
Abstract. The features of light reêection from the interface
of a semi-inénite semiconductor are studied upon two-pulse,
two-photon excitation of biexcitons from the crystal ground
state. It is shown that the reêectivity is a complex multistable
function of the amplitudes of the éelds of incident pulses. The
appearence of solitary closed domains or horn-shaped struc-
tures is predicted.
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1. Introduction

A plane-parallel plate of a nonlinear semiconductor is
characterised under certain conditions by the multistable
functions of reêection and transmission of laser radiation
[1 ë 4]. This is caused by the generation of a backward wave
reêected from the rear end of the plate, which interferes
nonlinearly with the forward wave to produce conditions
for multistable light transmission (reêection). At the same
time, it was shown in papers [1, 5 ë 9] that, in the approx-
imation of the slowly varying spatial envelope of the
amplitude of a propagating wave, the interface of a semi-
inénite semiconductor is characterised in most cases by the
one-valued nonlinear or bistable reêection function. As a
rule, a backward wave does not arise in a semi-inénite
optically homogeneous nonlinear medium in this approxi-
mation.

Note that the reêection and refraction of light beams
with a énite cross section also reveal some additional fea-
tures. In particular, it has been shown in [10] that narrow
dips are formed in the transverse cross section of the
reêected beams. The dips are caused by a nonlinear break-
down produced by a narrow `stream', which comes off the
interface of a semi-inénite medium, in the region of the
maximum intensity of the incident beam, resulting in the
hysteresis reêection. In was shown in [11] that in the region
of the total reêection from a nonlinear medium, the trans-
mitted beam is divided into several independent self-focused
beams, whose number and propagation direction are deter-
mined by the incident radiation intensity.

Hysteresis phenomena in distributed nonlinear systems
have been studied in most detail in [12], where the effects of
the longitudinal and transverse distributions of systems, the
kinetics of the spatial hysteresis, and the formation of
spatiotemporal light structures have been investigated. A
bistability and hysteresis in the reêection of a plane mono-
chromatic wave from the semiconductor surface have been
predicted theoretically in [13]. It was found that at high
excitation intensities, the éeld in a semiconductor exhibits
oscillations, which change to the aperiodic spatial decay at a
large distance from the semiconductor end. As a result, a
multiloop dependence of the reêectivity on the incident
wave intensity arises.

It was shown in papers [14 ë 20] that a breakaway from
the approximation of slowly varying envelopes results in the
additional features in the reêection function of radiation
from a semi-inénite optically homogeneous nonlinear
medium. Physically, this is caused by the fact that in this
case it is possible to take into account the reêection from
abrupt gradients of the nonlinear reêective index in a crystal
at high excitation intensities, which leads to the generation
of a backward wave accompanied by the nonlinear inter-
ference between the forward and backward waves, resulting
in the miltistability of the reêection function. This possi-
bility has been also noted in [10 ë 13].

The generation of the backward wave from abrupt
gradients of the refractive index in the system of two-level
atoms has been studied in detail in papers [14 ë 18] and was
called self-reêection. It was shown in [19, 20] that a similar
effect also takes place in a system of excitons and biexcitons,
if exciton ë photon interaction, optical exciton ë biexciton
conversion and single-pulse two-photon excitation of biex-
citons from the crystal ground state are taken into account.

2. Formulation of the problem
and basic equations

Consider a nonlinear reêection function for the interface of
a semi-inénite optically homogeneous isotropic semicon-
ductor upon two-photon, two-pulse excitation of biexcitons
from the ground state of a crystal. It is known [2, 21] that
the oscillator strength for two-photon excitation of biex-
citons is giant compared to that for the exciton transition,
and the two-photon light absorption band has a narrow
delta-like shape. For this reason, the contribution from
nonresonance interactions is negligibly small compared to
that from the resonance interaction, and the Stark effect in
the Hamiltonian of interaction between excitons and pho-
tons can be neglected.
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Let two monochromatic laser pulses with the electric
éeld envelopes Ei1 and Ei2 and the photon frequencies o1
and o2, respectively, be incident normally on the vacuumë
semiconductor interface. We assume that the photons of
each of the pulses are resonant neither with the transition in
the exciton spectral region nor with the transition from the
exciton state to the biexciton one in the region of the M
band [22]. However, we assume that the sum of the photon
energies coincides with the excitation energy of a biexciton
from the crystal ground state.

In the general case, when o1 6� o2, two-photon excita-
tion of biexcitons is possible only simultaneously by photons
of both pulses, but not by photons of each pulse individ-
ually. A part of the radiation of the incident pulses enters
into the medium and propagates in it, exciting biexcitons
and interacting with them. The other part is reêected. The
problem is to determine the amplitudes Er1 and Er2 of the
reêected pulses or the reêectivities from the crystal end as
functions of the amplitudes Ei1 and Ei2 of the incident
pulses.

The Hamiltonian of interaction of biexcitons with the
éelds of both pulses has the form [2, 21]

Hint � ÿ�hm�b�E�1 E�2 � bEÿ1 E
ÿ
2 �, (1)

where m is the constant of two-photon excitation of biex-
citons [19, 25]; b is the amplitude of the biexciton wave;
E �1;2(E

ÿ
1;2) is the positive (negative) frequency component of

the amplitudes of the pulses propagating in the medium.
Using (1), we can easily obtain the Heisenberg (constitutive)
Eqn of motion for the amplitude b :

ib � O0bÿ igbÿ mE�1 E�2 , (2)

where O0 is the eigenfrequency of the biexciton excitation
from the crystal ground state and g is a phenomenological
constant describing the decay of a biexciton state.

Solutions for all the waves in the stationary regime can
be written in the form E �1 �exp (ÿ io1t ), E

�
2 �exp (ÿ io2t),

b�exp�ÿi(o1 � o2)t�. Then, one can énd from (2) the exp-
ression for the stationary amplitude b of the biexciton wave,
and then the polarisations can be determined. After this, the
complex dielectric functions e1 and e2 for each of the waves
will be described by the expressions

e1 � e1
0 � ie1

00 ÿ 4p�hm 2

D� ig
jE2j2, (3)

e2 � e2
0 � ie2

00 ÿ 4p�hm 2

D� ig
jE1j2, (4)

where e1;2
0 and e1;2

00 are the real and imaginary parts of the
background dielectric functions at the frequencies of each
of the pulses; D � o1 � o2 ÿ O0 is the detuning between the
sum of the pulse frequencies and the transition frequency. It
follows from (3) and (4) that the dielectric function at the
frequency of the érst pulse is determined by the éeld of the
second pulse, and vice versa, i.e., the dielectric functions at
the frequency of each of the pulses contain Kerr cross-
modulation nonlinear corrections.

For the sake of simplicity, we introduce the normalised
quantities

F1;2 � aE1;2; F i1;2 � aE i1;2; Fr1;2 � aEr1;2, (5)

where a2 � 4p�hm 2=g. Then, the spatial distribution of the
éelds F1 and F2 in the medium in the stationary regime can
be determined by solving the wave equations

d2F1

dx 2
�
�
e1
0 � ie1

00 ÿ dÿ i

d 2 � 1
jF2j2

�
F1 � 0, (6)

d2F2

dx 2
� s 2

�
e2
0 � ie2

00 ÿ dÿ i

d 2 � 1
jF1j2

�
F2 � 0, (7)

where x � k1z; k1 � o1=c; d � D=g; s � o2=o1; and z is the
pulse propagation axis. As boundary conditions at the
point z � 0 (the end of a semi-inénite crystal), we will use
the continuity conditions for the tangential components of
the electrical and magnetic éelds of both pulses, which can
be written as

Fi1 � Fr1 � F1jx�0; Fi1 ÿ Fr1 � ÿi
dF1�x�
dx

����
x�0

, (8)

Fi2 � Fr2 � F2jx�0; s�Fi2 ÿ Fr2� � ÿi
dF2�x�
dx

����
x�0

. (9)

Because the crystal is semi-inénite and absorbs light, the
only physical solutions of Eqns (6) and (7) are the solutions
for which F1(x)! 0 and F2(x)! 0 at x!1.

Because it is impossible to obtain exact analytical
solutions of the system of nonlinear Eqns (6) and (7) in
the general case, we will use numerical methods. It follows
from (8) and (9) that it is impossible to begin numerical
integration of (6) and (7) from the point x � 0, because the
amplitudes of the reêected waves are unknown.

We assume that at some point x � x0 inside the crystal
the normalised amplitudes of the éelds are vanishingly
small, i.e., jF1;2(x0)j5 1. Such a point always exists, because
the light is absorbed during its propagation. Then, nonlinear
terms in (6) and (7) vanish, and the solutions represent only
the forward waves:

F1�x� � F1�x0� exp
�
i�e10 � ie1

00�1=2�xÿ x0�
�
, (10)

F2�x� � F2�x0� exp
�
is�e20 � ie2

00�1=2�xÿ x0�
�
, (11)

where x � x0 is the point from which we begin the integ-
ration of Eqns (6) and (7), moving backward.

In accordance with (8) ë (11), the éelds and their deri-
vatives at the point x � x0 are known, and they determine
the solution of Eqns (6) and (7), beginning from the point
x � x0. As x decreases from x0 to zero, the solutions give the
spatial distribution of the complex functions F1(x) and F2(x)
and the amplitudes of the incident (Fi1 and Fi2) and reêected
(Fr1 and Fr2) éelds. One can see from (10) and (11) that in
the linear limit, the moduli of the éeld amplitudes of both
waves decrease exponentially with the distance, the rates of
the spatial changes in the éeld proéles being much greater at
e1;2
0 < 0 than at e1;2

0 > 0. The fast exponential decrease in the
éeld amplitudes at e1;2

0 < 0 is caused both by purely dis-
sipative absorption and nondissipative non-transmission.

3. Discussion of the results

Consider the results of numerical integration of the system
of Eqns (6) ë (9). The reêectivities R1 � jFr1j2=jFi1j2 and
R2 � jFr2j2=jFi2j2 calculated as functions of the amplitudes
Fi1 and Fi2 of the éelds of the incident radiation are pre-
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sented in Fig. 1. One can see that the reêectivities R1 and
R2 depend substantially on the parameters e1;2

0 , e1;2
00 , s and

the detuning d from the resonance. For vanishingly small
excitation intensities, when the nonlinear corrections to e1
and e2 in (3) and (4) vanish, we obtain

R1;2 �
��n1;2 ÿ 1�2 � k 2

1;2

���n1;2 � 1�2 � k 2
1;2

�ÿ1
, (12)

where

n1;2 �
�
r1;2 � e1;2

0

2

�1=2

; k1;2 �
�
r1;2 ÿ e1;2

0

2

�1=2

;

r1;2 �
h
�e1;20 �2 � �e1;200 �2

i1=2
. (13)

In this limit, the reêectivities do not depend on the exci-
tation level.

Generally speaking, the dependence R1(Fi1, Fi2) or
R2(Fi1Fi2) represents a complex surface in the space of
the variables Fi1 and Fi2, the surfaces being a plane for small
Fi1 and Fi2, which acquires an increasing curvature outwards
from the origin of coordinates. Because it is impossible to
present this dependence graphically, we will show only few
plots R1(Fi1) and R2(Fi1) for Fi2 � const, i.e., the curves that
represent cross sections of this complex surface for a number
of values Fi2 � const.

One can see in Fig. 1 the characteristic features of these
curves. The function R1(Fi1) at different Fi2 � const has dif-
ferent values at Fi1 � 0 (Fig. 1a), whereas functions R2(Fi1)
(Fig. 1c) at Fi1 � 0 have the same value. This is explained by
the fact that for Fi1 > 0, the dielectric function e1 is deter-
mined by the éeld amplitude F2, which is nonzero, whereas
F1 is almost zero, and, hence, e2 � const. The reêectivity R2
in this case is given by the expression (12). The square of the
éeld amplitude F2 in the medium near to the crystal end is
approximately equal to (1ÿ R2)jFi2j2. Then, the reêectivity
R1 from the crystal end can be written in the form

R1 �
��N1 ÿ 1�2 �Q 2

1

���N1 � 1�2 �Q 2
1

�ÿ1
,

where

N1 �
�

~r1 � ~e1
0

2

�1=2

; Q1 �
�

~r1 ÿ ~e1
0

2

�1=2

;

~r1 �
hÿ

~e1
0�2 � ÿ~e1

00�2
i1=2

;

~e1
0 � e1

0 ÿ d�1ÿ R2�jFi2j2
d 2 � 1

; ~e1
00 � e1

00 � d�1ÿ R2�jFi2j2
d 2 � 1

.

Thus, for Fi1 ! 0, the reêectivity R2 is constant, whereas
R1 depends on the amplitude Fi2 of the incident wave and on
the detuning d from the resonance. For small Fi2 (Fi2 � 10),
the function R1(Fi1) exhibits a weak dip (Fig. 1a, curve 1 ).
As Fi2 increases (Fi2 � 20), the plot of the function R1(Fi1)
changes substantially ë two multistability loops arise (Fig.
1a, curve 2 ).

As Fi2 further increases (Fi2 � 30), this structure be-
comes even more complicated ë the number of multistability
loops increases, and moreover, an additional structure ap-
pears that has the form of self-crossing of the curve R1 in the
region of the érst loop (Fi1) (Fig. 1a, curve 3). In this region
of Fi1, the function R1(Fi1) reveals a complicated hysteresis
behaviour upon cyclic changes in Fi1. This function exhibits
jumps only when Fi1 decreases, whereas the jumps are vir-
tually absent when Fi1 increases. In the region of the second
loop (and further), the jumps in R1(Fi1) upon cyclic changes
in Fi1 are the same as the jumps in the multistable reêection
curve of a usual Fabry ë Perot cavity [1 ë 3].

A qualitatively new complication in the behaviour of the
function R1(Fi1) arises at Fi2 � 50 ë in the region of the érst
loop, an oval of a complicated shape appears, which is
separated from the main multistable curve (Fig. 1b). As Fi2

increases, the region of existence of this oval decreases
rapidly, and then it disappears. However, a new oval or
several ovals appear simultaneously at other values of Fi2,
which disappear gradually, making room for other ovals.
The ovals, produced sequentially, are located in the vicinity
of the loops of increasingly higher orders.

As for the dependences R2(Fi1) (Fig. 1c, d), one can see
that as Fi2 increases, they also become more complicated,
featuring multistable loops, self-crossing of loops, and the
formation of one or several ovals.

The appearance of independent oval-like curves along
with the multistable curves in R1(Fi1) and R2(Fi1) at Fi2 �
const has a simple physical explanation. In the Fi1,Fi2-space,
the functions R1(Fi1, Fi2) and R2(Fi1, Fi2) represent compli-
cated multivalued surfaces, which are characterised by the
appearance of sharp horn-shaped structures. The horn-
shaped extensions are located in the regions of Fi1 and
Fi2 where the traditional (êat) multistable curves have
multivalued loops. In the spatial version of multistable
reêection, these loops are converted into the horn-shaped
extensions. The cross sections of such a surface at different
Fi2 � const give not only multistable regions, but also the
regions of horn-shaped extensions, which are mapped as
ovals, which are gradually separated from rather compli-
cated proéles of multistable curves with increasing Fi2.

Fig. 2 shows the dependence of the reêectivity R1 on the
amplitudes Fi1 and Fi2 of incident éelds in a simpler case.
One can see that the surface corresponding to this depend-
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Figure 1. Dependences of the reêectivities R1 (a, b) and R2 (c, d) on the
éeld amplitude Fi1 of the incident radiation for e1

0 � ÿ15, e100 � 1:5; e2
0 �

ÿ10, e200 � 1:5, s � 1:1, d � ÿ15, and the éeld amplitude of the incident
radiation Fi2 � 10 ( 1 ), 20 ( 2 ), 30 ( 3 ) (a, c) and 50 (b, d).
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ence has one- and three-valued regions. In the three-valued
region, cross sections of this surface have the bistable re-
gions of the reêectivity at Fi1 � const or Fi2 � const. If we
set Fi2 � const, then a jump from the lower branch of the
hysteresis curve R1(Fi1) to the upper one takes place with
increasing Fi1, while for Fi1 � const, a jump occurs from the
upper branch of the hysteresis curve R1(Fi1) to the lower one
with increasing Fi2.

Note also that for Fi1 � const, the jump with increasing
Fi2 occurs at much smaller values than the jump with
increasing Fi1 at Fi2 � const, which is related to the values
of the parameters e1;2

0 , e1;2
00 , s, and d. For the values of para-

meters chosen, the horn-shaped structures are absent,
although a region with sharp bend of the surface R1(Fi1,Fi2)
is observed for small values of Fi1 and Fi2.

The above features of the dependence of reêectivities
from the crystal end on the excitation intensity are caused by
the renormalisation of the semiconductor energy spectrum
at high excitation intensities, which is also manifested in the
spatial distribution of the éeld amplitudes jF1j and jF2j in
the medium.

Fig. 3 shows the dependences of jF1j and jF2j on the co-
ordinate. One can see that both distributions have expo-
nential tails inside the crystal, which are transformed into
non-exponential functions as the crystal end is approached.
These functions oscillate in certain spatial regions. The
exponential tails are caused by non-transmission and ab-
sorption of light in the medium. For large éeld amplitudes,
the effect of non-transmission is absent, and only nonlinear
absorption takes place.

The oscillatory structure of the spatial distribution of the
éelds is caused by the nonlinear dispersion. A strong inho-
mogeneity of the éeld distribution in space causes the spatial
inhomogeneity of nonlinear refractive indices and the
extinction and internal reêection coefécients. As a result,
narrow regions with large gradients of the refractive index
are formed in the medium, where the backward waves arise.

The complicated nonlinear interference between forward
and backward waves results in the stationary structure of
the spatial éeld proéles, which was discussed above. The
narrow region with the large gradient of the nonlinear re-
fractive index and the corresponding abrupt peak of the
internal reêection coefécient of suggests the appearance of
the Fabry ë Perot cavity, induced by the pump éeld. The ref-

lection from this cavity causes the multistability. The ab-
sence of such cavity leads only to the one-valued reêectivity.

4. Conclusions

Thus, if the self-reêection of light is directly taken into
account, i.e., the generation of backward waves during the
propagation of two pump waves is taken into account, the
reêectivities from the interface of a semi-inénite medium
depend on the pump wave intensity in a very complicated
way. In particular, we predict the existence of the
complicated, multivalued surface of the reêectivity R1;2 in
the Fi1, Fi;2, R1;2 space, whose projections on the Fi1, R1;2
plane at Fi2 � const lead to the appearance of closed
solitary oval-shaped curves of the reêection function.

In relation to the results obtained, consider the possi-
bility of the experimental observation of the effect studied.
In [23], the self-reêection was found in a system of two-level
atoms by observing the Doppler shift of the frequency of a
self-reêected wave caused by the motion of the interface
between the regions with high and low absorption. Not
being experimenters, we would like to propose nevertheless
an additional method for experimental observation of a new
physical effect ì two-beam reêection.

Let a high-power electromagnetic pump wave be inci-
dent normally on a semi-inénite crystal, by creating a nar-
row region with an abrupt gradient of the refractive index at
some distance from the crystal end. Let a weak probe beam
be incident on the crystal at some angle to the normal. This
beam is partially reêected from the interface (at the point of
incidence), and partially passes into the medium after refrac-
tion. The angle of incidence can be chosen such that the
probe beam, which has passed into the medium, is incident
on the interface between the regions with high and low
absorption, i.e., on the region with the abrupt gradient of
the refractive index. The beam is partially reêected from this
region and comes from the crystal into vacuum at certain
distance from the point of incidence. This longitudinal dis-
placement between the incident and outgoing beams can
substantially exceed the known Goos ëHanchen displace-
ment [24], which will prove that the reêection takes place
from the internal region in the crystal.

By changing the pump beam power, one can display the
internal interface with the abrupt gradient of the refractive
index, which will result in a change in the longitudinal
displacement of the probe beam leaving the medium. Be-
cause the probe beam is `reêected' at two widely separated
points, this phenomenon can be called `two-beam reêection'.
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Figure 2. Dependence of the reêectivity R1 on the éeld amplitudes Fi1

and Fi2 of the incident radiation for e1
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Depending on whether the peak of the internal reêectivity is
narrow (sharp) or broad (spatially distributed in the propa-
gation direction of a high-power beam), one can observe
two reêected beams or a broad spatial distribution of the
reêected beam over total length of the longitudinal displace-
ment.

It was shown in [25] that the probability of two-photon
absorption accompanied by the generation of a biexciton is
higher than the probability of exciton absorption when the
photon density of the incident radiation exceeds 1015 cmÿ3.
The direct two-phonon generation of biexcitons in CuCl has
been érst observed in [26] upon excitation of the crystal by
25-ps laser pulses with the peak intensity of 1 GW cmÿ2.

Let us estimate the intensity required to observe the self-
reêection from the expression

P � c 2E

8p
� cF 2g

2�4pm�2�h
.

Assuming that the decay rate of the biexciton state is
g � 1010 sÿ1, and taking m � 1017 CGSE units [22, 25], we
obtain P � 5 kW cmÿ2 for the normalised éeld F � 1.
Then, the normalised amplitude of pump éeld, for instance,
F � 30 corresponds to the intensity P � 4:5 MW cmÿ2,
which can be achieved in the experiment. The probe pulse
intensity should be lower by one-two orders of magnitude.

A competing mechanism in the experimental observation
of self-reêection in the case of large detunings from the
resonance is the exciton ë photon interaction, which is not
considered in this paper. This means that the detuning from
the resonance should be smaller than the half binding energy
of a biexciton, which is 15 ë 20 meV for CuCl. In addition,
the biexciton ë biexciton interaction should be taken into
account at high biexciton densities in the medium. However,
for a CuCl crystal with the exciton radius of the order
of 7

�
A (the biexciton radius is 14

�
A), the density at which

this interaction becomes important is approximately 3�
1020 cmÿ3.
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