
Abstract. The distribution function w0(n0) of the number n0
of particles in the condensate of an ideal Bose gas conéned by
a trap is found. It is shown that at the temperature above the
critical one (T > Tc) this function has the usual form w0(n0)
� (1ÿ e l) eln0 , where l is the chemical potential in the tem-
perature units. For T < Tc, this distribution changes almost
in a jump to a Gaussian distribution, which depends on the
trap potential only parametrically. The centre of this function
shifts to larger values of n0 with decreasing temperature and
its width tends to zero, which corresponds to the suppression
of êuctuations.
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The concept of statistical independence of ensembles of
particles occupying different quantum states [1] results in
the factorisation of the distribution W (n0; n1; :::) of the
number nk of particles in the states with energies
E0 < E1 4E2::::

W�n0; n1; :::� �
Y
k

wk�nk�, wk�nk� � Qke
� mÿek�nk , (1)

where ek � Ek=T ; T is the temperature expressed in energy
units; m is the chemical potential expressed in temperature
units; Qk is the normalising factor [in the notation in
formula (37.4) of [1], Qk � exp (Ok=T ), where Ok is the
thermodynamic potential]. In the case of the Bose ëEinstein
statistics, the probability of different values of nk should be
normalised by the condition

XN
nk�0

wk�nk� � 1,

where N is the total number of gas particles. For N !1,
this gives

wk�nk� � 1ÿ emÿek� �e� mÿek�nk . (2)

Then, the chemical potential m is determined by the
requirement that a sum of average values

hnki � ~nk �
X1
nk�0

nkwk�nk�

of nk from (1) and (2) would be equal to the total number N
of particles:

X
k

~nk � N, ~nk � e ekÿm ÿ 1� �ÿ1. (3)

The energy Ek can be measured from the ground-state
energy. In this case, e0 � 0, and we obtain from (2) and (3)

w0�n0� � 1ÿ e m� �e mn0 , ~n0 � �eÿm ÿ 1�ÿ1. (4)

At low temperature, at least for a system with a discrete
spectrum, the distribution (1), (2) becomes inherently
contradictory. For T ! 0, we obtain ek 6�0 !1 and
~nk6�0 ! 0. This means that for T � 0, all the particles
should be deénitely found in the ground state, i. e., the
distribution of the number of particles in the ground state
should have the form

w0�n0� � dn0;N , T � 0. (5)

In this case, however, it follows from (3) and (4) that
~n0 � N, m � ÿ ln (1� 1=N) ' ÿ1=N, and the distribution
takes the form

w0�n0� � Nÿ1eÿn0=N, (6)

which drastically differs from (5). This results in the
êuctuation catastrophe, which has been discussed in paper
[2] irrespectively of the contradiction between (5) and (6).
From Eqns (1) and (2) follows the known expression for the
root-mean-square êuctuation hDn 2

k i � ~nk(~nk � 1) (see [1],
æ 113), which yields certainly the incorrect result hDn 2

0 i �
N(N � 1) for T � 0; when ~n0 � N.

In this paper, it will be shown that Eqns (1) and (2)
correctly describe the distribution of the number of particles
only in excited states. The distribution (4) of the number of
particles in the ground state is valid only at temperatures
above the critical temperature Tc, when hn0i5N. For
T < Tc, this distribution changes, and for a system with
a discrete spectrum (gas in a trap) it takes a Gaussian shape.
In this case, the êuctuation catastrophe is eliminated. In
fact, this change in the distribution is caused by the necessity
of the fulélment of the exact relationX

k

nk � N, (7)
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rather than expression (3), which is valid only for average
values. This circumstance becomes substantial at T < Tc

and results in the statistical dependence of ensembles of
particles occupying different quantum states.

The distribution function w0(n0) is obtained by summing
the Gibbs distribution

w0�n0� �
X

n1�n2�:::�Nÿn0
W�n0; n1; :::�

� Sÿ1
X

n1�n2�:::�Nÿn0
eÿe0n0ÿe1n1ÿ::: , (8)

where S is a normalising factor. The summation in (8) is
performed over all positive n1, n2, ... satisfying the condi-
tion (7). This condition can be satiséed automatically if the
sum in (8) is written in the form

w0�n0� � Sÿ1eÿe0n0
X
n1;n2:::

eÿe1n1ÿe2n2ÿ:::

� 1

2pi

�
z�ÿN�n0ÿ1��n1�n2�:::dz. (9)

The integration contour in (9) is a circle with a centre at
the point z � 0. Only when the condition (7) is satiséed, the
integrand in (9) has a simple pole and the integral is equal to
2pi. In other cases, the integral is zero, which allows one to
perform summation over all positive n1, n2, ... in (9) without
any restrictions; only the convergence of all the sums
appearing should be provided. This will be satiséed if
the radius of the circle, which can be conveniently written
in the form jzj � e m, is limited by the condition e mÿe0 < 1.
After that, we can set e0 � 0 and require the fulélment of the
condition m < 0.

The summation in (9) gives

w0�n0� � Sÿ1
1

2pi

�
zÿN�n0ÿ1eG�z�dz, (10)

eG�z� �
Y
k 6�0
�1ÿ zeÿek�ÿ1, G�z� � ÿ

X
k6�0

ln�1ÿ zeÿek�.

The function G�z� inside the circle jzj � e m < 1 has no
singularities, so that w0(n0 � N ) � Sÿ1eG�0� � Sÿ1. For
n0 � N ÿ 1, we obtain that the probability

w0�n0 � Nÿ 1� � Sÿ1
d
dz

eG�z�
� �

z�0
� Sÿ1

X
k6�0

eÿek

at T ! 0 is exponentially small and decreases with further
decreasing n0. This means that at T ! 0, we may restrict
ourselves to two quantities

w0�n0 � N � � 1ÿ
X
k 6�0

eÿek , w0�n0 � Nÿ 1� �
X
k6�0

eÿek . (11)

For T � 0, we obtain expression (5) from (11). It is natural
that the êuctuation corresponding to (5) is hDn 2

0 i � 0.
The quantities ek 6�0 decrease with increasing temperature,

and it becomes impossible to obtain the distribution by such
a simple method. For this reason, we proceed as follows.
Having made the change of variables z � e m�ix in (10), we
obtain

w0�n0� � Sÿ1e mn0
� p

ÿp
eÿi�Nÿn0�x�F�x�dx,

F�x� � ÿ
X
k 6�0

ln�1ÿ e m�ixÿek�. (12)

We omitted in (12) all the factors independent of n0, which
are included in the normalisation S determined by the
relation (12) itself.

The three érst terms of the expansion of the function
F (x) have the form

F�x� � F�0� � iAxÿDx 2, (13)

where

F�0� � ÿ
X
k6�0

ln�1ÿ emÿek�; A �
X
k 6�0

~nk; D � 1

2

X
k 6�0
�~nk � ~n 2

k �.

The érst term of this expansion enters into the normal-
isation after the substitution into (12) and can be omitted.

Let us now choose a parameter m by requiring the
fulélment of the condition

A �
X
k6�0

~nk � Nÿ ~n0, (14)

which coincides with (3), and consider the temperature
dependences of A and D.

For T ! 0, we obtain ek6�0 !1, from which it follows
that ~nk 6�0 ! 0, ~n0 ! N, m! ÿ1=N, so that A! 0 and
D! 0. As temperature increases, the values of ek 6�0
decrease, whereas the values of ~nk6�0 and, hence, A and
D increase, and for T > T� (where T� is a characteristic
temperature, which depends on the number N of particles
and the trap potential) these quantities become of the order
of N, i. e., very large. It is important that, if the number N of
particles is large, the values of A and D are already very
large when ~n0 � N ÿ A is still very close to N, while m �
ÿ 1=~n0 is still very small, i. e., the temperature T� is certainly
far less than the critical temperature (for example, for
N � 1000 and A � 100, D5 50, we obtain ~n0 � 900).

As temperature further increases, the values of ek 6�0
continue to decrease, and the condition (14) can be fulélled
only at suféciently large values of jmj. In this case, the value
of ~n0 becomes small, i. e., the condensate fraction disappears
and A and D reach their maximum values A � N and
D5N=2.

Therefore, beginning from temperatures T > T�, which
are still much lower than the critical temperature, the real
part of F (x) becomes large already at jxj5 1. This allows
one to substitute the expansion (13) into (12) and to tend the
limits of integration to inénity. Taking into account (14), we
obtain

w0�n0� � Sÿ1e mn0eÿ�n0ÿ~n0�2=4D, m � ÿ ln�1� 1=~n0�. (15)

The distribution (15) has a universal form because it
depends on the trap potential and the number N of
particles only via the parameters ~n0 and D appearing in it.
This distribution has qualitatively different form for large
and small ~n0, i. e., at temperatures above and below the
critical temperature.

In a broad temperature range below the critical temper-
ature, when the conditions

~n 2
0 4D, Nÿ ~n0 4 1, (16)

The distribution function and êuctuations of the number of particles in an ideal Bose gas conéned by a trap 17



are satiséed, the distribution function (15) is exponentially
small at two extreme points n0 � N and n0 � 0 [the second
inequality is equivalent to the condition D4 1 and
simultaneously provides the validity of (15)], i. e., it has
in fact a Gaussian shape. As temperature decreases, ~n0
increases, D decreases, the distribution (15) narrows down,
and its centre shifts to larger values of n0. In the calculation
of the statistical sum S, we can pass from summation to
integration with inénite limits, which gives S �
2
�������
pD
p

exp ( mn0 � m 2D), m � ÿ1=~n0. The calculation of the
average values is reduced to the differentiation of S with
respect to m, and we énd the average number of particles in
the condensate hn0i � ~n0(1ÿ 2D=~n 2

0 ), which weakly differs
from ~n0 (but does not coincide with it), and the root-mean-
square êuctuation hDn 2

0 i � 2D, which decreases along with
D with decreasing temperature.

As temperature increases, ~n0 also decreases, the érst of
the conditions (16) is no longer satiséed, and the distribu-
tion (15) presses itself increasingly to its left boundary n0 �
0. Finally, for n0 5D (however, the condition ~n0 4 1 can be
still valid), the factor e mn0 becomes dominant in the
distribution (15), and this distribution takes the form (4).

Similarly to (10), the joint distribution

w0; i6�0�n0; ni� �

Sÿ1eÿeini
1

2pi

�
zÿNÿ1�n0�nieG�x��1ÿ zeÿei�dz.

can be written. Having performed the same transformations
as in deriving (15), we énd that the distribution function

wi 6�0 �
XN
n0�0

w0; i6�0�n0; ni�

of the excited particles coincides with (1), (2) at all
temperatures.

In the case of a parabolic trap at the temperature
T� < T < Tc � DT , where T� � TcN

ÿ1=3 and DT 5Tc,
the quantities ~n0 and D can be calculated exactly [3]:

~n0 �
1

2
N 1ÿ t 3 � �1ÿ t 3�2 � 4gt 3=N� �1=2
n o

,

D � gt 3N=2, t � T=Tc, g ' 1:37. (17)

One can see from (17) that in this case, the distribution (15)
changes its Gaussian shape to the form (4) in a narrow
vicinity of the critical temperature jT ÿ Tcj4 1=

�����
N
p

, i. e.,
for large N, virtually in a jump. It is shown [4] that this
transition is accompanied by a jump in the heat capacity by
D(dE=dT ) ' ÿ6:75N. Fig. 1 shows a qualitative change in
the shape of the distribution function (15) in the vicinity of
the critical temperature.
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Figure 1. Distribution function (15) of the number of particles in a Bose-
gas condensate conéned by a trap at different temperatures and
N � 10000. The quantities ~n0 and D are calculated from formula (17).
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