
Abstract. The amplitudes of harmonics of the atomic res-
ponse are determined as functions of the intensity of the pump
light wave within the range of intensities of 4:9� 1013 ë
2:1� 1014 W cmÿ2 through the numerical solution of the
SchrÎdinger equation for a hydrogen atom in an oscillating
electric éeld. For the amplitudes of harmonics starting from
the 5th up to at least the 55th order, these dependences dis-
play a deep modulation. Generation of high-order harmonics
is analysed within the framework of semiclassical theory
including several factors that were ignored in earlier studies.
Relatively simple formulas for the amplitudes of high-order
harmonics are derived. These formulas agree well with the
results of numerical simulations in the range of tunnelling
ionisation and provide a satisfactory agreement with numer-
ical simulations in the range of barrier-suppression ionisation.

Keywords: high order harmonics, X-rays, electron trajectory
interference.

1. Introduction

High-order harmonic generation in atomic gases is widely
employed in physical experiments as an efécient way of
producing coherent soft X-ray radiation. Unfortunately, the
eféciency of high-order harmonic generation is rather low,
which is, to a considerable degree, due to the fact that it is
difécult to phase-match harmonic generation within rather
large interaction lengths. The results of experiments [1] and
theoretical analysis performed in [2] demonstrate that phase
-matched high-order harmonic generation can be imple-
mented due to the nonmonotonic dependence of the high-
frequency response of a medium on the intensity of the
pump light wave. Therefore, it would of particular interest
to elucidate the nature and the character of this depend-
ence.

The above-mentioned nonmonotonic dependence is ob-
served in calculations [2, 3] performed within the framework
of single-electron quantum-mechanical theory [3, 4] based
on the method of successive iterations. This theory is widely
used for the calculation of the atomic response under con-
ditions of high-order harmonic generation. Unfortunately,

such calculations are very labour-consuming and cannot
provide an adequate accuracy, since this theory neither
allows one to go beyond the érst-order approximation nor
permits the extension to multielectron systems.

The semiclassical theory [5] is also widely used for a
qualitative interpretation of high-order harmonic generation
(as well as for some related calculations). In particular, the
nonmonotonic dependence of the atomic response on the
intensity can be understood in terms of this theory as a
consequence of interference of different electron trajectories
(see the discussion below). Since many aspects of the
semiclassical theory are still to be adequately developed,
this approach was never applied for atomic-response cal-
culations. However, as will be shown below, this theory
allows the development of a simple and efécient technique
for many useful calculations. Apparently, the main obstacle
that has prevented the development of such a technique so
far was the absence of reliable experimental or some other
data that could be employed to test this procedure.

Thus, the fundamental problem of the nonmonotonic
intensity dependence of the atomic response and the pos-
sibility of modulation of this response should be examined
with the use of more reliable methods. Numerical simu-
lations involving detailed calculations of the atomic res-
ponse through the numerical solution of the Schr�odinger
equation for a single-electron atom in an oscillating éeld
seem to be the most natural way to accomplish this goal.
Although such simulations are rather labour-consuming,
they can be performed with a suféciently high accuracy.
Simulations of this type have been carried out earlier for a
hydrogen atom and for other single-electron model systems.
However, these simulations were not quite systematic and
were never employed for the analysis of the intensity
dependence of the atomic response.

This paper presents the results of detailed calculations
performed for the high-frequency response of a hydrogen
atom to the éeld of a linearly polarised light wave (l �
1.06 mm) within a broad range of intensities of this wave in
the ranges of tunnelling and barrier-suppression ionisation.
It will be demonstrated that harmonics of the atomic res-
ponse are modulated with a large modulation depth (which
is close to unity). Based on these test results, we will perform
a semiclassical analysis of the problem under study includ-
ing several factors that were previously ignored. Formulas
derived for the amplitudes of high-order harmonics using
this approach are, to some extent, empirical and relatively
simple (expressions for harmonic amplitudes have been
previously derived in the form of rather complicated inte-
grals [3, 4, 6]). In the range of tunnelling ionisation, pre-
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dictions of these formulas agree well with the results of nu-
merical simulations.

2. Numerical procedure
and results of simulations

The SchrÎdinger equation was integrated in the coordinate
representation in cylindrical coordinates. The z axis was
directed along the electric éeld vector of the light wave. The
Coulomb potential in these simulations was replaced by a
potential V (r) � ÿ1=(r 2 � 0:01)1=2 (in atomic units). This
potential corresponds to a binding energy I � 0:98Ry,
where Ry is the Rydberg constant. The distance from the
centre of the simulation grid to its boundaries along the z
axis was equal to 3eE0=mo2 (where E0 and o are the am-
plitude and the frequency of the éeld and m is the electron
mass). The distance to the side boundary was 25 au. A layer
with a smoothly varying absorption was placed near the
grid boundaries to suppress the reêection of the wave
packet.

The electric éeld was deéned as a éeld of a pulse with a
super-Gaussian front. The peak intensity was varied from
0.0014 up to 0.006 au (from 4:9� 1013 up to 2:1� 1014

W cmÿ2) with a step of 0.0001 au. A fragment of this pulse
is shown in Fig. 1 along with the results of calculations
performed for the intensity of 0.004 au, which lies on the
boundary separating the ranges of tunnelling and barrier-
suppression ionisation.

Fig. 1 displays the probability Ns � hc(t)jc(t)i that an
electron does not escape from the simulation grid by the mo-
ment of time t, the normalised population N0 � jhc0jc(t)ij2
of the ground state c0, the average force f (t) � ÿ E ÿ
hc(t)jqV=qzjc(t)i acting on the electron, and the strength E
of the electric éeld in the light wave.

Fig. 2 presents the amplitudes of odd harmonics of the
force gn calculated within two half-cycles on the plateau of
the pump pulse for the intensity u � 0:0039 au. We should
note an apparent irregularity of the spectral structure. The
dependences of jgnj2 on the intensity u for several harmonics
are presented in Fig. 3.

All the dependences jgn(u)j2 for harmonics up to at least
the 55th order display a deep, nearly 100%, modulation.
Interestingly, low-order harmonics with the energies of
quanta lower than the ionisation energy of the atom are
also modulated (only the third harmonic displays virtually

no modulation), although the modulation depth is much less
in this case. The modulation frequency slowly changes as a
function of the harmonic number, remaining virtually inde-
pendent of the intensity in the range of tunnelling ionisation.
Hence, it is clear that, with u � exp (ÿ r 2), the dependence
jgn(r)j2 quite adequately describes the interference of two
axially symmetric light beams with different divergences and
comparable intensities. This circumstance is very useful for
the prediction of the spatial structure of the éeld of harmo-
nics generated in a macroscopic medium. Interpretation of
this effect is a problem of fundamental importance for the
microscopic theory of the phenomenon under study.

Comparison of the results of simulations with the pre-
dictions obtained by means of successive iterations using
analytical expressions presented in [6] shows that the for-
mulas of [6] satisfactorily describe the structure of the de-
pendences jgn(u)j2 for high-order harmonics (approximately,
starting with the 25th harmonic). A satisfactory agreement
is observed not only in the range of tunnelling ionisation,
but also in the domain of barrier-suppression ionisation.
The absolute values of the amplitudes predicted by the
analytical formulas are considerably (roughly, by an order
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Figure 1. Time dependences of the electric éeld strength E (in atomic
units), Ns (in arbitrary units), normalised population N0 (in arbitrary
units), and the average force f (in atomic units) acting on an electron (Dt
is the time step in calculations).
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Figure 2. Amplitudes of odd-order harmonics simulated numerically (gn)
and calculated analytically (fn) as functions of the harmonic number.
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Figure 3. Amplitudes of odd-order harmonics simulated numerically (gn)
and calculated analytically (fn) as functions of the intensity of pump
radiation for n � 25 and 35.
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of magnitude) underestimated. For n5 25, these discrep-
ancies decrease with the growth in the harmonic number.
The fact that the analytical approach considerably under-
estimates harmonic intensities as compared with the experi-
mental data was pointed out several times before and was
attributed to the multielectron nature of harmonic-generat-
ing atoms. In fact, this discrepancy may arise because of a
rather rough érst-order approximation employed in the
analytical approach. This approximation substantially over-
estimates the spreading rate of the wave packet after
ionisation (since the initial sizes of the wave packet are
underestimated, while the inêuence of Coulomb forces on
this packet is ignored). The behaviour of the dependences
presented in Fig. 1 [in particular, the fact that the curve
Ns(t) lags behind the curve N0(t)] indicates that, in reality,
the spreading rate of the wave packet is not very high.

In practical terms, the phenomenological approach
based on the semiclassical approximation is more êexible,
allowing formulas for amplitudes to be `constructed' from
separate elements including various aspects of the phenom-
enon under study. In what follows, we will construct such
formulas using the results well known from the semiclassical
theory of high-order harmonic generation [4, 6] and taking
into consideration the oscillatory behaviour of dependences
f ( t ) (see Fig. 1). Variations in the amplitude of these oscil-
lations within a half-cycle are unexpectedly slow. Changes in
the amplitude from half-cycle to a half-cycle correlate with
the ionisation probability at the preceding moments of time
(separated from the current moment of time by approxi-
mately three quarters of a cycle). The oscillation frequency
reaches its maximum around the nodes of the éeld, i.e., at
the points close to those predicted by the semiclassical
theory. Within the initial section of the plateau in harmonic
spectra, harmonic amplitudes considerably exceed harmonic
amplitudes around the cut-off. In the regime of tunnelling
ionisation, the plateau width increases in accordance with
predictions of the semiclassical theory. Subsequently, this
growth in the plateau width becomes somewhat slower.

The main method of testing the constructed formulas
involves the comparison of the predictions of these formulas
with the results of simulations presented in Fig. 3.

3. Theoretical analysis

The semiclassical theory treats harmonic emission as a
complicated periodic process, which involves ionisation, the
stage of a free motion of an electron in the éeld of a light
wave, and radiative recombination with a return of the
electron to the initial state. This approach assumes that
ionisation and recombination are instantaneous processes,
the electron velocity immediately after ionisation is equal to
zero, and the trajectory of a free electron starts and ends at
a point r � r1 around a nucleus (usually this point is chosen
in such a way that r1 � 0) and is governed by classical
equations of motion ignoring the Coulomb forces. Within
the framework of this approach, the energy of the emitted
quantum (the sum of the ionisation energy I and the kinetic
energy e acquired by an electron at the stage of free motion)
is unambiguously determined by the phase of the éeld at
the moment of ionisation. A discrete spectrum of harmonics
is emitted due to the periodicity of this process. Only odd
harmonics are generated under these conditions.

An electron returns to the initial point r1 after the stage
of free motion if the ionisation moment ti falls within the

interval (NT=2, NT=2� T=4), where N is an integer and T
is the éeld cycle (we assume that the éeld oscillates as
cosot). In what follows, we set N � 0. The moment ti, the
recombination moment tr, and the kinetic energy e of a
recombining electron are related to the time t of free motion
of this electron by the following formulas [6]:

oti�t� � arctan
1ÿ cosot
otÿ sinot

, (1)

tr�t� � ti�t� � t , (2)

e�t� � U
�2ÿ 2 cosotÿ ot sinot�2

1ÿ cosotÿ ot sinot� o2t 2=2
, (3)

where U is the ponderomotive energy of the electron. The
function e (t) reaches its maximum at the point tmax �
4:1=o and takes a value of about 3:17U at this point. Im-
portantly, if the energy n�ho falls within the interval between
the ionisation potential I and the maximum value I � e(t),
then the equation

n�ho � I� e�t� (4)

has two roots, ta(n) and tb(n), within the segment (0, T ).
These two roots lie within the intervals (T=4, tmax) and
(tmax, T ) . The values of ti and tr corresponding to these
roots will be denoted as tia, tib and tra, trb. Eqn (4) may also
have roots falling beyond the segment (0, T ), but these
roots are less important. Electrons undergoing ionisation
within the time interval (0, T=4) mainly emit harmonics
within the interval (T=2, T ).

Thus, two trajectories correspond to the emission of the
quantum of an nth harmonic. The éelds emitted by an
electron moving along these trajectories interfere with each
other. This interference is usually referred to as the
interference of trajectories. Correspondingly, the amplitude
of the nth harmonic of the nuclear éeld acting on an electron
can be represented as a sum

fn � an � bn, (5)

where the terms are related to the electron trajectories
corresponding to the roots ta and tb. Indeed, in accordance
with a concept of the semiclassical theory of high-order
harmonic generation, the time dependence f ( t ) can be
represented as

f �t� � f ÿ�t�� c.c.,

f ÿ�t� � F�t� exp
�
ÿ i

�
Odt

�
�
X
n

fn exp�ÿinot�,
(6)

where F ( t ) is the slowly varying amplitude (which reverses
its sign at extremal points of the éeld) and O(t) � � I �
e(t(t))�=�h; t ( t ) is the function inverse of tr (t) [see Eqs (1)
and (2)]. The explicit form of the function O(t) is of no
importance for our analysis. It is important only that this
function takes the value no twice per each half-cycle [at the
points tra(n) and trb(n)]. The neighbourhoods of these points
provide the main contribution to the Fourier amplitude fn.
A straightforward analysis based on integration with the
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use of the stationary-phase method shows that the érst term
in Eqn (5) is given by

an � fÿ�tra� exp�inotra�o�2=�pj _O�tra�j��1=2. (7)

at least for harmonics whose frequencies lie far from I=�h
and (I � emax)=�h.

The expression for the amplitude bn can be written in a
similar form. (Such a representation is the most adequate
way to describe the initial section of the `experimental'
dependence f ( t ) shown in Fig. 1. In the course of time, this
dependence becomes somewhat more complicated, since, for
some ti, an electron returns to the atomic residue at least
twice. Such electrons are characterised by a low energy and
introduce low-frequency `distortions' into the dependence
f ( t ), having a weak inêuence on harmonic amplitudes.)

The following key assumption will be used to determine
an in Eqn (7). At the moments of time close to tra(n), the
wave function of an electron around a nucleus can be
approximated with a superposition of the ground state and a
plane wave packet:

cn � N 1=2
0 c0 exp

�
iIt

�h

�
�
�
KnNan

SanLan

�1=2

� exp

�
isan�t; z�

�h

�
, (8)

where San and Lan are the cross section and the length of
the wave packet resulting from ionisation within the time
interval (tia(nÿ 1), tia(n� 1)) and evolving in a free space
up to the moment of time tra(n). Here, Nan is the number of
electrons in this wave packet, Kn is the dimensionless
correction factor including the compression of the packet
due to the Coulomb forces, san is the action deéned as

san�t; z� � Itia ÿ
� t

tia

1

2m

�
p� e

c
A

�2

dt 0

�
�
p� e

c
A

�
�zÿ zan� ,

A is the vector potential, p � ÿ(e=c)A(tia) is the canonical
momentum, and

zan �
I

2eE�tia�
�
��

I

2eE�tia�
�2

ÿ e

E�tia�
�1=2

is the coordinate of the point corresponding to the location
of an electron after tunnelling at the moment of time tia and
after free motion and return at the moment of time tra. The
action san(t, z) is deéned in such a way that, for t � tia, the
phase of a free wave packet at the point z � zan coincides
with the phase of the bound state.

Calculating the mean value of the force ÿe 2z=r 3 in the
state deéned by Eqn (8) and using Eqs (6) and (7), we can
express the amplitude an in terms of the parameters of the
state (8) and the derivative _O(tra). The denominator of the
resulting expression involves the quantity (j _O(tra)jLan)

1=2. To
eliminate this quantity, we assume that the frequency O
changes from (nÿ 1)o up to (n� 1)o within the time
interval equal to Lanm=pn, where pn��2m(n�hoÿ I )�1=2.
Then, we derive

an � exp�ifa�n��Fn

�
KnN0Nanpr

2
0

San

�1=2

, (9)

where r0 is the Bohr radius,

fan � ÿ2
U

�h

�tra
tia

�sinotÿ sinotia�2dt� n0o�tia ÿ tra�

� notra �
pnzan

�h
; (10)

n0 �
I

�ho
;

Fn � ÿ
�

mo
p2r 2

0 pn

�1=2�
c0

���� e 2z

r 3

���� exp�ÿ i
pn z

�h

��
is a quantity having dimensions of a force and depending
only on the harmonic number and the éeld frequency. For
a hydrogen atom, we have

Fn � i
e 2

r 2
0

�
8

pn0

�1=2� n0

nÿ n0

�5=4

�
"�

nÿ n0

n0

�1=2

ÿ arctan

�
nÿ n0

n0

�1=2
#
. (11)

For small nÿ n0, the force given by Eqn (11) is propor-
tional to (nÿ n0)

1=4.
Since the time ta of free motion is usually large, it would

be natural to deéne the cross section San by the relation
San � p( p 2

r =m
2)t2a(n), where p 2

r is the mean square of the
transverse component of the momentum after ionisation. As
shown in [7], in the tunnelling regime, we have p 2

r � p 2
0E=E0,

where p 2
0 � 2mI and E0 � (I=Ry)1=2e=r 20 (the coefécient

(I=Ry)1=2 is given here for the sake of generality). Finally,
we arrive at

San � pr 2
0E�tia�

�
p0ta�n�

m

�2 �Ry=I�1=2
e

. (12)

Note that the ratio San=pr
2
0 is always large, i.e., a free

wave packet is subject to a substantial spreading. It would
be natural to assume that, due to Coulomb forces, the wave
packet is contracted toward the axis. This contraction,
which is not necessarily uniform, becomes especially notice-
able for small pn when the packet slowly passes through the
area around the force centre. Contraction of this type can be
considered as scattering by a Coulomb centre. Therefore,
the correction factor Kan should be related to the relevant
scattering cross section. It would be natural to represent this
factor in the following form:

Kan � 1� Ssc�pn�
pr 2

0

k , (13)

where

Ssc�pn� � 4pr 2
0

�
n0

nÿ n0

�2

is the cross section of scattering of a classical electron with
a momentum pn by an angle exceeding p=2. The constant k
is close, in accordance with our assumption, to unity and
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can be determined from an appropriate étting procedure
(see the discussion below).

The number of electrons in the packet is given by

Nan � N0�tia�n��wa�E�tia�n���jtia�n� 1� ÿ tia�nÿ 1�j, (14)

where wa(E ) is the ionisation rate, which is considered as
an instantaneous function of the éeld strength. Naturally,
this approximation inevitably gives rise to some diféculties.
We assume that the ionisation rate adiabatically follows
the éeld strength only around the maximum of the éeld
strength. Correspondingly, at the moments of time tib,
which always lie around the maximum of the éeld strength,
the rate wa(E ) can be estimated from the well-known for-
mula [8] for the ionisation rate of a hydrogen atom in a dc
éeld: w0(E) � (2I=�h)(4E0=E) exp (ÿ 2E0=3E). (This formula
becomes inapplicable only for high intensities in the regime
of barrier-suppression ionisation.) On the other hand, the
trajectories corresponding to the root ta display the fol-
lowing speciéc feature: the higher is the intensity and the
lower is the harmonic number, the less is the éeld strength
E(tia) at the moment of time corresponding to ionisation
(and the faster is the variation of this éeld strength). In the
case of harmonics whose numbers are close to n0, any
estimate for wa(E(tia)) obtained with the use of the formula
presented above or any other approximate formula assum-
ing that ionisation is an instantaneous process inevitably
leads to underestimation. Keeping this circumstance in
mind, we assume below that

wa�E�tia�� � w0�E�tia ÿ dt��, (15)

where dt is the étting parameter (in what follows, we set
dt � �h=I ).

We will also assume that the amplitude bn in Eqn (5) is
deéned by formulas that can be derived from Eqs (9) ë (15)
with a replacement a! b. The parameter dt (with the
chosen value of this parameter) has virtually no inêuence
on the amplitudes bn.

The choice of the parameter k in Eqn (13) is alleviated
by the fact that, within the range where n � nmax, the para-
meter dt has virtually no inêuence on the amplitudes an.
Thus, k remains the only free parameter determining the
amplitudes. A good agreement between the quantities j fnj2
calculated with the use of the formulas presented above and
the results of numerical solution of the Schr�odinger equa-
tion can be achieved by setting k � 2. The inêuence of this
coefécient increases with a decrease in the harmonic number
and becomes noticeable, roughly, with n � 45. If this coefé-
cient is set equal to zero, then the quantities j fnj2 with smal-
lest numbers ( n � 13, 15) are underestimated by 1ë1.5 or-
ders of magnitude. The quantity k has no inêuence on the
structure of intensity dependences of j fnj2.

By contrast, the parameter dt in Eqn (15) determines the
structure of these dependences. If this parameter is set equal
to zero, then the amplitudes an in the range where n4 31 are
underestimated with respect to the amplitudes bn. As it
follows from Eqs. (5) and (9), oscillations in intensity
dependences of j fnj2 become less pronounced in this case,
nearly vanishing for n close to n0. The value dt � �h=I (which
seems quite reasonable) corresponds to a deep modulation
of the considered dependences up to n � 13 (the érst
harmonic with n > n0), exerting virtually no inêuence on
the form of the dependences under study for n > 31.

Closing this discussion, we should note that the con-
clusions of the above analysis are not quite applicable in the
case of the highest order harmonic within the plateau.
A more detailed analysis shows that, if Eqn (4) has the
( n � 1)th root, then tia(n� 1) should be replaced by tia(n) in
Eqn (14) for this harmonic. If such a root does not exist,
then, in addition to the above-speciéed replacement, the
amplitude fn should be multiplied by 0:51=2.

In the range of barrier-suppression ionisation, the
formulas derived above become inapplicable. However,
in what follows, we will also employ these formulas in
the range of barrier-suppression ionisation. If this approach
gives a complex coordinate zan (zbn), then such a coordinate
is replaced by the coordinate �e=E(tia)�1=2 (�e=E(tib)�1=2).

Thus, our approach to the calculation of the amplitude
of the nth harmonic involves two steps. First, we search for
the roots ta and tb of the transcendental Eqn (4) within the
interval (0, T ) and employ Eqs (1) and (2) to énd the
quantities tia, tib, tra , and trb. Then, we use Eqs (5) and (9) ë
(15), as well as similar formulas for the amplitude bn. The
results obtained with this approach will be referred to as
analytical results.

4. Discussion of the results

In the range of tunnelling ionisation ( u < 0:004 au), the
analytic intensity dependences of j fnj2 derived above agree
well with the results of numerical simulations for all the
harmonics. Oscillation frequencies in these dependences
coincide with an error of the order of 1%, while the ampli-
tudes differ by a factor not exceeding 1.5. Note that we cal-
culate the phases (10) without any étting parameters using
formulas that are more reliable than expressions for the
absolute values of amplitudes (the latter depend, in partic-
ular, on the ionisation probability, which is usually deter-
mined with a suféciently large uncertainty).

In the range of barrier-suppression ionisation, the depth
and the amplitude of oscillations in analytical dependences
also agree fairly well with the results of numerical simu-
lations. The frequency of oscillations is overestimated in this
range. To achieve an agreement between analytical depend-
ences and the results of numerical simulations in this range,
we multiplied the phase difference fan ÿ fbn by a quantity
an(u), deviating from unity for u > 0:004 au. Fig. 3 displays
the dependences thus obtained for harmonics with the
numbers n � 15, 25, 35, and 45 along with the numerically
simulated dependences jgn(u)j2. The relation an(u) � 1ÿ
2:4n(uÿ 0:004)F(uÿ 0:004), where F is the Heaviside step
function, was used for n � 15, 25, and 35; a45(u) � 0:62.
Fig. 2 presents the spectra of the force simulated numeri-
cally and calculated with the use of analytical formulas for
the intensity of 0.0039 au.

Note that high-order harmonics are generated predom-
inantly (or exclusively, for harmonic orders starting with
n � 49) in the range of barrier-suppression ionisation. Ne-
vertheless, no additional correction of our formulas for the
amplitudes an and bn (apart from the correction of their
phases) was necessary for large n up to n � 61. For such
harmonics, the factor (13) is close to unity and the para-
meter dt has virtually no inêuence on the ionisation rate
(15). Therefore, the absolute values of the amplitudes an and
bn are estimated with virtually no étting. Only near the edge
of the intensity range used in our simulations, the plateau
width grows noticeably slower with the increase in the in-
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tensity, and analytical estimates for the amplitudes with
n > 61 are overestimated as compared with the results of
numerical simulations.

Although our analysis was performed for a hydrogen
atom, it allows some obvious generalisations. It is impor-
tant, in this respect, that this analysis has a clear structure,
and the ionisation probability is the only quantity involved
in the above-derived expressions that is highly sensitive to
the properties of a speciéc atom. The ionisation probability
in the tunnelling regime was analysed in [7, 9, 10] and in
several other papers (which are usually devoted to the
calculation of the ionisation probability averaged over
the cycle; formulas for this quantity involve an additional
factor (3E=pE0)

1=2). Based on the results of these studies, we
can extend the theory developed above to the case of
multielectron atoms. For a helium atom, the above-derived
formulas hold true without any changes.

In the range of tunnelling ionisation, the accuracy of the
formulas derived in this paper for the amplitudes of high-
order harmonics is much higher than the accuracy of the
method of successive iterations. In addition, calculations
with these formulas are much simpler than the procedure of
successive iterations. Therefore, the formulas presented
above seem to offer much promise for the analysis of
complex problems related to high-order harmonic gener-
ation in macroscopic media, which require multiple
amplitude calculations. Representation of a harmonic
amplitude in the form of the sum (5) is especially useful
in this case. The terms of this sum can be then interpreted [6]
as two independent waves with different structures of wave
fronts and different divergences. These wave fronts are de-
termined by the dependences of the phases fan and fbn on
the coordinates in a macroscopic space. Examples of the
dependences of the phases fan and fbn on the intensity are
presented in Fig. 4.

5. Conclusions

Thus, the numerical solution of the SchrÎdinger equation
allowed us to study the dependences of harmonics of the
atomic response to the éeld of a light wave on the intensity

of this light wave. Our analysis has shown that, in the case
of pump radiation with a wavelength equal to 1.06 mm,
these dependences display a deep modulation for all the
harmonics starting from the 5th up to at least the 55th
order (in the case of high-order harmonics, the depth of this
modulation is close to 100%).

We have performed a semiclassical analysis of high-
order harmonic generation including several important
additional factors. Analytical expressions derived for the
amplitudes of high-order harmonics agree well with the
results of numerical simulations in the range of tunnelling
ionisation and provide a satisfactory agreement with
numerical simulations in the range of barrier-suppression
ionisation.
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