
Abstract. A study was made of the physical properties of the
so-called foam ë a low-density (the average density is � 1
lg cmÿ3) microstructured medium. Foams of different type
were classiéed according to the speciéc features of their inter-
nal structure. The propagation of high-power laser radiation
through these media was considered and the relationships for
the depth of radiation penetration for differently structured
foams were obtained. Based on a self-similar solution descri-
bing the expansion of a élm (élament) with its simultaneous
heating by the law T � At a , a model of the heat propagation
through a porous medium was proposed and a relationship for
the hydrothermal wave velocity vht� �4K=a(a � 2)�1=2cT was
obtained (cT is the isothermal sound velocity in the bulk of the
heated material and K is a constant determined in the context
of the model). The hydrothermal wave velocity was shown to
be substantially determined by the processes occurring on a
foam microstructure scale. The velocity dependence on the
parameters of these processes was analysed within the frame-
work of the proposed model.

Keywords: smoothing of ununiformity of laser target irradi-
ation, microstructured medium (foam), hydrothermal wave
velocity.

Providing a large degree of compression uniformity of
nuclear fuel-bearing targets is crucial to inertial conénement
fusion (ICF). This problem is especially pressing for direct-
drive targets (DDTs). At present, there are two main appro-
aches to the solution of this problem. The érst involves the
development of special techniques of optical smoothing,
such as induced spatial incoherence (ISI) [1], smoothing by
spectral dispersion (SSD) [2], etc., with the aim of impro-
ving the uniformity of laser target irradiation. An alternate
approach is the development of target designs optimal as
regards employing the thermal smoothing in the energy
transfer from the region of absorption of the laser radiation
(LR) to the ablation region owing to the electron heat
transfer (see, e. g., Refs [3 ë 5]).

The use of a low-power LR prepulse with a high degree
of uniformity of DDT irradiation to produce a plasma cloud
around the target was proposed in Ref. [3]. Then, by the
time of arrival of the main pulse, the region of energy release
would be separated from the ablation surface by a distance
D and the smoothing of the nonuniformity dI=I of target
irradiation would take place due to the electron thermal
conduction. The degree of smoothing is determined by the
characteristic spatial nonuniformity wavelength l?: dp=p �
dI=I exp (ÿ 2pD=l?), where p and dp are the pressure and
its variation caused by the intensity variation dI .

The prepulse-assisted thermal smoothing was experimen-
tally demonstrated in Ref. [4]. A disadvantage of this tech-
nique is that a very high degree of irradiation uniformity
should be provided during the action of a LR prepulse on
the target. Otherwise the irradiation nonuniformities would
be `imprinted' on the target and would set the stage for the
efécient development of gas dynamic instabilities.

From this point of view the employment of an additional
thick-layered outer shell made of a material with about a
critical density holds more promise for smoothing the
nonuniformities. As shown by the calculations of Ref.
[6], it is possible to select the parameters of this layer
(the initial density rf and the layer thickness Df ) in such a
way that, on the one hand, there should be no reduction of
the hydrodynamic eféciency, and on the other hand, the
existence of a spacing between the region of energy release
and the ablation region D � Df at the onset of the laser pulse
would favour a more efécient thermal smoothing of the
irradiation nonuniformities. This is the reason why great
interest has been expressed by researchers in the use of
materials of this kind (see, e. g., Refs [7 ë 9]).

The materials with a very low density mentioned above
are microstructured media made of randomly oriented
polymer ébres or thin élms of solid-state density separated
by vacuum gaps. In the general case, this `foam' may consist
of both ébre and élm fragments. The average density of a
porous medium (foam) rf may vary over a wide range,
depending on the characteristic spacing d and the ébre (élm)
thickness. For a foam dominated by élamentary structures,
the average density is

rf � r0p
d0
d

� �2

, (1)

where d is the average distance between the ébres; d0 is the
average ébre thickness; and r0 is the ébre density.

In foams produced primarily by élm fragments, the
latter will evidently form three-dimensional polyhedrons of
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an arbitrary conéguration. The cavities bounded by such
polyhedrons can be either closed or in communication with
each other. Generally speaking, a foam can contain vari-
ously conégured cavities of different size. However, in the
consideration of a foam of a élm structure we will proceed
from the average characteristics of the porous medium:
speciécally, the foam will be assumed to contain pores with
some characteristic radius R0 in which the openings occupy
a relative area p (the case where p! 0 corresponds to the
situation of closed pores). The average density of a porous
structure

rf � 3r0w�1ÿ p�=R0 , (2)

where w is the density of a pore wall.
The LR transfer in a porous medium was investigated in

several experimental and theoretical papers (see, e.g., Refs
[10, 11]). The propagation of LR in a foam depends substan-
tially on its internal structure, and the propagation will
therefore be considered starting from the proposed classié-
cation of the porous media. As will be seen from the sub-
sequent discussion, the knowledge of only the average foam
density proves to be insufécient and the speciéc feature of its
structure should also be taken into account. For a foam of
purely élamentary structure, the LR propagation length is
determined by the geometrical shadow produced by the
ébres in the bulk of the material:

l � d 2

d0k
, (3)

where k is the average absorption coefécient for the LR
incident on a ébre.

The penetration of LR into a porous medium with
closed pores is limited by the non-vaporised surfaces of the
pore walls. In a foam with open pores, the situation is
different: by multiple internal reêection (which is typical for
the absorption of high-power radiation with a wavelength of
the order of 1 mm), the LR can propagate through the holes
in the pore walls to relatively large depths. To estimate the
depth of its penetration into the foam in this case, we
consider a single pore. Let the LR with an energy EL be
delivered to the pore through the holes. Then, assuming that
EL is fairly uniformly distributed over the internal surface of
the pore, we conclude that a fraction pEL of this energy will
escape through the holes immediately and a fraction
(1ÿ p)kEL will be absorbed. Accordingly, an energy (1ÿ
p)(1ÿ k)pEL will leave through the holes after the érst ref-
lection, etc. Summing over the members of this series gives
an estimate of the LR energy emerging from the pore:

E � EL p
X1
n�0
�1ÿ p�n�1ÿ k�n � pEL

1ÿ �1ÿ p��1ÿ k� . (4)

One can see from (4) that upon the multiple internal
reêection of the LR from the internal surface of the pore
walls, the fraction EL that escapes absorption by the walls,
can be quite large (it proves to be out of proportion to the
area of the holes in an averaged elementary cell). Assuming
that the absorption occurs over a distance 2R0 and that half
the unabsorbed energy EL is reêected backwards after mul-
tiple internal reêection, we obtain the LR penetration depth

l � R0
1ÿ �1ÿ p��1ÿ k�

k�1ÿ p� . (5)

Note that for small absorption coefécients k, the length l
can substantially exceed the pore diameter, whereas in the
case of closed pores, it is evident that l � 2R0.

Let us estimate the depth of LR penetration into foams
with a different internal structure and an average density
rf � 5 mg cmÿ3. In a foam consisting of ébres of thickness
d0 � 1:2 mm spaced at d � 30 mm, l � 1:5� 103 mm for
k4 1, according to formula (3). For a rather `porous'
foam with a relative area of the holes p � 0:5, the depth
is l � 45 mm for pore diameters d � 2R0 � 30 mm and a wall
thickness w � 0:05 mm. Accordingly, for a foam consisting
closed pores, l is still lower and is evidently equal to the pore
diameter: l � d � 30 mm. Therefore, the internal foam
structure signiécantly affects the LR penetration depth.

The heat is transferred from the region of intense
absorption of the high-power LR to the bulk of a colder
material. The transfer of thermal energy in a homogeneous
material has been much studied to date (see, e.g., Ref. [12]).
In the initial stage of laser irradiation, the velocity of
propagation of the thermal wave (TW) exceeds the sound
velocity, and the material motion can be neglected at this
stage. The velocity of the thermal wave decreases during its
propagation, and at some point in time t0 the shock wave
catches up with the thermal one. Thereafter the gas dynamic
motion should be taken into account to describe the heat
transfer.

Let us estimate the characteristic time t0. According to
Ref. [10], the velocity of the TW front propagation through
an immobile material for a éxed LR intensity Q0 is

vhw �
7
9
k 2=9
0

Q 5=9
L

�cVr�7=9
1

t 2=9
, (6)

where k0 is the thermal conductivity coefécient; cV is the
heat capacity of the material; and QL is the LR intensity.
Equating vhw to the sound velocity gives

t0 �
7
9

� �3 QLk0
�cV �gÿ 1��1=2�cVr�2

. (7)

It follows from Eqn (7) that the time t0 depends rather
strongly on the material density. For instance, for QL�
1014 ÿ 1015 W cmÿ2 and a material density rf � 1 mg cmÿ3,
t0 � 20ÿ 200 ns, which far exceeds the typical LR pulse
duration in ICF experiments. To estimate t0, we adopted a
plastic-like material with parameters g � cp=cV � 5=3, cV �
7:8�107 J g ë 1 Kë 1, k0 � 7:9�10ÿ11 W cmë1 Kë 7/2. There-
fore, in the range of LR pulse duration (tL � 1 ns) of in-
terest and for homogeneous media with densities corres-
ponding to the average foam density, the energy transfer is
supersonic.

However, the heat transfer in porous materials differs
from that in a homogeneous medium. Initially, there occurs
the heating of the foam media by the LR (through its pene-
tration depth) and then the heat transfer is effected by the
expanding plasma of the heated material volume. In this
case, the heating takes place in the so-called hydrothermal
wave mode, when the cold material is heated in contact with
a hot low-density plasma. In Ref. [13], the propagation of a
hydrothermal wave through a porous medium was studied
under the assumption that its velocity was constant and
equal to the local sound velocity in the medium. It is our
belief that the processes occurring on the foam microstruc-
ture scale should essentially affect the velocity of a hydro-
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thermal wave. In this connection the aim of our conside-
ration is to establish the dependence of the wave velocity on
the parameters describing the microdynamics of the mate-
rial.

During the foam heating, the élms (or ébres) of the cold
material heat up and expand on contact with the hot low-
density plasma, which acts as a thermal reservoir and does
not exert any noticeable effect on the élm (ébre) expansion
dynamics owing to its extremely low density. We assume, on
these grounds, that the gas-dynamic élm (ébre) expansion
takes place autonomously and the expanding material heats
up in the process. In view of the latter circumstance, the
microdynamics of the foam heating cannot be described in
the context of the model of adiabatic or isothermal ex-
pansion of its microstructure components. Nevertheless, the
description of the microdynamics of the wall (ébre) expan-
sion proves to be possible by taking advantage of the self-
similar solution that represents the gas dynamic élm (ébre)
expansion with its simultaneous heating by the T (t) � At a

law. In the case of a plane, cylindrical, or spherical geometry
of the problem (i. e., in the expansion of a plane wall, ébre,
or sphere), the material expansion takes place with a linear
proéle of the mass material velocity and a characteristic
Gaussian density proéle [14]:

r�x; t� � a�a� 2�
4p

� �n=2
M

Rn�t� exp ÿ
a�a� 2�

4
x 2

� �
, (8)

where x � x=R(t) is the self-simulated variable; R(t) � ��gÿ
1)cVT (t)�1=2t is the characteristic spatial scale; n � 1, 2, or 3
respectively for a plane, cylindrical, or spherical geometry
of the problem. The energy of the expanding material is

E�t� �McVT�t� 1� gÿ 1
2

a� 2
a

n
2

� �
. (9)

To analyse the heat transfer, we will use the following
model: the porous medium is represented as a multitude of
thin plane parallel walls of a material of solid-state density
and thickness w spaced at a distance d (Fig. 1). This porous
medium is heated by high-power LR. When the hot rareéed
plasma reaches a cold wall, the latter heats up (by the heat
accumulated in the volume of the hot material) and begins
to dump in response to this heating. Neglecting the inertial
action of the incident plasma (because of its low density), we
assume that the expansion of the material wall takes place
according to the law given by expression (8).

Expression (8) deénes a very steep density proéle, and a
relatively well-deéned instant of the `onset' of heat con-
duction is therefore bound to exist. Therefore, the time t� it
takes a hydrothermal wave to travel a distance d can be
determined from the relationship

a�a� 2�
4

d 2

R 2�t��
� K , (10)

where K is a constant. Then, the velocity of propagation of
a hydrothermal wave is

vht �
d
t�
� 4K�gÿ 1�

a�a� 2� cV �A
� � 1

a�2
d

a
a�2 , (11)

where �A is the average atomic weight (atomic number) of
the particles in the foam.

A number of calculations of the dynamics of heating po-
rous media were performed in the context of the model pro-
posed above. The thickness of the plane élms w was taken to
be equal to 0.05 mm and their separation was set to d � 30
mm. A hydrocarbon with a solid-state density r � 1 g cmÿ3

(the average density rf � 1:7 mg cmÿ3), an atomic number
�A � 6:5, an average charge Z � 3:5, and g � 5=3 was selec-
ted as the élm material. The electron and ion heat capacities
in this plasma are as follows: cVe

�7:8� 107 J Kë 1 g ë 1,
cVi
�2:2� 107 J Kë 1 g ë 1.
The system was exposed to high-power LR with an

intensity QL � 1:45� 1013 W cmÿ2 and a wavelength l �
1.315 mm (the critical density for this wavelength is rcr � 2
mg cmÿ3). The calculations were conducted in the frame-
work of a one-dimensional two-temperature gas dynamic
model with the inclusion of thermal conduction and LR ab-
sorption. At the instant the plasma of heated material layers
élled the free space to the next layer, a new material layer
was added. Each material layer contained 150 Lagrangian
points.

The results of gas-dynamic calculations in the context of
so simple a model allow an understanding of the principal
processes occurring when a foam material is heated by high-
power LR. Figs 2 and 3 show the proéles of the density, the
velocity, the electron and ion temperatures after the impact
of the érst material layer on the second one. The times it
takes the hydrothermal wave to travel from the second layer
to the third one and from the third one to the fourth are
virtually the same and equal to 40 ps. One can see the
regions of self-similar motion [the density is described by
expression (8)], which form early in time after the com-
mencement of heating each successive layer of material. The
regions of self-similar êow are separated by the shock waves
that originate after the discontinuity decay at the instant the
plasma stream strikes a cold dense wall: a weak shock wave
originates in the cold dense material of the pore wall, which
does not lead to noticeable compression or heating, whereas
a strong shock wave originates in the incident rareéed
plasma, resulting in the heating of ions up to a temperature
of � 10 keV.

One can see from Figs 2 and 3 that the region of ion
heating advances beyond the domain enclosed by the shock
waves due to the ion thermal conduction for such ion
temperatures. For material densities of the order of the
average plasma density, the electronëion relaxation times far
exceed the time it takes a hydrothermal wave to travel from
one material layer to another:

w

d

QL

Figure 1. One-dimensional model, which represents the foam as a set of
plane-parallel élms, employed in the gas dynamic calculations.
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tei � 45
�AT 3=2

e

Z 3rLei
� 500ps,

where Te is expressed in kiloelectronvolts, r in g cmÿ3, and
tei in picoseconds; Lei is the Coulomb logarithm.

Hence, the regions of higher ion temperature will exist in
the plasma for some time after the passage of a hydro-
thermal wave. We emphasise that the origination of shock
waves and the consequential formation of hot-ion domains
when a foam material is exposed to high-power LR is caused
by the foam structure. In particular, no appreciable ion
heating is observed in the calculations where the pores are
élled with a material with a density comparable to the
average foam density.

Thus, one can see from Figs 2 and 3 that the micro-
dynamics of the hydrothermal wave propagation through a
porous medium can be described using the self-similar
solution (8). In this case, however, the parameters A and
a remain undeéned. We will énd them relying on the data of
numerical calculations. To this end, we write, in addition to
relationship (10), the condition for the energy balance (9)
during the period of heating the next layer:

QLt� �McVAt� 1� gÿ 1
2

a� 2
2a

� �
. (12)

Since the intensity of electron-ion heat exchange is low
(the characteristic relaxation times tei are long), the thermal
capacity of the electron component should be used as the
thermal capacity of the matter. The incident plasma stream
heats the layer material to a temperature T0, i. e., T (t�) � T0
� At a� . Note that the entire thin material layer is assumed to
heat up by the power law everywhere over the volume from
the very beginning. This assumption involves in essence two
assumptions: (i) the initial heating of the entire layer to some
initial temperature (which is far lower than T0) takes place
in a time much shorter than t�; (ii) subsequently there occurs
a relatively uniform heating of the entire volume of the layer
material.

The érst assumption is legitimate for the length scale of
the order of the layer thickness, which is easy to verify (see
the estimates given in the foregoing text). The second
assumption is justiéed for a time comparable with t� (while
the layer temperature is comparable with T0). We extend it
to all the instants of time since the commencement of layer
heating. The legitimacy of this assumption is suggested by
the characteristic self-similar êow proéles (8) formed in the
calculations immediately after the beginning of the layer
heating. We resolve expressions (9), (11), and T (t�) � T0
for A, a, and t� to obtain

t� �
McVT0

QL
1� gÿ 1

2
a� 2
2a

� �
, (13)

A � T0

�
McVT0

QL
1� gÿ 1

2
a� 2
2a

� �� �a
(14)

and the equation for determining the a parameter

1� gÿ 1
2

a� 2
2a

� �2

� a�a� 2�
4K�gÿ 1� b, (15)

where the dimensionless parameter is

b � (QLd=M )2=(cVT0)
3.
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Figure 2. Density (r), velocity (v), ion (Ti) and electron (Te) temperature
proéles within Dt � 11 ps after the érst layer strikes the second one.
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Figure 3. Density ( r), velocity (v), ion (Ti) and electron (Te) temperature
proéles within Dt � 39 ps after the érst layer strikes the second one.
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In the calculations, the moment at which the incident plas-
ma collides with the pore wall is determined by the constant
K � 4:1. For positive a, Eqn (15) has only one root. Sub-
stitution of the calculated K, QL, d, M � 5 mg cmÿ2, and
T0 � 0:5 keV in formulas (13) ë (15) gives b � 127. For the
above values of these quantities, the root of Eqn (15) is
a � 0:25. This gives us the hydrothermal wave velocity vht
� 8:7� 107 cm sÿ1, whereas our gas dynamic calculations
yield 7:5� 107 cm sÿ1.

Here, we do not analyse the mechanisms of heat
exchange between the incident plasma stream and the
pore wall. Referring to Fig. 2, a considerable volume of
the near-wall plasma experiences cooling immediately after
the plasma contact with the pore wall. This is indicative of a
high intensity of the heat exchange between the plasma and
the wall material, which exceeds the intensity of absorbed
LR at the initial instants of time. Later, when the temper-
ature of the pore wall material becomes comparable with the
temperature of the plasma of the heated material volume,
the intensity of the heat exchange falls off.

These two circumstances determined the parameter
value a � 0:25 obtained in our estimates (which is in essence
some average over the whole time of heating and expansion
of the wall). Note that the potential and kinetic energies of
the expanding layer prove to be comparable for this a-
parameter value [according to formula (9), the kinetic
energy of the plane layer exceeds its internal energy by a
factor of 1.5].

Relationship (11) can be recast to more compact and
clear form if we introduce cT � (gÿ 1)cVT0� �1=2� �(gÿ
1)cVAt

a
�
�1=2

ë the isothermal sound velocity in a heated
material. We then obtain the hydrothermal wave velocity

vht � �4K=a�a� 2��1=2cT .

Therefore, in our model the velocity of propagation of the
hydrothermal wave from the source of high-power energy
release in a porous medium is proportional to the isother-
mal sound velocity, with the proportionality factor far exce-
eding unity; i. e., the heat propagation in a foam is essen-
tially supersonic.

The constant K was found from a ét to the calculated
data. In reality, owing to the steepness of the density proéle,
account should be taken of the thermal êux limitation in the
rareéed incident plasma stream. That is why the `onset' of
heat exchange with the pore wall governed by the K para-
meter will occur at quite a certain point in time, when the
heat êux attains some threshold value.

Since the density proéle in the incident plasma is
Gaussian, the dependences of the K parameter on the
temperature of the expanding layer, the heat êux due to
the absorption of LR, and the characteristic dimension of
the plasma layer at the instant of the `onset' of thermal
conduction will be logarithmic (i. e., very weak). Hence the
K parameter can be treated as a constant in our model
consideration. The gas dynamic calculations of foam
heating with the inclusion of thermal êux limitation were
also performed for the model considered above: it was
assumed that the electron heat êux S cannot exceed

Slim � fne�Te=me�1=2T , (16)

where f � 0:1; ne is the electron density; and me is the
electron mass.

The heat êux limitation permits calculating the hydro-
thermal wave propagation through a foam medium with a
low-density élling of the inner pore volume (with a density
of the material in the space far lower than the average foam
density rf ). In this case, there is no appreciable heat
exchange between the pore walls to the point of élling
the inner pore space with the plasma.

In the calculation of material heating by high-power LR
with the inclusion of heat êux limitation, the LR-absorption
region (in a subcritical plasma) has a higher temperature
than the adjacent higher-density plasma layers. As is easily
seen, this kind of `heat blocking' in the low-density plasma
corona heated by LR is bound to occur up to coronal
plasma temperatures Tc � 1 keV in the conditions of our
calculations. In our calculations, the electron temperature
proves to be lower than Tc throughout the time period
under consideration. A consequence of this circumstance is
that QL exceeds the heat êux transferred to the next material
layer. For a near-wall plasma temperature T0 � 0:5 keV, in
particular, the limiting heat êux transferred to the pore wall
is Smax � 0:28QL.

Our calculations suggest that the heat êux limitation in
the space between the pores acts throughout the period of
heating of the next plasma layer. In this connection the heat
transfer to the pore wall will be considered to obey formula
(16) and the incident heat êux taken to be equal to Smax in
order to énd the K constant. We take advantage of the self-
similar relationship (8) for the density r to obtain

K � ln 68
T 3=2

Smax

a�a� 2�
4p

� �1=2 d
R�t��

( )
. (17)

The érst factor in the expression under the logarithm sign is
a large number, and it is precisely this quantity that
determines the K constant. The remaining two cofactors are
two orders of magnitude lower and can therefore be
discarded as small corrections. It follows that the K
constant with a logarithmic accuracy is determined by
the expression

K � 4:2� ln
ÿ
T 3=2=Smax

�
[here and in formula (17), T is expressed in kiloelectron-
volts and Smax in W cmÿ2]. In particular, for the case under
consideration we have K � 8:6. To determine the a
parameter and the hydrothermal wave velocity, we take
advantage of formula (13) once again. In our case, b �
(Smaxd=M )2=(cVT0)

3 � 10 and a � 1:36. In the hydrody-
namic calculation, the hydrothermal wave velocity deter-
mined by these values of K and a is vht � 2:74cT � 4:5
�107 cm sÿ1; in our calculation, vht � (4:3ÿ 5:5)� 107

cm sÿ1. Note that the velocity of TW propagation through
a homogeneous medium with an average density rf will,
after traversing a distance of 120 mm (which corresponds to
four layers in our model), amount to 8:2� 107 cm sÿ1.

Therefore, the investigations carried out in this work
allow us to draw the conclusion that, érst, the heat
propagation through a porous medium (foam) takes place
much differently than through a homogeneous medium with
a density equal to the average foam density. Second, the
hydrothermal wave velocity is substantially determined by
the processes occurring on the microstructure scale of a
porous medium (in particular, the hydrothermal wave velo-
cities in the above calculations with and without thermal
êux limitation are signiécantly different).
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