629

Ион-ионная рекомбинация в SF₆ и смесях SF₆ – C_2H_6 при высоких значениях E/N

В.В.Аполлонов*, А.А.Белевцев**, С.Ю.Казанцев*, А.В.Сайфулин*, К.Н.Фирсов*

Измерены коэффициенты ион-ионной рекомбинации в распадающейся плазме SF_6 и смесей $SF_6 - C_2H_6$ в диапазоне давлений 15-90 мм рт. ст. при приведенных напряженностях поля 100-250 Td. Проанализирован зарядовый состав и определены доминирующие каналы ион-ионной рекомбинации в таких плазмах. Получены соотношения для оценки приэлектродных падений потенциала в условиях распадающейся плазмы в сильно электроотрицательных газах. Путем экстраполяции результатов измерений оценивается коэффициент ион-ионной рекомбинации в SF₆ при напряженностях поля, близких к критической. Сделан вывод о необходимости учета ион-ионной рекомбинации при расчете характеристик разряда в нецепных HF-лазерах.

Ключевые слова: SF₆, ион-ионная рекомбинация, HF-лазер, электроотрицательные газы.

1. Введение

Возможность зажигания объемного самостоятельного разряда (ОСР) без предыонизации – самоинициирующегося объемного разряда [1] в смесях SF₆ с углеводородами, обнаруженная в [2], вывела на качественно новый уровень проблему масштабирования нецепных HF-лазеров, что позволило более чем на порядок (в 40 раз) увеличить их мощность и энергию. В настоящее время энергия излучения нецепных HF-лазеров, инициируемых ОСР, превышает 400 Дж при электрическом КПД более 4 % [3].

Несомненный интерес в этой связи представляет дальнейшее изучение ОСР в SF₆ и смесях SF₆ с углеводородами. Вследствие сильной электроотрицательности SF₆-плазма такого разряда обладает рядом особенностей, в частности концентрации отрицательных и положительных ионов в ней значительно (почти на два порядка) превышают концентрацию электронов [1, 4]. В связи с этим в разрядной кинетике заметную роль могут играть процессы, связанные с ионной составляющей плазмы: разрушение отрицательных ионов электронным ударом, диссоциативная электрон-ионная рекомбинация и ион-ионная рекомбинация [4]. Последний процесс существенно влияет на концентрации ионов в ОСР и полностью определяет зарядовую кинетику в распадающейся плазме.

Ион-ионная рекомбинация в SF₆ и его смесях с углеводородами во внешнем электрическом поле в настоящее время изучена сравнительно мало. Имеются, по-видимому, лишь две работы [5, 6], в которых коэффициент ионионной рекомбинации β измерен в SF₆, бинарных смесях SF₆ с редко используемым в HF-лазерах углеводородом

Поступила в редакцию 12 марта 2001 г.

Рис.1. Схема установки для измерения коэффициента ион-ионной рекомбинации.

СН₄ и в тройных смесях SF₆–CH₄–Ar/He при рабочих давлениях p > 100 мм рт. ст. и относительно низких приведенных напряженностях электрического поля E/N < 160 Тд (N – концентрация нейтральных частиц). Остальные экспериментальные [7] и теоретические (моделирование методом Монте-Карло) [8] исследования охватывают значительно более широкий диапазон давлений ($\sim 10^2 - 10^4$ мм рт. ст.), однако в приближении нулевого электрического поля.

Для расчетов характеристик ОСР в нецепном HFлазере основной интерес представляет коэффициент β для смесей SF₆ с углеводородом C₂H₆ [1–3] при p =30 – 90 мм рт. ст. (лазеры с достаточно большими апертурами) и E/N, близких к критическому значению $(E/N)_{\rm cr}$ в SF₆. Целью настоящей работы является измерение коэффициента ион-ионной рекомбинации в чистом SF₆ и его смесях с C₂H₆ в указанном диапазоне давлений при значениях E/N вплоть до 250 Тд. Это, в частности, позволит разумно оценить и коэффициент β при $E/N \sim$ $(E/N)_{\rm cr}$, характерных для самостоятельного разряда.

2. Экспериментальная установка и методика измерений

Ионная плазма для измерения коэффициента β создавалась импульсным ОСР. Схема экспериментальной установки представлена на рис.1. ОСР зажигался между

^{*}Институт общей физики РАН, Россия, 119991 Москва, ул. Вавилова, 38

^{**}Институт теплофизики экстремальных состояний Объединенного института высоких температур РАН, Россия, 127412 Москва, ул. Ижорская, 13/19

Рис.2. Осциллограммы напряжения на разрядном промежутке U (верхний луч) и тока распадающейся плазмы I (нижний луч) (a), а также зависимости концентрации ионов n_i от времени t, рассчитанная по осциллограммам рис.2,a (точки) и полученная методом наименьших квадратов (сплошная линия) при p = 30 мм рт. ст. и E/N = 230 Тд (δ) .

анизотропно-резистивным катодом К размером 5×5 см (аналогичным применявшемуся в [9]) и дисковым анодом А диаметром 12 см, скругленным по периметру радиусом 1 см, при коммутации напряжения разрядником P1. Межэлектродное расстояние *d* варьировалось в диапазоне 2–8 см. Использование анизотропно-резистивного катода позволяло получить разряд, равномерно распределенный по поверхности катода, что является необходимым условием применимости используемых в дальнейшем сравнительно простых соотношений для определения концентрации ионов.

Сопротивление анизотропно-резистивного катода $R_c \sim 1$ Ом не вносит заметных искажений в измерение ионного тока, поскольку оно много меньше сопротивления ионной плазмы $R_p \sim 1$ кОм. Величина емкости $C_1 = 2 - 8$ нФ определялась условиями устойчивости и однородности ОСР. Конденсатор $C_2 = 174$ нФ, подключаемый к разряднику Р2, служил для поддержания постоянного напряжения на разрядном промежутке в течение времени измерения ионного тока (до 20 мкс). Сопротивление $R_2 = 50$ Ом, включенное в цепь разряда этого конденсатора, позволяло свести к минимуму его влияние на энергию, выделяемую в плазме ОСР. Разрядник Р2 запускался автоматически при срабатывании разрядника Р1 и замыкании конденсатора C_3 на сопротивление R_3 . Ток регистрировался резистивным шунтом $R_{\rm sh}$.

Ионный ток распадающейся плазмы был существенно (на несколько порядков) меньше максимального тока ОСР, поэтому для повышения точности измерений сигнал с шунта обрезался на уровне 1 В диодным ограничителем R_1 –Д. Калибровка схемы измерения ионного тока и проверка ее линейности проводились при замыкании на шунт (через разрядник) конденсатора, заряжен-

ного до напряжения ~ 4 кВ, через сопротивление ~ 1 кОм. Типичные осциллограммы измеряемого таким образом тока и напряжения на разрядном промежутке показаны на рис.2, *a*. Отрицательные выбросы на осциллограммах соответствуют току и напряжению ОСР.

Коэффициент ион-ионной рекомбинации β рассчитывался по осциллограмме тока I(t) при фиксированном напряжении на разрядном промежутке U с помощью соотношений

$$n_{\rm i}(t) = \frac{I(t)}{Se(b_{\rm i}^+ + b_{\rm i}^-)E},$$
(1)

$$n_{\rm i}(t) = \frac{n_{\rm i}(0)}{1 + n_{\rm i}(0)\beta t}.$$
(2)

Здесь $n_i(t)$ – концентрация ионов; S – площадь катода; e – заряд электрона; E = U/d; $n_i(0)$ – начальная концентрация ионов. Соотношения (1), (2) записаны в предположении, что имеются лишь один тип положительных и один тип отрицательных ионов с подвижностями b_i^+ и b_i^- соответственно. Возможность такого допущения обсуждается ниже. Величины $n_i(0)$ и β определялись из соотношения (2) по восстановленным с помощью (1) значениям $n_i(t)$ методом наименьших квадратов (рис.2, δ).

3. Результаты измерений

На рис.3 представлены зависимости коэффициента ион-ионной рекомбинации β от параметра E/N в чистом SF_6 при давлении p = 15 - 90 мм рт. ст. Видно, что с увеличением E/N наблюдается сильное уменьшение β во всем диапазоне исследованных давлений. Этот результат согласуется с данными работы [5], где измерения проводились по стандартной методике с использованием для создания ионной плазмы электронного пучка. В области малых E/N коэффициент β растет с увеличением давления приблизительно пропорционально р. В области E/N > 200 Тд эта закономерность нарушается и зависимость β от *p* становится более слабой. Данный факт не противоречит выводам работы [10], в которой расчетным путем показано, что коэффициент ион-ионной рекомбинации зависит не только от параметра E/N, но и от абсолютной величины напряженности электрического поля Е, уменьшаясь с увеличением Е.

Рис.3. Зависимости коэффициента ион-ионной рекомбинации β от параметра E/N при разных давлениях SF₆.

Следует также отметить, что при p = 90 мм рт. ст. в области низких значений E/N = 100 - 160 Тд измеренные в настоящих экспериментах коэффициенты β близки к соответствующим значениям из [5]. В смеси SF₆:C₂H₆ = 10:1 при E/N = 250 Тд и p = 60 и 90 мм рт. ст. получены $\beta = 4.3 \cdot 10^{-8}$ и $6.5 \cdot 10^{-8}$ см³/с соответственно. Варьирование в довольно широких пределах таких параметров ОСР как удельная введенная энергия и длительность разрядного тока не приводит к изменению β .

4. Обсуждение результатов

Обсудим ионный состав и характер ион-ионной рекомбинации в SF₆ и его смесях с C_2H_6 . В настоящее время не известны какие-либо экспериментальные факты, указывающие на присутствие в плазме самостоятельного разряда в SF₆ положительных ионов SF₆⁺. В соответствии с результатами прямых масс-спектрометрических измерений (см., напр., [11, 12]) доминирующим является ион SF₅⁺. Это согласуется и с данными работы [13], в которой показано, что образующийся ион SF₆⁺ находится в предиссоциирующем состоянии и диссоциирует с образованием SF₅⁺ за времена, существенно меньшие любых характерных разрядных времен. Что касается отрицательных ионов, то, вообще говоря, необходимо учитывать несколько их сортов.

В представляющем интерес диапазоне значений E/N, близких к $(E/N)_{cr}$ и ниже, в процессе диссоциативного прилипания электронов к молекулам SF₆ образуются преимущественно отрицательные ионы SF₆⁻ [14]. Скорости генерации ионов SF₅⁻ и F⁻ примерно вдвое меньше скоростей образования ионов SF₆⁻ [14]. Подвижности ионов SF₆⁻ и SF₅⁻ практически не различаются и близки к значениям, полученным в ланжевеновском (поляризационном) приближении [13]. В этом же приближении можно с достаточной точностью оценить и подвижность ионов F⁻.

Диссоциативная перезарядка ионов SF_6^- и SF_5^- на молекулах SF_6 с образованием отрицательных ионов другого сорта, прежде всего ионов F^- , не успевает происходить даже при максимальных в данном исследовании давлениях ~ 90 мм рт. ст. Например, согласно данным [15] при p = 90 мм рт. ст. и значениях $E/N \sim (E/N)_{cr}$, отвечающих стадии самостоятельного разряда, минимальное время τ_{min} реакции $SF_6^- + SF_6 \rightarrow SF_6 + SF_5 + F^$ больше 1 мкс, тогда как длительность самого ОСР в настоящих экспериментах составляет ~ 100 – 300 нс.

В распадающейся плазме при существенно меньших E/N время τ_{min} возрастает на несколько порядков. Таким образом, ионы SF₆⁻ и SF₅⁻ исчезают в распадающейся плазме SF₆ исключительно в ходе рекомбинации с ионами SF₅⁺. Разрушение ионов F⁻ в результате отрыва электронов может происходить только в приэлектродных слоях (см. ниже). В итоге уменьшение концентрации ионов F⁻ в объеме плазмы также определяется лишь их рекомбинацией с ионами SF₅⁺.

В рассматриваемом диапазоне давлений реализуется тройной механизм ион-ионной рекомбинации. Исходя из предварительных оценок, выполненных с использованием известных моделей тройной рекомбинации [16] в предположении поляризационного взаимодействия ионов с молекулами газа, следует ожидать, что коэффициенты рекомбинации ионов SF_6^- и SF_5^- с SF_5^+ близки, тогда как коэффициент рекомбинации ионов F^- с SF_5^+ заметно выше. Рассмотрим в этой связи распадающуюся ионную плазму с одним типом положительных ионов с концентрацией $n^+(t)$ и двумя типами отрицательных ионов с концентрациями $n_1^-(t)$ и $n_2^-(t)$.

Пусть соответствующие коэффициенты ион-ионной рекомбинации равны, соответственно, β_1 и β_2 , причем для определенности положим $\beta_2 > \beta_1$. Тогда с учетом квазинейтральности плазмы имеем следующее интегродифференциальное уравнение для плотности положительных ионов:

$$\begin{aligned} \frac{\mathrm{d}\varphi}{\mathrm{d}\tau} &= q_1 \exp(-\varphi) + q_2 \exp(-\sigma\varphi), \ \varphi = \int_0^\tau y \,\mathrm{d}\tau, \ y = \frac{n^+(t)}{n^+(0)}, \end{aligned}$$
(3)
$$\tau &= \beta_1 n_1^-(0)t, \ \sigma = \frac{\beta_2}{\beta_1}, \ q_1 = \frac{n_1^-(0)}{n^+(0)}, \ q_2 = \frac{n_2^-(0)}{n^+(0)}. \end{aligned}$$

Здесь $n^+(0)$, $n_1^-(0)$ и $n_2^-(0)$ – начальные концентрации положительных и отрицательных ионов.

Поскольку $\sigma > 1$, а $\varphi(\tau) \to \infty$ при $\tau \to \infty$, то начиная с некоторого момента времени вторым членом в уравнении (3) можно пренебречь и с учетом того, что $n_1^-(t) =$ $n_1^-(0) \exp(-\varphi)$, оно переходит в уравнение рекомбинации при наличии лишь отрицательных ионов с меньшим коэффициентом рекомбинации β_1 . Применительно к плазме SF₆ это означает, что через определенный промежуток времени после начала рекомбинации в ней наряду с положительными ионами SF_5^+ начинают преобладать отрицательные ионы SF_6^- и SF_5^- , которые, как уже отмечалось, имеют близкие подвижности и близкие коэффициенты рекомбинации. Тем самым становится оправданным использование соотношений (1), (2). Все это наглядно продемонстрировано на рис.2, б. Видно, что при t > 8 мкс временной спад концентрации ионов $n_i(t)$, рассчитанный по соотношению (1), в точности следует закону рекомбинации (2). Значения подвижностей ионов для расчетов взяты из [13].

В работах [5, 6, 8] в качестве основного отрицательного иона рассматривался комплексный ион $SF_6^-(SF_6)$, однако давления газа при этом были в 5–10 раз выше, чем в настоящем эксперименте. Учитывая, что скорость кластеризации ионов SF_6^- зависит от *p* квадратично, следует ожидать, что доля комплексных ионов $SF_6^-(SF_6)$ в исследуемой плазме незначительна. Кроме того, в диапазоне $E/N \sim 100 - 250$ Тд подвижности ионов SF_6^- и $SF_6^-(SF_6)$ различаются согласно [13] лишь на несколько процентов, так что факт образования комплексных ионов в рассматриваемых условиях вообще оказывается несущественным.

В смеси SF₆:C₂H₆ = 10:1 наряду с ионами SF₅⁺ присутствуют также положительные ионы, возникающие при ионизации C₂H₆ электронным ударом. Согласно [17, 18] в этом случае доминирует механизм диссоциативной ионизации с образованием ионов C₂H₄⁺ и молекул H₂. Используя ланжевеновское приближение и закон Бланка [19], получаем, что для смеси SF₆:C₂H₆ = 10:1 подвижности ионов как SF₅⁺, так и C₂H₄⁺, определяются их взаимодействием с молекулами SF₆. Несмотря на то что подвижность ионов C₂H₄⁺ (оцененная в поляризационном пределе) примерно в 1.8 раза выше, чем подвижность ионов SF₅⁺, ионы C₂H₄⁺ при указанном соотношении концентраций SF₆ и C₂H₆ не дают заметного вклада в суммарный ток *I*(*t*). В результате набор отрицательных ионов остается прежним. С учетом того, что в исследуе-

мой среде преобладают положительные ионы SF_5^+ , соотношение (2), описывающее кинетику рекомбинации, остается применимым и для смеси.

Если образование положительных ионов в смеси $SF_6 - C_2H_6$ возможно также и в результате перезарядки SF_5^+ на молекулах C_2H_6 (хотя полной ясности в этом вопросе, на наш взгляд, пока нет), то даже при минимальных концентрациях C_2H_6 , равных ~ 10^{17} см⁻³, времена перезарядки, как показывают оценки, составляют ~ $10^{-8} - 10^{-7}$ с. Таким образом, в представляющем интерес масштабе времен, превышающих 1 мкс, и в этом случае будет доминировать только один положительный ион.

При оценке подвижностей ионов неоднократно использовалось поляризационное приближение, хотя применительно к рассматриваемым условиям это не всегда удается строго обосновать. Известно, однако, что формула Ланжевена дает значения подвижностей, как правило, мало отличающиеся от измеренных. В случае SF₆ на это непосредственно указывают данные работы [13]. Таким образом, приведенные выше соображения относительно ионного состава рабочего вещества и характера рекомбинации ионов в исследуемых условиях, по крайней мере в принципиальном отношении, представляются справедливыми. Косвенно на это указывает и отмечавшееся ранее постоянство коэффициента ион-ионной рекомбинации при значительном варьировании параметров разряда, поскольку в рекомбинирующей плазме набор отрицательных ионов, как следует из сказанного выше, слабо зависит от начальных разрядных условий.

Напряженность поля E_p в плазме определялась в настоящих экспериментах путем деления напряжения на разрядном промежутке на межэлектродное расстояние. Известно, однако, что в сильно электроотрицательных газах приэлектродные падения потенциала могут быть очень большими. В связи с этим представляет интерес оценить погрешность, вносимую при определении E_p указанным способом.

При оценке катодного падения потенциала U_c воспользуемся одномерным приближением и примем, следуя [20], что поле $E_{c}(x)$ в катодном слое не зависит от продольной координаты x, т. е. $E_c(x) = E_c$. В рассматриваемых условиях эта величина, как можно убедиться из дальнейших оценок, во много раз превышает не только $E_{\rm p}$, но и критическую напряженность $E_{\rm cr}$, поэтому образованием отрицательных ионов в слое можно пренебречь. В этом случае распределения плотностей тока электронов $j_e(x)$ и положительных ионов $j_+(x)$ в прикатодной области описываются теми же уравнениям, что и в электроположительном газе. За пределами катодного слоя $(x > d_c)$ в распадающейся плазме электронная составляющая плотности полного тока J_t вследствие интенсивного прилипания электронов быстро становится равной нулю. В результате, граничные условия несколько отличаются от принимаемых обычно в случае электроположительного газа:

$$j_{\rm e}(0) = \gamma j_{+}(0), \quad j_{\rm e}(d_{\rm c}) + j_{+}(d_{\rm c}) = J_{\rm t},$$
(4)

где γ – коэффициент вторичной электронной эмиссии. Второе условие из (4) можно сформулировать также и в виде $j_e(d_c) = j_-(d_c)$, где $j_-(x)$ – плотность тока отрицательных ионов. Используя стандартные методы (см., напр., [20]), из уравнений непрерывности для $j_e(x)$ и $j_+(x)$ с учетом соотношений (4) и того, что $\gamma \ll 1$, нетрудно в принятых в теории приэлектродных слоев приведенных переменных [21] получить выражение

$$\frac{\alpha(E_{\rm c}/p)}{p}pd_{\rm c} = B_1, \ B_1 = \ln\left(\frac{1+\gamma}{\gamma}\frac{b_{\rm i}^-}{b_{\rm i}^+ + b_{\rm i}^-}\right),\tag{5}$$

где а – коэффициент Таунсенда.

Исходя из уравнения Пуассона, свяжем параметры $E_{\rm c}$ и $d_{\rm c}$ [20]:

$$\left(\frac{E_{\rm c}}{p}\right)^2 = \frac{(J_{\rm t}/p^2)pd_{\rm c}}{\varepsilon_0 b_{\rm i}^+ p},\tag{6}$$

где ε_0 – диэлектрическая постоянная вакуума. Тогда из уравнений (5), (6) для определения U_c имеем следующие соотношения:

$$\frac{(E_{\rm c}/p)^2 [\alpha(E_{\rm c}/p)/p] \varepsilon_0 b_{\rm i}^+ p}{J_{\rm t}/p^2} = B_1, \quad U_{\rm c} = \frac{E_{\rm c}}{p} p d_{\rm c}.$$
 (7)

При оценке падения потенциала в прианодной области наряду с ударной ионизацией необходимо рассматривать также образование и разрушение отрицательных ионов. Последний процесс обеспечивает появление затравочных электронов в прианодной области, т. к. поступающий сюда из распадающейся плазмы электронный ток пренебрежимо мал. Примем по аналогии с предыдущим, что и в анодном слое поле E_a постоянно.

В приближении плоского слоя система соответствующих уравнений непрерывности запишется в виде

$$\frac{\mathrm{d}j_{\mathrm{e}}(x)}{\mathrm{d}x} = -\alpha j_{\mathrm{e}}(x) - \delta j_{-}(x), \quad \frac{\mathrm{d}j_{-}(x)}{\mathrm{d}x} = -\eta j_{\mathrm{e}}(x) + \delta j_{-}(x),$$

$$\frac{\mathrm{d}j_{+}(x)}{\mathrm{d}x} = \alpha j_{\mathrm{e}}(x). \tag{8}$$

Здесь η – коэффициент прилипания электронов; δ – коэффициент отрыва электронов от отрицательных ионов при столкновениях с молекулами газа. Координата x отсчитывается от анода (x = 0) в глубь разрядного промежутка.

Уменьшением электронного тока в результате прилипания к молекулам SF₆ пренебрегаем по той же причине, что и при рассмотрении катодного слоя ($E_a \gg E_{cr}$). С учетом сказанного граничные условия на аноде и границе анодного слоя с плазмой ($x = d_a$) имеют вид

$$j_{+}(0) = 0, \ j_{e}(d_{a}) = 0, \ j_{-}(d_{a}) + j_{+}(d_{a}) = J_{t}.$$
 (9)

В результате приходим к соотношению

$$\begin{aligned} &(\lambda_1 + \lambda_2)d_{\rm a} = B_2, \\ &B_2 = \ln\left\{\frac{b_{\rm i}^+ \lambda_2}{b_{\rm i}^- \lambda_1} + \left[1 + (\lambda_1 + \lambda_2)d_{\rm a}\right]\frac{b_{\rm i}^+ + b_{\rm i}^-}{b_{\rm i}^-}\right\}, \end{aligned} \tag{10}$$

где $\lambda_{1,2} = \{\pm (\delta - \alpha) + [(\alpha - \delta)^2 + 4\alpha \delta]^{1/2}\}/2$. Поскольку $E_a \gg E_{cr}$, то $\alpha \gg \delta$, $\lambda_1 \simeq \delta$, $\lambda_2 \simeq \alpha$ и соотношение (10) существенно упрощается:

$$\frac{\alpha(E_{\rm a}/p)}{p}pd_{\rm a} \approx \ln\left[\frac{\alpha(E_{\rm a}/p)}{\delta(E_{\rm a}/p)}\right].$$
(11)

Используя связь между E_a и d_a , аналогичную (6), и пренебрегая различием в подвижностях положительных и отрицательных ионов $(b_i^+ \approx b_i^- \approx b_i)$, в приближении $\alpha \gg \delta$ для определения E_a получаем уравнение

$$\left(\frac{E_{\rm a}}{p}\right)^2 \frac{[\alpha(E_{\rm a}/p)/p]\varepsilon_0 b_{\rm i} p}{J_{\rm t}/p^2} \approx \ln\left[\frac{\alpha(E_{\rm a}/p)}{\delta(E_{\rm a}/p)}\right],\tag{12}$$

которое с учетом (11) позволяет найти d_a и, следовательно, анодное падение потениала U_a .

Опираясь на полученные результаты, нетрудно теперь оценить относительную погрешность $\xi = (E - E_p)/E$ определения поля E_p в распадающейся плазме:

$$\xi = \frac{B_1/\eta_{\rm c} + B_2/\eta_{\rm a}}{U}, \quad \eta_{\rm c,a}(E_{\rm c,a}/N) = \frac{k_{\rm i}(E_{\rm c,a}/N)}{u_{\rm e}(E_{\rm c,a}/N)(E_{\rm c,a}/N)}, (13)$$

где $k_i(E_{c,a}/N)$ и $u_e(E_{c,a}/N)$ – соответственно константа ударной ионизации и дрейфовая скорость электронов.

Рассмотрим в качестве примера плазму SF₆ при давлении p = 30 мм рт. ст. с характерной плотностью тока $J_t \sim 1$ A/см². Используя данные [14, 15, 22] по k_i и u_e и соотношения (7), (11), (12), (13), получаем $\xi \approx 0.1$. Такая же относительная погрешность типична и для всех других режимов распада плазмы, исследованных в настоящей работе.

При оценке величин U_c и U_a сделан ряд допущений (не рассматривалась, в частности, и возможность образования двойных слоев в приэлектродных областях). Тем не менее полученные оценки представляются достаточно хорошим приближением к реальным значениям. Косвенным подтверждением этому может служить, по-видимому, тот факт, что оценки величин $\Delta U = U_c + U_a$ удовлетворительно согласуются с сответствующими значениями, найденными нами при экстраполяции экспериментальной зависимости $U_{st}(pd)$ [1] для SF₆ и смесей SF₆ с C₂H₆ в область $pd \rightarrow 0$ (U_{st} – напряжение в квазистационарной фазе OCP).

Время релаксации приэлектродного слоя по порядку величины совпадает с временем дрейфа ионов через этот слой $\tau_{c,a} = \varepsilon_0(E_{c,a}/p)/[(J_t/p^2)p]$. Например, при p = 30 мм рт. ст. и $J_t \sim 1$ А/см² имеем $\tau_{c,a} \sim 10^{-8}$ с. Такого же порядка $\tau_{c,a}$ типичны и для других условий. Поскольку интерес в настоящей работе представляет исключительно микросекундный диапазон, то использование выше квазистационарного приближения вполне оправдано.

При характерных для рассматриваемых условий значениях E_c и E_a в исследуемых газах в приэлектродных слоях выполняется соотношение $l_e \sim l$, где l и l_e – соответственно длины свободного пробега и релаксации энергии электронов. Из соотношений (5), (6), (11), (12) следует также, что $d_{c,a} \gg l_i$, где l_i – длина ионизации в прикатодной или прианодной области. Учитывая, что $l/l_i < 1$, получаем $l_e/d_{c,a} \ll 1$, следовательно, в приведенном выше описании приэлектродных слоев допустимо использование локальных зависимостей транспортных коэффициентов от напряженности поля.

5. Заключение

Таким образом, измерены коэффициенты ион-ионной рекомбинации в SF_6 и смесях $SF_6:C_2H_6 = 10:1$ в диапа-

зоне давлений 15-90 мм рт. ст. при значениях приведенной напряженности электрического поля E/N = 100 - 250Тд. Погрешность оценки полей в плазме не превышает 10 % при суммарной погрешности измерений не более 20 %. Экстраполяция результатов измерений в область более высоких значений Е/N позволяет оценить коэффициент рекомбинации β и
онов SF $_6^-$ и SF $_5^-$ с ионами SF $_5^+$ в
SF $_6$ при $E/N \sim (E/N)_{\rm cr}$ как ~ 10⁻⁸ см³/с. Значения β для SF_6 при p = 90 мм рт. ст. и E/N < 160 Тд близки к полученным в [5] с использованием методики, отличной от нашей. В смесях $SF_6:C_2H_6 = 10:1$ при типичных для HFлазеров давлениях p = 60 мм рт. ст. коэффициент рекомбинации в распадающейся плазме $\beta = 4.3 \cdot 10^{-8}$ см³/с, а уменьшение ионной концентрации на порядок, как показывают расчеты [4], происходит за время ~ 200 нс, сравнимое с длительностью всего разряда ~ 300 нс. Это дает основания полагать, что ион-ионная рекомбинация в смесях SF₆ - C₂H₆ может существенно ограничивать концентрацию ионов и на стадии самостоятельного разряда и, следовательно, должна учитываться при расчете характеристик HF-лазеров. Моделирование ОСР в SF₆ с использованием коэффициента $\beta = 10^{-8}$ см³/с показывает, что и в этом случае ион-ионная рекомбинация может весьма заметно влиять на баланс плотности ионов на всех стадиях разряда.

Авторы выражают искреннюю благодарность Ю.Л. Калачеву за помощь в проведении эксперимента.

- Аполлонов В.В., Белевцев А.А., Казанцев С.Ю., Сайфулин А.В., Фирсов К.Н. Квантовая электроника, 30, 207 (2000).
- Аполлонов В.В., Казанцев С.Ю., Орешкин В.Ф., Фирсов К.Н. Квантовая электроника, 24, 213 (1997).
- Apollonov V.V., Firsov K.N., Kazantsev S.Yu., Oreshkin V.F., Saifulin A.V. Proc.SPIE, 3886, 370 (2000).
- Apollonov V.V., Belevtsev A.A., Firsov K.N., Kazantsev S.Yu., Saifulin A.V. Proc. XIII Intern. Conf. on Gas Discharges and their Applications (Glasgow, UK, 2000, v.1, p.409, contributed papers).
- 5. Cornell M.C., Littlewood I.M. J. Phys. D, 20, 616 (1987).
- 6. Littlewood I.M J.Phys.D, 23, 308 (1990).
- Schmidt W.F., Jungblut H., Hansen D., Tagashira H. Proc. II Intern. Symp. on Gaseous Dielectrics (N.Y., Pergamon Press, 1980).
- Littlewood I.M., Pyle R.E. J. Phys. D, 23, 312 (1990).
 Аполлонов В.В., Казанцев С.Ю., Орешкин В.Ф., Фирсов К.Н. Письма в ЖТФ, 22, №24, 60 (1996).
- 10. Morgan W.L., Bardsley J.N., Lin J., Whitten B.L. *Phys. Rev.A*, **26**, 1696 (1982).
- 11. Sauers I., Harman G. J. Phys. D, 25, 761 (1992).
- Wagner J.J., Brandt W.W. Plasma Chem.Plasma Processing, 1, 201 (1981).
- 13. Brandt K.P., Jungblut H. J.Chem. Phys., 78, 1999 (1983).
- Nakano N., Shimura N., Petrovic Z.L., Makabe T. *Phys.Rev.E*, 49, 4455 (1994).
- 15. Olthoff J.K., Van Brunt R.J. J. Chem. Phys., 91, 2261 (1989).
- Смирнов Б.М. Ионы и возбужденные атомы в плазме (М., Атомиздат, 1974).
- Flesch J., Utecht R.E., Svec H.J. Intern.J.Mass.Spectrom.Ion Processes, 58, 151 (1984).
- Chatham H., Hills D., Robertson R., Gallagher A. J. Chem. Phys., 81, 1770 (1984).
- Мак-Даниэль И., Мэзон Э. Подвижность и диффузия ионов в газе (М., Мир, 1976).
- 20. Райзер Ю.П. Физика газового разряда (М., Наука, 1987).
- Грановский В.Л. Электрический ток в газе. Установившийся ток (М., Наука, 1971).
- 22. Lisovskiy V.A., Yegorenkov V.D. Proc. Intern. Symp. on Electron-Molecule Coll. Swarms (Tokyo, Japan, 1999, p.156).