях решались уравнения Ньютона для 2*n* частиц с учетом всех электростатических взаимодействий в системе и набиралась статистика. Температура электронов считалась равной двум третям средней кинетической энергии электрона. Отметим, что использование классического приближения при рассмотрении движения свободных и высоковозбужденных частиц в условиях экспериментов [1, 2] вполне оправданно [3]. Отношение среднего межчастичного расстояния $a = (4\pi N_e/3)^{-1/3} \sim 5 \cdot 10^{-4}$ см к дебройлевской длине волны даже для $T_e \sim 0.1$ К составляет большую величину – $a(m_e T_e)^{1/2}/\hbar \sim 54$ (m_e – масса электрона). При $T_e \approx 5$ К имеем $a(m_e T_e)^{1/2}/\hbar \sim 370$. Для ионов и атомов при $T_i \sim 10$ мкК $a(m_{Xe} \times T_i)^{1/2}/\hbar \sim 270$ (m_{Xe} – масса атома ксенона).

2.2. Релаксация к метастабильному состоянию

Согласно нашим результатам [6, 7, 10, 11], за время порядка половины обратной ленгмюровской частоты $t \approx 0.5\omega_{\rm L}^{-1}$, где $\omega_{\rm L} = (4\pi e^2 N_{\rm e}/m_{\rm e})^{1/2}$, электроны нагреваются за счет коллективных взаимодействий. В этот период времени происходит перемешивание фазовых траекторий системы многих кулоновских частиц, которое характеризуется показателем Ляпунова $L \approx 2.4\omega_{\rm L}$ [6, 7, 12, 13]. Если в начальный момент параметр неидеальности $\gamma = e^2 (2N_{\rm e})^{1/3}/T_{\rm e}$ много больше единицы, то в результате перемешивания он уменьшается до $\gamma_{\rm lim} \approx 0.35 - 0.5$ для электрон-ионной плазмы и до $\gamma_{\rm lim} \approx 0.64$ для зарядов равной массы.

Это позволило объяснить известный «парадокс Ленгмюра» [14, 15]. Как известно, он состоит в том, что максвеллизация электронов происходит быстрее, чем это следует из кинетической теории. Парадокс Ленгмюра не может быть объяснен на основе известных кинетических уравнений, он получает объяснение [6, 7, 12, 13] как свойство динамического перемешивания фазовых траекторий системы многих кулоновских частиц, приводящее к динамической релаксации температуры электронов за характерное время $\sim 0.5 \omega_{\rm L}^{-1}$. Согласно новым расчетам, релаксация мгновенно созданной ультрахолодной плазмы [1, 2] происходит так, как и следует из наших предыдущих работ. Температура электронов Те монотонно растет и за время $\sim\!0.5\omega_{\rm L}^{-1}\approx 0.2$ нс становится равной 3.3 К, при которых $\gamma \approx 0.8$. Затем $T_{\rm e}$ растет медленнее, так что ее среднее значение составляет 5 К, при котором $\gamma \approx 0.5$ (рис. 1).

При ионизации в припороговую область ($\varepsilon_0 = -0.1 \text{ K}$) стадии термализации электронов предшествует стадия выхода электронов из потенциальных ям (падающий

Рис.1. Временная эволюция температуры электронов при моделировании начальной стадии релаксации мгновенно созданной ультрахолодной плазмы и ионов (*a*), а также параметра неидеальности $\gamma = e^2 (2N_{\rm e})^{1/3}/T_{\rm e}$ (δ) при числе заряженных частиц (электронов и ионов) 2n = 1024, $N_{\rm e} = 2 \cdot 10^9$ см⁻³.

участок температуры, рис. 2). Затем, по мере включения многочастичных взаимодействий, электроны термализуются. Поведение температуры электронов на более поздних этапах аналогично их поведению в случае мгновенного образования ультрахолодной плазмы: за время $\sim 0.5\omega_{\rm L}^{-1} \approx 0.2$ нс температура $T_{\rm e}$ достигает 3.3 K, затем $T_{\rm e}$ медленно растет и ее среднее значение составляет 5 K. Заметные отличия возникают при больших отрицательных энергиях $\varepsilon_0 < -3$ K, когда электроны попадают в область, находящуюся дальше от порога. Мы рассмотрим эту ситуацию ниже.

Итак, когда лазерная ионизация приводит к образованию электронов с малой по модулю полной энергией, температура электронов должна повышаться до нескольких кельвинов за доли наносекунды. Это согласуется с данными работ [1,2], в которых экспериментальные результаты приведены лишь для $T_e > 3.9$ К.

В работе [2] ультрахолодная плазма подвергалась воздействию переменного электрического поля с частотой f = 1 - 250 МГц, что соответствует ленгмюровской частоте $f_{\rm L} = 2\pi\omega_{\rm L}$ при $N_{\rm e} = 10^4 - 8\cdot10^8$ см⁻³. При этом,

Рис.2. То же, что и на рис.1, при моделировании и
онизации для $\varepsilon_0=-0.1~{\rm K}.$

согласно [2], энергия, поглощенная участками плазмы с резонансной плотностью электронов, практически мгновенно распределялась между всеми электронами. Мы полагаем, что в этом случае механизм нагрева аналогичен механизму, приводящему к релаксации системы к метастабильному состоянию. Он обусловлен коллективными явлениями и происходит за время $\sim 0.5\omega_{\rm L}^{-1}$. Отметим также, что в работе [11] было установлено, что в предельно неидеальной метастабильной плазме, когда $\gamma \approx 0.5$, частота коллективных колебаний в 1.5-2 раза меньше ленгмюровской частоты. Это следует учитывать при более точном восстановлении плотности электронов по резонансной частоте [2].

3. Функция распределения электронов по энергиям

3.1. Микрополевое распределение

В расчетах ДМЧ [4–7] было показано, что в метастабильном состоянии функция распределения электронов по скоростям является максвелловской, однако распределение электронов $f(\varepsilon)$ по полной энергии ε является существенно небольцмановским. В области отрицательных энергий $\varepsilon < 0$ распределение $f(\varepsilon)$ имеет экспоненциальный спад $\sim \exp(-0.32|\varepsilon|/e^2N_e^{1/3})$, что радикально отличает распределение в метастабильном состоянии от больцмановского распределения, характеризуемого экспоненциальным ростом.

Не останавливаясь на деталях (подробнее см. [4–7]), приведем выражение, которое мы обычно называем *микрополевым распределением:*

$$f_{\rm mf}(y) = \frac{2C}{\sqrt{\pi}} \begin{cases} \sqrt{y} \exp(-y), \quad y > \alpha \gamma, \\ C_3 \exp(C_1 y + C_2 y^2/2), \quad |y| \le \alpha \gamma, \\ C_4 \exp(\beta y/\delta^{1/3}), \quad y < -\alpha \gamma. \end{cases}$$
(1)

Здесь $y = \varepsilon/T_e$; $\alpha = 1.5$ и $\beta = 0.4$ – параметры, определяющие соответственно ширину области неидеальности и абсолютный коэффициент диффузии в области отрицательных энергий;

$$C_{1}(\gamma) = \frac{1}{2} \left(-1 + \frac{1}{2\alpha\gamma} + \frac{\beta}{\gamma} \right),$$

$$C_{2}(\gamma) = \frac{1}{2} \left(-1 + \frac{1}{2\alpha\gamma} - \frac{\beta}{\gamma} \right),$$

$$C_{3} = (\alpha\gamma)^{1/2} \exp\left[-\alpha\gamma \left(1 + C_{1} + \frac{1}{2}C_{2}\alpha\gamma \right) \right],$$

$$C_{4} = (\alpha\gamma)^{1/2} \exp[\alpha\beta - \alpha\gamma(1 + 2C_{1})]$$

– константы, обеспечивающие условия сшивки в области энергий $\alpha \gamma < \varepsilon/T_e < -\alpha \gamma$; C – нормировочная константа, такая, что $\int f_{mf}(y) dy = 1$.

Микрополевое распределение хорошо описывает все результаты численного моделирования, полученные в расчетах, где не потеряна временная симметрия динамических уравнений. Полученные на основе этого распределения термодинамические функции переходят в выражения дебаевской теории в пределе идеальной плазмы [5]. Аналогичное распределение было получено нами и сейчас при моделировании условий экспериментов [1,2] (рис.3,*a*). За время, меньшее обратной ленгмюровской частоты, формируется распределение по полной энергии,

Рис.3. Функции распределения электронов по полной энергии при моделировании начальной стадии релаксации мгновенно созданной ультрахолодной плазмы в метастабильном состоянии при усреднении по отрезку времени $t = (0.5 - 2.0)2\pi/\omega_L$ (см. рис.1) (*a*) и моделировании ионизации при $\varepsilon_0 = -0.1$ К (*б*) (сплошные кривые), микрополевое распределение, рассчитанное по аналитическим формулам работ [2–5] (пунктирные кривые) и больцмановское распределение (штриховые кривые). Микрополевое и больцмановское распределения построены для разных температур.

которое близко к микрополевому распределению (1), характеризующему метастабильное состояние переохлажденной плазмы.

3.2. Ультрахолодная и ридберговская плазма

Расчет, моделирующий ионизацию, показал, что в зависимости от величины ε_0 реализуется разная картина релаксации. При ионизации в область энергий, достаточно близких к порогу $\varepsilon_0 = -0.1$ К, формируется функция распределения, близкая к той, которая соответствует начальным условиям ультрахолодной плазмы (рис.3, δ). Если же $\varepsilon_0 < -1.5\gamma T_e = -2.6$ К, формирующаяся функция распределения существенно отличается от микрополевого распределения (1). Она имеет пик вблизи ε_0 (рис.4).

Как уже упоминалось выше, в работах [6,7,12,13] было показано, что показатель Ляпунова L для предельно неидеальной плазмы составляет $\sim 15T_L^{-1} \approx 2.4\omega_L$ (где $T_L = 2\pi/\omega_L$ – ленгмюровский период). В настоящей работе мы рассмотим вопрос о расходимости фазовых траекторий для ридберговских состояний. Вычислим временную зависимость расстояния между изначально близкими траекториями в координатном и импульсном пространствах:

Рис.4. Функции распределения электронов по полной энергии при моделировании ионизации для различных значений ε_0 .

$$D_{\mathbf{r}} = \left\{ \sum_{i=1}^{n} \left[\left(\mathbf{r}_{1,i} - \mathbf{r}_{2i} \right)^2 \right] \right\}^{1/2},$$
$$D_{\mathbf{v}} = \left\{ \sum_{i=1}^{n} \left[\left(v_{1i} - v_{2i} \right)^2 \right] \right\}^{1/2}.$$

Здесь r_{1i}, r_{2i} – координата (в мкм), v_{1i}, v_{2i} – скорость *i*-й частицы для первого и второго расчетов (в км/с). Величины D_r, D_v вычислялись отдельно для электронов и ионов (D_{re}, D_{ri} и D_{ve}, D_{vi}).

Результаты расчета для $\varepsilon_0 = -7$ К представлены на рис.5. В этом случае большинство электронов находится в ридберговских состояниях (см. рис.4,в), поскольку отношение радиуса орбиты электрона $e^2/2|\varepsilon_0| \approx 1.2 \cdot 10^{-4}$ см к среднему межчастичному расстоянию $a = (4\pi)$ $(\times N_{\rm e}/3)^{-1/3} \approx 5 \cdot 10^{-4}$ см составляет 0.24. Зависимость расстояния между изначально близкими траекториями от времени вполне аналогична таковой в случае свободных электронов [6, 7]. В интервале времени, близком к половине ленгмюровского периода, имеет место экспоненциальная расходимость траекторий ионов и электронов как в координатном пространстве, так и в пространстве скоростей. Далее рост расходимости замедляется ввиду ограниченности координат и скоростей частиц. Показатель экспоненты, определяющей расходимость электронных траекторий в обоих пространствах, для n = 1024пропорционален показателю Ляпунова $L \approx 16.4 T_{\rm L}^{-1} \approx$ 2.6 ωL. Этот показатель немного отличается от показателя для свободных частиц $L\approx 15T_{\rm L}^{-1}\approx 2.4\omega_{\rm L}$ [6, 7].

Анализ траекторий отдельных частиц обнаружил, что при $\varepsilon_0 < -1.5\gamma T_{\rm e}$ электроны вращаются вокруг ядер по

Рис.5. Расстояние между близкими в начальный момент времени фазовыми траекториями электронов D_{re} , $D_{ve}(l)$ и ионов D_{ri} , $D_{vi}(2)$ в координатном пространстве (*a*) и пространстве скоростей (*б*), а также зависимость const· $\exp(16.4 t/T_L) = \text{const·} \exp(2.6 \omega_L t)$ (*3*).

орбитам, близким к круговым, иногда перескакивая с орбиты вокруг одного из ионов на орбиту вокруг другого иона. Тот факт, что такая ридберговская плазма не разрушается коллективными взаимодействиями за время порядка ленгмюровского колебания, представляется примечательным. По-видимому, ридберговская плазма может быть метастабильной, как и переохлажденная

3.3. Моделирование сгустка лазерной плазмы

плазма, в которой преобладают свободные электроны.

В условиях экспериментов [1, 2] размеры плазменного сгустка составляли ~ 200 мкм. В сгустке содержалось ~ $2 \cdot 10^5$ атомов, и при этом некоторая часть электронов покидала плазменный объем. Мы провели специальное моделирование, позволяющее оценить влияние некомпенсированного заряда на параметры плазмы. При моделировании плазменного сгустка начальные координаты ионов и электронов задавались внутри части объема моделирования (куба), точнее, внутри сферы радиусом $R = (4\pi N_e/3n)^{-1/3} \approx 39$ мкм, расположенной в центре куба (длина ребра куба l = 800 мкм). Считалось, что частица, попавшая на стенку куба, «примерзает» к ней.

Как и следовало ожидать, занятую ионами сферу покидает малая доля электронов (см. рис.6). При этом компенсация заряда отсутствует только на периферии сферы. Вычислительные возможности позволяют моделировать лишь сгусток существенно меньшего размера, чем в экспериментах [1, 2]. Тем не менее даже при малом размере сгусток плазмы с параметрами, соответствующими экспериментам [1, 2], хорошо удерживает электроны: за пределы начальной сферы выходит их небольшая часть. Функция распределения электронов при этом сдвигается примерно на несколько температур электронов (рис.7), и в области отрицательных энергий сохраняется экспоненциальный спад.

В связи с изложенным выше отметим, что в работе [16] сделана попытка объяснить экспоненциальный спад функции распределения, обсуждавшийся в [4], влиянием стенок. Ошибочность такой интерпретации показана в

Рис.6. Распределения числа частиц $n_{i,e}(r)$ (*a*) и плотности частиц $N_{i,e}(r)$ (δ) для ионов (сплошные кривые) и электронов (пунктирные кривые) по расстоянию *r* от центра сферы радиусом *R*, в которой задавались их начальные координаты, при усреднении по интервалу времени $7T_{\rm L} < t < 8T_{\rm L}$.

Рис.7. То же, что и на рис.3, для случая, когда начальные координаты частиц расположены внутри сферы (ср. с рис.6). Микрополевое и больцмановское распределения построены для температуры $T_e = 7.4$ К и сдвинуты по оси энергии ε на $3T_e$ (построены функции $f_B(\varepsilon/T_e - 3)$, $f_{mf}(\varepsilon/T_e - 3)$), усреднение произведено по интервалу времени $7T_L < t < 8T_L$.

работе [17] (см. также обзоры [6,7] и ссылки в них). Разумеется, приведенные выше результаты моделирования «висящего» плазменного сгустка также противоречат интерпретации [16] – ионы и электроны плазменного сгустка не взаимодействуют с сильно удаленными стенками, но распределение по энергии электронов имеет экспоненциальный спад.

4. Рекомбинационная релаксация

4.1. О механизме рекомбинации

Экспоненциальный спад распределения электронов по полной энергии в области больших отрицательных энергий может привести к существенному замедлению рекомбинации по сравнению с традиционными представлениями [18, 19]. Ранее нами была построена теория рекомбинации (наиболее полное ее изложение см. в [5]), согласующаяся с результатами моделирования и позволившая объяснить, почему замедление рекомбинации не проявляется в обычных условиях. В основу теории положено предположение о диффузии по энергетической оси с микроскачками $\overline{\Delta \varepsilon} \sim (\overline{\Delta \varepsilon}^2)^{1/2} \sim e^2 N_e^{1/3}$. Это предположение приводит к более жестким требованиям (по сравнению с известными) к квазиклассичности спектра связанных состояний. Для электронов с большой отрицательной энергией

$$\varepsilon < -\varepsilon_1 = \text{Ry}(e^2 N_e^{1/3}/2\text{Ry}), \quad \text{Ry} = m_e e^4/2\hbar^2 \approx 13.6 \text{ } 3\text{B}$$

и скачок $\overline{\Delta \varepsilon} \sim (\overline{\Delta \varepsilon^2})^{1/2} \sim e^2 N_{\rm e}^{1/3}$ оказывается меньше расстояния между ближайшими ридберговскими уровнями $2 \text{Ry}/n^3 = 2 \text{Ry}/(\text{Ry}/\varepsilon)^{3/2} (n - главное квантовое число). Со$ $ответственно при <math>\varepsilon < \varepsilon_1$ становится существенной дискретность спектра. При релаксации в области энергий $\varepsilon < \varepsilon_1$ преобладают парные столкновения, для которых справедливы традиционные кинетические модели.

Для времени рекомбинации было получено следующее выражение [5]:

$$\tau_{\rm rec}(N_{\rm e}, T_{\rm e}) = \tau_{\rm rec}^{(0)} \xi. \tag{2}$$

Здесь $au_{
m rec}^{(0)} \sim 0.3 (m_{
m e}^{1/2} T_{
m e}^{9/2})/e^{10} N_{
m e}^2$ – время рекомбинации, даваемое обычной теорией; $\xi = 1.82 \delta^{5/6} \xi_1 (\epsilon_1/T_{
m e}) \xi_2 (N_{
m e}) +$

$$\xi_{1}(z) = \left(e^{z}/4z^{5/2}\right) \int_{z}^{\infty} dy y^{3/2} e^{-y}$$

$$\times \left[1 + 6y + 0.75y^{2} + (\pi y^{3}/16)\right]^{1/2}; \qquad (3)$$

$$\xi_{2}(N_{e}) = \exp\left[-0.4(\varepsilon_{1} - 1.5e^{2}N_{e}^{1/3})/2^{1/2}e^{2}N_{e}^{1/3}\right].$$

Согласно нашей теории, заметное замедление рекомбинации плазмы имеет место при условии [$\epsilon_1/1.5e^2 \times (2N_e)^{1/3}$] $\gg 1$, которое можно записать в виде $(N_e^{\rm cr}/N_e)^{1/9} \gg 1$, где $N_e^{\rm cr} \equiv ({\rm Ry}/27e^2)^3 \approx 4.3 \cdot 10^{19} {\rm ~cm^{-3}}$. Например, при $N_e = 2 \cdot 10^9 {\rm ~cm^{-3}}$ имеем $(N_e^{\rm cr}/N_e)^{1/9} = 14$.

Отметим, что применимость традиционной теории рекомбинации ограничена условием $\gamma^3 \ll 1$ (см. ниже). Для применимости диффузионного приближения, используемого как в обычной [18, 19], так и в нашей теории, достаточно малости температуры электронов по сравнению с энергией ионизации.

4.2. Сопоставление с экспериментом

Выражение (2) дает результаты, близкие к результатам обычной теории тройной рекомбинации, в области не очень низких температур и плотностей плазмы ($\xi \sim 1$ при $T_e > 0.03$ эВ ≈ 350 K, $N_e > 10^{10}$ см⁻³). Соответственно основное внимание ранее уделялось возможности создания сильно переохлажденной ион-ионной плазмы, где квантовые эффекты играют малую роль. Область же параметров электрон-ионной плазмы, где заморозка рекомбинации существенна, представлялась трудно реализуемой в эксперименте.

Кроме того, для экспериментального наблюдения метастабильного состояния плазмы необходимы условия, при которых мала внешняя стохастизация системы кулоновских частиц. В частности, столкновения с нейтральными частицами должны происходить редко. Это приводит к требованию высокой степени ионизации плазмы. Возможны и другие причины стохастического воздействия, которые сложно учесть.

Оценим характерное время рекомбинации для условий экспериментов [1,2]. При $T_e = 5$ К, $N_e = 2 \cdot 10^9$ см⁻³ выражение (2) дает существенное замедление рекомбинации по сравнению с обычной теорией: $\xi = 2.4 \cdot 10^3$. При этом даваемое нашей теорией характерное время рекомбинации τ_{rec} составляет 60 мкс. При $T_e = 5$ К, $N_e = 10^9$ см⁻³ имеем $\xi = 2.5 \cdot 10^3$, $\tau_{rec} = 210$ мкс. Это согласуется с результатами экспериментов [1, 2], в которых ультрахолодная плазма существовала в течение ~100 мкс. Радиационной рекомбинацией в этих условиях можно пренебречь, т. к. ее время составляет несколько секунд.

4.3. Рекомбинация предельно холодной плазмы

Исходя из предельного значения $\gamma_{\rm lim} \approx 0.5$, можно предсказать предельно низкую температуру метастабильного состояния

$$T_{\rm e}^{\rm met}(N_{\rm e}) \approx e^2 (2N_{\rm e})^{1/3} / \gamma_{\rm lim} \approx (N_e 10^9 {\rm cm}^3)^{1/3} 4.2 {\rm K},$$
 (4)

которую можно получить при ионизации атомов в припороговую область $|\varepsilon_0| \ll T_e^{\text{met}}$. При данной плотности зарядов температура электронов плазмы, находящейся в метастабильном состоянии, не может быть меньше

Рис.8. Зависимость характерного времени рекомбинации предельно холодной метастабильной плазмы от плотности $\tau(N_e, T_e^{met}(N_e))$ по нашей теории (τ_{rec} , формула (2)), по обычной теории ($\tau_{rec}^{(0)}$, формула (9)), с учетом неидеальности плазмы (τ_B , формула (5)), с учетом ограничения плотности плазмы (τ_H , формула (6)) и по теории радиационной рекомбинации (τ_R , формула (7)).

 $T_{\rm e}^{\rm met}(N_{\rm e})$. Следовательно, в предельно холодной метастабильной плазме время рекомбинации определяется плотностью заряженных частиц (рис.8).

Имеется ряд работ, в которых учитываются отклонения от традиционной теории, связанные с неидеальностью плазмы [20] и влиянием плотности зарядов [21]. Из работы [20] для характерного времени рекомбинации следует выражение

 $\tau_{\rm B}(N_{\rm e},T_{\rm e}) =$

$$\frac{T_{\rm e}^{3/2} m_{\rm e}^{1/2}}{5.231 e^4 \Lambda \left\{ 1 + \exp\left[-(4\pi/6) [\gamma(N_{\rm e}, T_{\rm e}) \cdot 0.543]^3 \right] \right\} [1 + \gamma(N_{\rm e}, T_{\rm e})/2^{1/3}]^{1/2}}.$$
(5)

Здесь мы исправили некоторые численные неточности формул работы [20].

Из работы [21] для характерного времени рекомбинации следует выражение

$$\tau_{\rm H}(N_{\rm e}, T_{\rm e}) = \max\{\tau_1, \tau_2\},\tag{6}$$

где $\tau_2 = [N_e^2 (\text{Ry}/T_e)^{4.5} \cdot 2.156 \cdot 10^{31} \text{ см}^6/\text{c}]^{-1}; \tau_2 = [N_e^{5/6} \text{Ry}/T_e \times 3.528 \cdot 10^4 \text{ см}^{5/2}/\text{c}]^{-1}$. Для времени радиационной рекомбинации на рис.8 взято следующее простое выражение [22]:

$$\tau_{\rm R}(N_{\rm e}, T_{\rm e}) = [N_{\rm e} T_{\rm e} \cdot 2.7 \cdot 10^{-13} {\rm cm}^3 / ({\rm c}^{-1} \cdot 3{\rm B})]^{-1}. \tag{7}$$

Из рис.8 видно, что вплоть до $N_e \sim 10^6$ см⁻³ в предельно холодной плазме время радиационной рекомбинации

много больше времени рекомбинации, определяемого нашей теорией. Для предельно холодной плазмы выражения (5), (6) дают значения, близкие к результатам традиционной теории, что естественно, поскольку $\gamma_{\rm lim}^3 \approx 0.125 \ll 1$.

5. Выводы

Итак, есть некоторые основания считать, что в экспериментах [1, 2] имела место аномально медленная релаксация (т. е. метастабильность) ультрахолодной плазмы. В рамках обычной теории за времена, меньшие микросекунды, плазма должна была бы прорекомбинировать более чем на 10 %, а электронная температура повыситься в несколько раз по сравнению с $T_e^{met}(N_e)$. Это должно сопровождаться дополнительным потоком электронов из плазменного сгустка, чего, однако, не наблюдается в экспериментах [1, 2]. Вопрос о разлете плазменного сгустка с учетом нагрева электронов нуждается в дополнительном исследовании.

Авторы признательны Т.Киллиану за обсуждение по электронной почте вопросов, связанных с экспериментами [1, 2].

- Killian T.C., Kulin S., Bergeson S.D., Orozco L.A., Orzel C., Rolston S.L. Phys. Rev. Letts, 83, 4776 (1999).
- Kulin S., Killian T.C., Bergeson S.D., Rolston S.L. *Phys.Rev.Letts*, 85, 318 (2000).
- 3. Ткачев А.Н., Яковленко С.И. Квантовая электроника, **30**, 1077s (2000).
- Майоров С.А., Ткачев А.Н., Яковленко С.И. УФН, 164, 297 (1994).
- Mayorov S.A., Tkachev A.N., Yakovlenko S.I. *Physica Scripta*, 51, 498 (1995).
- Ткачев А.Н., Яковленко С.И. Изв. вузов. Сер. Физика, 41, № 1, 47 (1998).
- 7. Yakovlenko S.I. Phys. Vibr., 6, 267 (1998).
- 8. Норман Г.Э. *Хим. физ.*, **18**, № 7, 78 (1999).
- 9. Маныкин Э.А., Ожован М.И., Полуэктов П.П. *Хим. физ*, **18**, № 7, 87 (1999).
- 10. Ткачев А.Н., Яковленко С.И. *Письма в ЖТФ*, **21**, № 22, 90 (1995).
- 11. Ткачев А.Н., Яковленко С.И. ЖТФ, **67**, № 8, 42 (1997).
- 12. Ткачев А.Н., Яковленко С.И. *Письма в ЖТФ*, **23**, № 17, 68 (1997).
- 13. Ткачев А.Н., Яковленко С.И. ДАН, **359**, № 6, 765 (1998).
- 14. Langmuir I. Phys. Rev., 28, 585 (1925).
- 15. Forester A.T. Large ion beams. (N.Y., J.Wiley & Sons, 1988).
- Игнатов А.М., Коротченко А.И., Макаров В.П., Рухадзе А.А., Самохин А.А. УФН, 165, 113 (1995).
- 17. Майоров С.А., Ткачев А.Н., Яковленко С.И. УФН, 165, 117 (1995).
- 18. Гуревич А.В. Геомагнетизм и аэрономия, 4, №1, 3 (1964).
- 19. Гуревич А.В, Питаевский Л.П. ЖЭТФ, **46**, 1281 (1964).
- Биберман Л.М., Воробьев В.С., Якубов. И.Т. ДАН СССР, 96, 576 (1986).
- 21. Hahn Y. Phys. Letts A, 231, 82 (1977).
- 22. Райзер Ю.П. Физика газового разряда (М., Наука, 1992).