
Abstract. The modulation instability conditions are studied
for a wave packet consisting of two strongly coupled modes
co-propagating in a two-mode fibre. The two modes are
linearly coupled by the phase matching conditions, which
take the longitudinal periodicity of the fibre into account.
The nonlinear coupling of the modes is provided by the
cross-modulation interaction. The influence of the initial
conditions of the fibre excitation on the subsequent develop-
ment of the modulation instability is analysed. It is shown
that the modulation instability can exist in a region of nor-
mal material dispersion of the fibre.
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The instability of quasi-continuous radiation with respect to a
temporal modulation was érst considered in Ref. [1]. It was
shown that the modulation instability (MI) of the wave in a
nonlinear single-mode ébre arises due to the self-action only
in the region of anomalous dispersion. The MI in ébres with
Kerr nonlinearity was observed in Ref. [2]. Several authors
[3 ë 5] have shown that MI is possible in media with other
kinds of nonlinearity as well. The authors [4, 5] studied the
inêuence of the higher order dispersion on the MI in the
absence of the second-order dispersion.

In the frequency region of normal dispersion, the MI can
be caused by cross-modulation [6, 7]. For example, the
authors of Refs [8, 9] have demonstrated experimentally a
modulation instability arising due to the phase cross-modu-
lation in a two-mode nonlinear ébre, in particular, in the
region of normal dispersion. It is quite interesting to consider
effects related to the wave packet instability caused by
relatively long interaction between short pulses propagating
in nonlinear ébres. In particular, such instability can arise in
systems consisting of two ébres with a distributed coupling or
in two-mode ébres with a strong linear and nonlinear
coupling between the modes.

A strong coupling between co-propagating modes can be
achieved in long-period ébre gratings, which were recently
produced by laterally irradiating germanosilicate ébre with
theUV light [10, 11]. Unlike the conventional Bragg gratings,
which couple the fundamental ébre mode with the counter-
propagating mode [12] and have a spatial period L in the
medium on the order of a wavelength, the proposed photoin-

duced gratings have a period of 100 ë 500 mm and can
eféciently couple co-propagating eigenmodes of the ébre.
The analysis of linear and nonlinear regimes of the optical
mode conversion in such ébres shows that they have unique
dispersion properties [13], which allow the efécient compres-
sion of propagating pulses [14, 15].

In this work, we study the emergence of the modulation
instability of a wave packet propagating in a two-mode pe-
riodic ébre. We consider various types of ébre excitation and
take the érst- and second-order dispersion effects, as well as
nonlinear self- and cross-modulation effects, into account.

Suppose that a light pulse of duration t0 and peak input
amplitude A0 is injected into a two-mode longitudinally pe-
riodic ébre. The modes propagating in the ébre are eféciently
coupled if the phase matching condition is satiséed. Upon
pulsed excitation of the periodic ébre, the phase matching
condition should be satiséed at the central frequency:

b1�o0� ÿ b2�o0� ÿ 2p
L
� 0. (1)

In a longitudinally homogeneous ébre, the phase mat-
ching condition b1(o)ÿ b2(o) � 0 cannot be satiséed be-
cause the propagation constants are different in the working
frequency range (for example, for LP01 and LP02 modes).
Employing the periodicity, one can easily satisfy the phase
matching condition. If the parameters satisfy this condition
closely, we can write the equations for the temporal envelopes
of the coupled pulse modes in the current-time coordinates,
t � tÿ z=u, where u is the group velocity of the wave packet.
Taking into account the group velocity mismatch between the
modes, the material dispersion, and the nonlinear effects
(phase self-modulation and cross-modulation), these equa-
tions can be written in the form [13]
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Here, vÿ1 � (u1 ÿ u2)=2u 2; uj � (qbj=qo)
ÿ1
0 ; uj � (qbj=qo)

ÿ1
0

is the group velocity of the jth mode; 2u � u1 � u2; d is the
material dispersion of the ébre; R is the nonlinearity parame-
ter of the ébre;
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are intermodal coupling constants (sij), phase self-modula-
tion (gii) and cross-modulation (gij) parameters determined by
the corresponding overlap integrales for the proéle functions
U(r) of the ébre modes; and e0 is the dielectric constant at the
ébre axis. The function f (r) describes the distribution of the
dielectric constant over the ébre cross section; parameter
m� 1 is the degree of modulation of the longitudinal optical
inhomogeneity; and k � o=c is the wave number.

Equations (2) should be solved together with the initial
conditions for the temporal mode envelopes Aj, which are
determined by the ébre excitation conditions. These initial
conditions can be quite generally described by the relation
A2(t; 0) � xA1(t; 0), where parameter x determines the ébre
excitation regime. The case of x � �1 corresponds to the
symmetric or antisymmetric ébre excitation, whereas x � 0 or
xÿ1 � 0 correspond to the single-mode excitation.

Let us introduce the characteristic lengths: the dispersion
length, Ld � t 20 jd jÿ1, the group velocity mismatch length,
Lg � t0v, and the nonlinear and intermodal coupling lengths,
Ln � jRA 2

0 jÿ1 and Ls � jsjÿ1, where 2s � s12 � s �21.
In our case, we have Ls � Ld,Lg,Ln; therefore, in the

absence of losses, the variation in the pulse intensity caused by
the material dispersion of the ébre, the group velocity
dispersion of the modes, and the cubic nonlinearity of the
ébre is negligibly small over the length Ls. Consequently, we
can regard the condition jA1j2 � jA2j2 � const as reasonably
well satiséed over the lengthLs. It follows from this condition
that s12 ' s �21 � s, g11 ' g22 � gsm, and 2g21 ' 2g12 � gcm.
We will solve equation (2) in the case of the phase matching
between the modes and within the approximation of slowly
varying amplitudes. The temporal envelope of the correspon-
ding mode will be represented as a sum of two partial pulses:

Aj � �ÿ1� j�1a1�t; z� exp�isz� � a2�t; z� exp�ÿisz�, (4)

where af are amplitudes that vary slowly with the coordinate
z. Inserting expression (4) into Eqn (2), we obtain the
following equations for the amplitudes of the partial pulses
( f � 1, 2):

qaf
qz
ÿ iDf

2

q2af
qt 2
� i
�
wjafj2 � 2Rgsmja3ÿfj2

�
af � 0, (5)

where w � R(gcm � gsm). It follows from Eqns (4) and (5) that
the original pulse can be represented as a combination of
partial pulses a1 and a2, for which the effective ébre dispersion
is given by

Df � �ÿ1� fdm � d, (6)

where dm � 1=v 2s is the intermodal dispersion of the group
velocities of themodes. The sign of thematerial dispersion d is
determined by the actual type of the ébre material dispersion
(normal or anomalous) at the central frequency of the pulse.
If parameters v, s, and d are chosen appropriately, the ébre
can become a waveguide having zero effective dispersion for

one of the pulses. The condition Df � 0 then holds at the
working frequency.

Consider the solution of equations (5) in the case when
small temporal perturbations appear against the background
of a suféciently powerful quasi-continuous pump. If the du-
ration of the wave packet coupled to the ébre is suféciently
long and the quasi-monochromatic approximation is appli-
cable to the pump wave (i. e., the dispersion terms are ne-
gligibly small for it, which should hold for t0 � 10ÿ10 s), we
can write the solution of equations (5) for the amplitudes of
the partial pulses as

af�z; t� � af 0 � Daf�z; t�� � exp ÿi�wa 2
f 0 � 2Rgsma

2
3ÿf 0�

� �
, (7)

where Daf is the complex amplitude of the perturbation,
satisfying the inequality af 0 � jDaf j.

Inserting expression (7) into equations (5) and linearising
them with respect to small perturbations Daf, we derive a
system of equations for the perturbations:
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Taking into account the conditions of the pulse injection into
the ébre, we have for the initial amplitudes of the partial
pulses

a 2
f0 �

I0 1� �ÿ1� fx� �2
4 1� x 2� � , (9)

where I0 is the intensity of the injected pulse. For the
following discussion, the symmetric (x � 1, f � 2) and anti-
symmetric (x � ÿ1, f � 1) ébre excitation regimes, when the
propagating pulse consists of only one partial pulse, will be
particularly interesting. In these cases, the product a10a20 � 0
in accordance with Eqn (9), and system of equations (8)
reduces to a system of two identical equations for perturba-
tions:
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, f � 1, 2. (10)

We will seek the solution of this system in the case of
harmonic perturbations in the form

Daf � bf cos�hzÿ Ot� � ilf sin�hzÿ Ot�, (11)

where h and O are the wave number and perturbation
frequency, respectively. Inserting (11) into (10), we obtain a
system of two homogeneous equations for amplitudes bf and
lf. By solving this equation, we derive the dispersion rela-
tionship

hf � � wI0
O
Of

�
O 2

O 2
f

� signDf

�1=2

, (12)

where O 2
f � 2wI0=jDfj. It follows from Eqn (12) that the

stability of the stationary state depends on the sign of the
effective dispersion describing the propagating partial pulse.
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For Df > 0, the wave number hf is real at any O, and the
stationary state of the pulses is stable with respect to small
perturbations. For Df < 0 and jOj < Of, the wave number hf
becomes imaginary, and a perturbation Daf (z; t) grows
exponentially with z. The perturbation gain is determined by
the relation

Gf � 2Im�hf� � 2wI0
O
Of

�
1ÿ

�
O
Of

�2 �1=2
. (13)

The maximum gain Gf � wI0 is reached at the frequency
jOmj � Of=

���
2
p

. An important feature of the case considered
is that the MI can be observed in the frequency region
corresponding to normal material dispersion d of the ébre.

Fig. 1 shows the dependence of the perturbation gain
Gf on the modulus of the perturbation frequency jOj ob-
tained for the effective dispersion Df � ÿ10ÿ26 s2 mÿ1 and
parameters wI0 � 0:5, 1, 1.5, and 2 mÿ1 in the case of sym-
metric (antisymmetric) ébre excitation. One can see that the
width DO of the MI region and the maximum value of Gf

increase with increasing intensity of the injected radiation
or increasing nonlinearity parameter. At the same time, the
maximum of the gain shifts towards higher perturbation
frequencies.

Because the effective dispersion Df of the partial pulse is
different for the symmetric and antisymmetric ( f � 1, 2) ébre
excitation regimes at the same values of the material disper-
sion d, the width of theMI region and the maximum gain will
be different for these two types of excitation. Furthermore,
when jdj < dm, the MI is not observed upon symmetric ébre
excitation, whereas it can take place upon antisymmetric exci-
tation.

Fig. 2 shows the dependence of Gf on the parameter wI0
obtained for Df � ÿ10ÿ26 s2 mÿ1 and jOj � (0:5ÿ 2)� 1013

sÿ1. One can see that the threshold intensity (nonlinearity)
sufécient to induce the MI increases with increasing pertur-
bation frequency.

In the general case of x 6� �1, the propagating pulse
cannot be described by a single partial pulse; therefore, one
has to solve the complete system of coupled equations (8).
Taking solutions in the form (11), we obtain the general
dispersion equation

h 4 ÿ �K1 � K2�h 2 � K1K2 ÿ F � 0,

Kf � 0:25DfO 2�DfO 2 � 4wa 2
f0�, (14)

F � 4D1D2R 2g 2smO
4a 2

10a
2
20.

Equation (14) has the following solution:

h 2
� � 0:5 K1 � K2 � �K1 ÿ K2�2 � 4F� �1=2

n o
. (15)

The modulation instability of the pulse corresponds to the
regions of parameter values were one or both of the wave
numbers h� are imaginary. Consider the case of the single-
mode ébre excitation, when either x � 0 or xÿ1 � 0 and
a 2
10 � a 2

20 � I0=4. In this case, we have
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We will consider some special cases of material and
intermodal dispersion. When the material dispersion almost
vanishes (d ' 0), we have

h 2
� �

O 2

4
O 2d 2

m � I0dm w 2 ÿ 4g 2smR
2

ÿ �1=2h i
. (17)

It follows from (17) that, if the intensity of the injected
radiation is

I0 > O 2dm w 2 ÿ 4g 2smR
2

ÿ �ÿ1=2 (18)

the wave number hÿ becomes imaginary and the correspon-
ding perturbation leads to the MI. At dm ! 0, which is
possible in the case of a strong intermodal coupling, h �
0:5O 2dm and the MI is not realised.
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²ËÔ.1. Dependence of the gain Gf on the modulus of the perturbation
frequency jOj upon symmetric or antisymmetric ébre excitation for
Df � ÿ10ÿ26 s2 mÿ1 and various values of wI0.
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of jOj.
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The case of jdj � dm, which corresponds to the zero
effective dispersion Df for one of the partial pulses, is quite
interesting from the practical viewpoint. In this case, we
obtain from (16) for d > 0,

h 2
� � O 2d O 2d� 0:5wI0� �, hÿ � 0; (19)

whereas for d < 0,

h 2
ÿ � O 2jdj O 2jdj ÿ 0:5wI0� �, h� � 0. (20)

It follows from the derived equations that the MI takes place
in the case of anomalous material dispersion (d < 0). The
wave number hÿ becomes imaginary in the frequency interval
jOj < ( wI0=2jd j)1=2. The maximum perturbation gain Gmax �
wI0=2, observed at the frequency jOmj � ( wI0=2jd j)1=2 is two
times lower than Gmax of the two-mode excitation.

Consider now the conditions for the appearance of theMI
when the carrier frequency is strongly shifted to the blue,
where thematerial dispersion is normal (d > 0). If d > dm, the
effective dispersion D1;2 > 0 for both partial pulses. Accor-
ding to Eqn (15), the appearance of the MI in this case is
determined by the inequality F > K1K2, which yields the
condition gsm > gcm, taking into account the expressions for
F and Kf. The MI takes place for perturbations within the
frequency interval

jOj < Os � �g1 � g2�2 � D� �1=2ÿg1 ÿ g2
n o1=2

, (21)

where

gf � wI0
2Df

1� �ÿ1� fx� �2
1� x 2 ;

D � �gsm ÿ gcm��3gsm � gcm�
�
RI0
Df

1ÿ x 2

1� x 2

�2

.

Assuming that d� dm, we haveD1 ' D2 ' d. In this case, the
gain is given by

G � d jOj O 2
s ÿ O 2

ÿ �1=2
.

The maximum perturbation gainGmax � dO 2
s =2 is reached at

the perturbation frequency Om � Os=
���
2
p

.
Fig. 3 shows the dependence of Gmax on the parameter x,

which characterises the type of the ébre excitation. The de-
pendence has been calculated for d � 10ÿ26 s2 mÿ1, dm �
10ÿ27 s2 mÿ1, gsmRI0 � 1 mÿ1, and the ratios gcm=gsm � 0,
1/3, and 2/3. One can see that in this case (D1 > 0 and
D2 > 0), the gain reaches its maximum value upon single-
mode ébre excitation (x or xÿ1 � 0), whereas G � 0 for all
values of gcm=gsm in the case of symmetric excitation (x � 1).
The gain increases with increasing strength of the cross-
modulation nonlinear effects.

Our analysis has shown that the MI can appear in
longitudinally periodic ébres and similar systems with distri-
buted coupling regardless of the sign of the material disper-
sion. Although the development of the MI in systems with a
linear intermodal coupling (in particular, periodic wavegui-
des) is similar to the development of the MI in nonlinear

birefringent waveguides, the parameters characterising the
dynamics of the MI in such systems (the effective dispersion,
the nonlinearity parameter, and the amplitudes of partial
pulses) differ from their conventional form.

Thus, the effective dispersion of a system with an
intermodal coupling can differ signiécantly from the mate-
rial dispersion of the ébre itself [15]. In particular, the effective
dispersion becomes negative in the frequency range where the
material dispersion is normal. In our opinion, the most
important property of the effective parameters that describe
systems with an intermodal coupling is their strong depen-
dence on the conditions of the radiation injection into the
ébre, which are determined by the parameter x. This property
makes it possible to control eféciently the MI dynamics in
such ébres and appears to be the most useful property for
practical applications. Note also that the results obtained are
valid only for the initial stage of the MI. The developed stage
of the MI, when the perturbation jDafj becomes comparable
to af 0, can be analysed only by numerical methods.
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